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Abstract

As the most prevalent mammalian mRNA epigenetic modification, N6-methyladenosine

(m6A) has been shown to possess important post-transcriptional regulatory functions. How-

ever, the regulatory mechanisms and functional circuits of m6A are still largely elusive. To

help unveil the regulatory circuitry mediated by mRNA m6A methylation, we develop here

m6A-Driver, an algorithm for predicting m6A-driven genes and associated networks, whose

functional interactions are likely to be actively modulated by m6A methylation under a spe-

cific condition. Specifically, m6A-Driver integrates the PPI network and the predicted differ-

ential m6A methylation sites from methylated RNA immunoprecipitation sequencing

(MeRIP-Seq) data using a Random Walk with Restart (RWR) algorithm and then builds a

consensus m6A-driven network of m6A-driven genes. To evaluate the performance, we

applied m6A-Driver to build the context-specific m6A-driven networks for 4 known m6A (de)

methylases, i.e., FTO, METTL3, METTL14 and WTAP. Our results suggest that m6A-Driver

can robustly and efficiently identify m6A-driven genes that are functionally more enriched

and associated with higher degree of differential expression than differential m6A methyl-

ated genes. Pathway analysis of the constructed context-specific m6A-driven gene networks

further revealed the regulatory circuitry underlying the dynamic interplays between the

methyltransferases and demethylase at the epitranscriptomic layer of gene regulation.

Author Summary

Powered by methylated RNA immunoprecipitation sequencing (MeRIP-Seq) technology,

recent studies have revealed a new mode of post transcriptional regulation mediated by

mRNA N6-methyladenosine (m6A). Currently, the analysis of m6A focuses mostly on pre-

diction of m6A sites as well as differential m6A methylation, and systematic approach for

predicting m6A functions is yet to emerge. We develop here m6A-Driver, the first net-

work-based approach, to identify m6A-driven genes and their associated networks, whose

functional interactions are likely to be actively modulated by m6A methylation under a
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specific condition. Our test results showed that m6A-Driver can robustly and efficiently

identify m6A-driven genes that are functionally more enriched and associated with higher

degree of differential expression than differential m6A methylated genes. m6A-Driver is

an effective and reliable approach to identify functionally relevant m6A-driven genes and

networks from MeRIP-Seq data.

Introduction

Methylation, as a significant epigenetic modification of nucleic acids, regulates gene expres-

sion, influences grows and development of plants and animals, and is closely related to the

occurrence and development of disease. The epigenetic regulatory mechanisms and physiolog-

ical functions of DNA methylation have been well established through intensive studies in sim-

ple model organisms to human in the past decade [1–3]. However, RNA methylation, even

though prevalent in many organisms, has long been considered to have little functional rele-

vance. The discovery of obesity-associated FTO as a demethylase [4] of mRNA N6-methyla-

denosine (m6A) revealed that mRNA m6A methylation can be reversed and is thus a highly

dynamic phenomenon. This discovery sparked the surged interests in study the prevalence of

m6A in different cells and the functions of m6A. Subsequently, using methylated RNA immu-

noprecipitation sequencing (MeRIP-seq) technique [5–7], transcriptome-wide distribution of

m6A in mammalian cells was profiled [6, 7], revealing for the first time a widespread occur-

rence of m6A in>25% transcripts. m6A was also shown to be enriched around the stop codon

of RNA transcripts and conserved between people and mouse [6, 7], implicating a potential

role played by m6A in post-transcriptional regulation [6, 8, 9]. Since then, m6A has been

shown to have a number of important biological functions, including promoting RNA degra-

dation [10], regulating RNA stability by modulating binding of RNA binding proteins [6, 11,

12], and controlling translation efficiency [13–17]. Meanwhile, the identification of m6A

methyltransferases and demethylases [4, 18–20] further revealed the regulators of epitrans-

criptome. We now know that the m6A methyltransferase complex consists of METTL3,

METTL14, and WTAP and functions as m6A "writers" in eukaryotes [9, 18, 21]. In contrast,

FTO and ALKBH5 are identified to be de-methyltransferase, or m6A "erasers" [4, 9, 22], in-

dicating that mRNA m6A methylation is a dynamic process [4] and directly regulated by a

number of methylases and demethylases [23]. Knockdown studies of these (de)methylases fur-

ther revealed their involvement in many significant physiological processes including obesity

[24–26], synaptic signaling [27], cancer [28, 29], sperm development [22], stem cell differentia-

tion [30], circadian periods [31], yeast meiosis [32, 33], and stem cell pluripotency [34–36].

Although these studies together greatly improve our understanding of the reversible mRNA

m6A methylation, the regulatory mechanisms and functional circuitry of m6A are still largely

elusive.

Currently, MeRIP-Seq is the most widely adopted high throughput approach for measuring

transcriptome-wide m6A methylation [6, 7, 37]. To obtain a transcriptome-wide m6A profile,

MeRIP-Seq produces two sets of samples, i.e., IP and input samples. While IP samples include

sequencing reads from m6A methylated RNA fragments pulled down with anti-m6A antibody,

input samples measure the basal abundance of all transcripts, which are used as background for

assessing the enrichment of methylated fragment. Detecting m6A methylation site or "peak

detection" from MeRIP-Seq data can be achieved by comparing the enrichment of reads in the

IP samples vs. those in the input samples. Several algorithms including exomePeak have been

developed for m6A peak detection [38–41]. After the methylation sites are identified, differential
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m6A methylation (DmM) analysis can be also performed in a case-control study to further iden-

tify the dynamic m6A sites whose methylation status is significantly different under two experi-

mental conditions. Algorithms such as exomePeak [42] and MeTDiff [43] have also been

developed for this purpose. While peak detection and DmM analysis are essential steps for m6A

bioinformatics analysis, they do not yet provide direct information about the functional rele-

vance of m6A.

We focus in this paper on predicting m6A-driven genes (mDrGenes) and the m6A-driven

gene interaction network (mDrNet). Specifically, we refer mDrGenes as genes whose mRNAs

harbor DmM sites or differential m6A methylation genes (DmMGs), and thus may be under

dynamic epitranscriptomic regulation and be functionally significant to the biological context

of interest. Conceivably, when data is available, mDrGenes can be conveniently identified by

first predicting the DmMGs and then assessing their functional significance by using func-

tional networks such as Protein-Protein Interactions (PPI) network or biological pathways.

However, identifying functionally significant DmMGs when there are replicates can be non-

trivial. The challenge arises as a result of technical and biological bias, where significant

DmMGs identified in some replicates might not be significant in other replicates. Existing

algorithms for DmM analysis such as exomePeak and MeTDiff all devise different methods

ranging from taking consensus DmM sites [42] to statistically modeling of replicate samples

[43] to mitigate this bias. While they can help detect robust DmM sites, these DmM sites

might not be functionally significant DmMGs. As our goal emphasizes on detecting functional

significance, an approach that can address this bias in assessing functional significance is more

desirable and likely to better identify the m6A-driven genes and network.

To address the aforementioned issue, we propose in this paper m6A-Driver, an algorithm

that predicts mDrGenes by evaluating the consistency of RNA differential methylation from a

functional network perspective. Specifically, rather than predicting DmMGs directly, m6A-

Driver first performs DmM analysis on every possible replicate set (RS) independently, where

each RS includes two IP-input pairs, one from the treated/case condition and the other from

the untreated/control condition. Then, a DmM functional network is constructed for each RS

by searching the significant interactions with DmMGs in PPI network using a Random Walk

with Restart (RWR) algorithm. We adopt PPI network here to model functional interactions

of m6A mediating genes because m6A has been shown to regulate the process of translation

[13–17], in addition to its influence on gene expression. Finally, a consensus m6A-driven gene

network is built by taking all the significant reoccurring interactions. By assessing the consen-

sus among RS networks as opposed to RS DmMGs, m6A-Driver effectively addresses the sam-

ple bias that impacts functional prediction.

m6A-Driver was applied to four case-control studies that investigate the functions of the

component of methyltransferase complex (METTL3, METTL14, and WTAP) and demethylase

(FTO). In the end, m6A-driven gene networks were constructed for each (de)methylase to-

gether with an integrated network for the complete m6A methyltransferase complex. We

showed that the predicted m6A-driven genes have higher degree of differential expression and

more explicit functional relevance than DmMGs identified directly by previous approaches.

These results demonstrate the effectiveness of m6A-Driver in prioritizing functional significant

m6A-driven genes from m6A sequencing data.

Results

An overview of the m6A-Driver algorithm

The algorithm of m6A-Driver consists of four steps, depicted in Fig 1, with the first three steps

implemented in each RS and step 4 performed to combine the results from all RSs. In step 1,

m6A-Driver: Identifying mDrNet
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Fig 1. Flowchart of m6A-Driver. The green points denote DmMGs; the yellow points denote candidate DmMGs (DmM

interacting genes) and the gray points represents the rest other genes. (A) DmMGs are detected by exomePeak in each RS. (B)

Each DmMG is mapped to the PPI network and then serves as the starting node to initiate the RWR and its top accessible

nodes are held as candidate genes. (C1) For a DmMG with specific degree, we retrieve the normalized degree distribution of its

m6A-Driver: Identifying mDrNet
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exomePeak [42] is applied to detect DmMGs in each RS. In step 2, for each RS, the Random

Walk with Restart (RWR) is performed using every DmMG as the seed node separately to

search for their closely interacting genes in the PPI network. In step 3, the topological and bio-

logical significance of these DmM interacting genes are assessed and the genes that are deter-

mined to be insignificant are filtered out. The topological significance is estimated by their

occurrence as top nodes prioritized by the same RWR algorithm in 100 random networks gen-

erated with the same topological structures. Meanwhile, the biological significance is evaluated

by the length of their shortest path to the initial node (the seed DmMG). RS-specific DmM

interacting networks, each consisting of significant interacting genes, are constructed at

the end of step 3. Finally, in step 4, an mDrNet is constructed by assessing the interaction

recurrence across all RSs. The genes that make up the nodes of the mDrNet are predicted

mDrGenes determined by exomePeak. In this way, we extract a set of mDrGenes, or function-

ally relevant genes driven by m6A and a network that depicts the functional relationship of

mDrGenes.

An overview of the data

We applied m6A-Driver on 4 MeRIP-seq datasets, i.e., FTO knockdown dataset (KD-FTO) [23],

METTL3 knockdown dataset (KD-METTL3), METTL14 knockdown dataset (KD-METTL4),

and WTAP knockdown dataset (KD-WTAP) [44]. KD-FTO dataset is obtained from [27] that

profiles m6A in FTO gene knockdown mice and their wild-type littermate. There are 12 samples

(3 IP replicates paired with 3 input replicates for FTO knockdown mice and 3 IP replicates

paired with 3 input replicates under wild-type littermate). It was divided into 9 sets of biological

replicates and each biological replicate set (RS) contains two IP samples respectively from a FTO

knockdown mouse and a wild-type (WT) littermate and two corresponding input samples from

the two mice.

KD-METTL3, KD-METTL14 and KD-WTAP datasets are from a recent study, which

shows that m6A regulates mRNA stability [44]. Each dataset contains 8 samples, 2 IP replicates

paired with 2 input replicates from the knockdown HeLa cells and 2 IP replicates paired with 2

input replicates from untreated HeLa cells. Similar to KD-FTO, samples in each of the three

datasets are then divided into 4 RSs, each of which contains two IP samples from the knock-

down HeLa cells and untreated HeLa cells respectively and two corresponding input samples.

We first predicted the DmM sites in each dataset using exomePeak. As the technical limita-

tion of MeRIP-Seq can lead to high sample bias, making the prediction results less reliable, we

then set out to check the quality of the prediction results. First of all, the specificity of the pre-

dictions by exomePeak and MeTDiff on these datasets has been evaluated in a previously pub-

lished paper [43], which shows that the false positive rates for all these datasets can be

controlled and there are high specific DmM sites predicted in all these datasets. Next, we fur-

ther examined the predictions of the three m6A methylase knockdown datasets, where we cre-

ated a set of pseudo control and pseudo knockdown sequencing samples by scrambling the

samples of a dataset so that the pseudo control and knockdown samples are both made up by a

real control replicate and a real knockdown replicate. We then performed exomePeak on both

the real dataset and the pseudo dataset and examined the prediction specificity at different

top accessible nodes in each of the 100 random networks, which are generated with the same degree distribution with the

original network. The normal occurrence frequency of certain degree indicates the probability that a node with this degree to be

selected by chance. (C2) The candidate genes are assessed by their topological and biological significance. Candidate genes

that are not observed by random chance, i.e., p<0.05, or are biological significant, i.e., L = 1, are retained as significant

candidate genes. (D) A consensus m6A-driven gene network is constructed by interactions recurring across all RSs.

doi:10.1371/journal.pcbi.1005287.g001
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thresholds by comparing the ratio of predicted DmM sites (or reported true positive rate,

RTPR) in the real dataset and those in the pseudo dataset (or false positive rate, FPR) using a

ROC-like curve. As is shown in S1 Fig, the percentage of DmM sites in the real datasets is

much higher than that in the pseudo dataset at different thresholds in all the 3 datasets. Taken

together, these results demonstrate that the false positive rates in these datasets can be con-

trolled and the exomePeak prediction results are of good specificity for subsequent analysis.

The reference network, PPI network, is built from the most recent version of PPI data from

BioGRID (release 3.4.128, compiled on August 25th, 2015) [45]. Based on the binary interac-

tions, we removed the isolated proteins and self-interaction proteins to establish a PPI network

with a total of 16,062 proteins and 152,676 interactions.

m6A-Driver filters candidate DmMGs in a more robust and efficient way

Jia et al. have proposed the VarWalker algorithm [46] to combine PPI network and mutation

data identified by next-generation sequencing (NGS) to build consensus networks for identify-

ing cancer driver genes. While VarWalker was proposed for predicting driver mutations, it

provides a general framework for prioritizing target genes from high-throughput sequencing

data assisted by PPI network. VarWalker evaluates candidate target genes (i.e., mutation gene

in cancer or DmMG in this work) by assessing their topological significance using random

networks which hold the same degree distribution with the PPI network. However, utilizing

only the topological characteristics may remove functionally significant candidate target

genes. Also, the filtering result is not steady because it will remove different candidate genes

for the same target gene when using different random networks. That is, VarWalker is not

robust enough. We propose in this paper an improved strategy to evaluate both the topological

and functional significance of candidate DmMGs in a more robust and efficient way, and the

approach is detailed in the Materials and Methods section.

To compare the robustness and efficiency of m6A-Driver and VarWalker in filtering candi-

date genes, we applied the two methods on 100 genes randomly selected from the DmMGs in

KD-METTL3 dataset to filter their candidate genes using two different sets of random net-

works. Each set contains 100 networks which hold the same topological property of PPI net-

work. A more robust algorithm should remove a consistent set of genes in two random network

sets. As is shown in Table 1, m6A-Driver only removed 1 different candidate gene when using

different random network sets, whereas VarWalker removed 40 different candidate genes. This

result demonstrates that m6A-Driver is more robust in filtering candidate genes. It is not sur-

prising to also notice that some of the removed genes by VarWalker have significant biological

functional connections with the seed (the DmMG) in the PPI network. Moreover, m6A can

filter candidate genes in a more efficient way. VarWalker needs to perform RWR for each

DmMG in each of the 100 random networks to compute the reoccurrence frequency of the can-

didate genes for calculating the p-value. In contract, m6A-Driver only needs the degree of a can-

didate gene and the degree of the seed gene to calculate its empirical p-value.

Table 1. Comparison of m6A-Driver and VarWalker.

Algorithm #RG by RNS1 #RG by RNS2 #DRG for each seed Running time

m6A-Driver 97 96 1 0.10s

VarWalker 241 229 40 37.02min

#RG represents the number of gene removed, RNS represents the random network set and #DRG represents the number of differential gene removed

between RNS1 and RNS2. While VarWalker filters 40 different candidate genes using different RNSs, m6A-Driver removes only 1 candidate genes. Also, it

takes 37.02 minutes for VarWalker to filter the candidate genes for 100 DmMGs but it takes only 0.1 second for m6A-Driver. This result demonstrates that

m6A-Driver is more robust and efficient in filtering candidate DmMGs.

doi:10.1371/journal.pcbi.1005287.t001
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The predicted mDrGenes closely interact with each other in the m6A-

driven gene network

To validate m6A-Driver, we applied it to the four different case-control MeRIP-seq datasets:

KD-FTO, KD-METTL3, KD-METTL14 and KD-WTAP. KD-FTO includes 9 RSs, based on

which an FTO knockdown mDrNet (S2 Fig) was built. The network consists of 1,832 mDrGenes

and 21,506 edges, with the maximal connected sub-graph containing 1,787 mDrGenes, implying

that there exist dense interactions among mDrGenes. KD-METTL3, KD-METTL14 and KD-

WTAP all include 4 RSs, based on which the corresponding context-specific mDrNets (S3–S5

Figs) were constructed by m6A-Driver. KD-METTL3 mDrNet contains 1,352 mDrGenes and

8,235 edges, with the maximal connected sub-graph including 1,339 mDrGenes; KD-METTL14

mDrNet consists of 1,251 mDrGenes and 8,452 edges, with itself being the maximal connected

sub-graph; KD-WTAP mDrNet has 375 mDrGenes and 1,980 edges, which is also its maximal

connected sub-graph. Similar to KD-FTO network, most mDrGenes in each of the 3 networks

are interacting with each other very closely, implying again that the predicted mDrGenes have

highly relevant functions.

Characteristics of the predicted mDrGenes

We next examined the characteristics of the predicted mDrGenes. We first investigated the

differential methylation of the mDrGenes. An mDrGenes is defined as a hyper mDrGenes if

its most differentially methylated site is hyper-methylated, but otherwise defined as a hypo

mDrGenes if its most differentially methylated site is hypo-methylated. We counted the num-

ber of hyper and hypo mDrGenes (Fig 2). As expected, mDrGenes in KD-FTO are mostly

hyper-methylated, whereas those in three other methylase knockdown datasets are more

hypo-methylated. This result is consistent with the fact that FTO is an m6A demethylase, but

METTL3, METTL14, and WTP are elements of m6A methyltransferase complex. We also calcu-

lated the average number of DmM sites for per gene and found that on average, an mDrGene

harbors more than one DmM sites (Table 2). It is interesting that mDrGenes in KD-FTO har-

bor more DmM sites than the other 3 datasets and KD-METTL3 mDrGenes harbor the least

number of DmM sites on average. We then investigated the DmM site distribution using the

Guitar R/Bioconductor package [47] in an mDrGene transcript (Fig 3). Overall, the distribu-

tions for the 4 datasets are very similar, where DmM sites are mostly enriched around the stop

codon and are distributed more in 3’UTR and CDS, which is consistent with the reported

results in the literature [6, 7].

Furthermore, we obtained the sequence motifs of DmM sites in mDrGenes for each of the

four datasets using MEME-ChIP webserver [48] (Fig 4). The reported RRACH m6A motifs

[6, 7] was top ranked in KD-FTO and KD-METTL3, whereas the most enriched motifs in

KD-METTL14 and KD-WTAP are similar to the binding motifs of SRSF1 and SRSF9. Interest-

ingly, SRSF1 and SRSF9 are components of the SRSF protein that is involved in splice site

selection in alternative splicing [49].

mDrGenes are more functionally significant

We asked if mDrGenes are more functional relevant. To test this, we examined the functionally

significance between mDrGenes and DmMGs predicted by exomePeak. We performed GO

[50] enrichment analysis using DAVID (Database of Annotation, Visualization and Integrated

Discovery) [51] and then compared the enrichment degrees of the top enriched biological pro-

cesses (BP, Fig 5). Since a larger testing gene set tends to lead to a smaller enriched p-value

when performing DAVID, to make the comparison fair, we balanced the scale of mDrGenes

m6A-Driver: Identifying mDrNet
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and DmMGs before enrichment analysis. For KD-FTO dataset, the scale of mDrGenes is larger

(Fig 6), so we randomly removed some mDrGenes to make the scales the same and then per-

formed the enrichment analyses for 10 times to calculate an average pBonferroni for each enriched

term. After also performing enrichment analysis on DmMGs, we compared the pBonferroni of

top 20 enriched terms for DmMGs and scaled mDrGenes. Since, DmMGs have a larger scale

for KD-METTL3, KD-METTL14 and KD-WTAP datasets, to balance the scale, we selected

DmMGs that harbor top differently methylated DmM sites. Then, we performed enrichment

analyses and compared the pBonferroni of top 20 enriched terms for the mDrGenes and scaled

DmMGs. The result shows that mDrGenes are more significantly enriched than DmMGs in all

the top enriched biological processes, demonstrating that mDrGenes are more functional rele-

vant than DmMGs.

To further investigate the biological significance of mDrGenes, we evaluated the differential

expression (DE) of mDrGenes and DmMGs. Conceivably, a gene set is likely to be more

Fig 2. Counts of hyper/hypo mDrGene. As is expected, there are more hyper mDrGenes in KD-FTO and more

hypo mDrGenes in KD-METTL3, KD-METTL14 and KD-WTAP.

doi:10.1371/journal.pcbi.1005287.g002

Table 2. Numbers of DmM sites and genes, and the average number of site per gene.

Dataset # Sites # Genes Avg. sites/gene

KD-FTO 10204 1832 5.57

KD-METTL3 2684 1352 1.99

KD-METTL14 3450 1251 2.76

KD-WTAP 804 375 2.14

doi:10.1371/journal.pcbi.1005287.t002

m6A-Driver: Identifying mDrNet
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functionally important if it has more differentially expressed genes (DEGs) and/or its DEGs

are more differentially expressed. To this end, we applied DESeq2 [52] to the input replicates

of treated and untreated samples and determined a gene to be DEG if the adjusted p-value is

less than 0.05. We first examined the percentage of DEGs in mDrGenes and DmMGs in the

four datasets. We found that there are very few DEGs in mDrGenes and DmMGs for both

KD-FTO and KD-METTL14 dataset, and thus the percentages of DEGs in mDrGenes and

DmMGs are very low for these two datasets. Not surprisingly, no significant differences

between the percentages of DEGs in mDrGenes and DmMGs can be observed (Fisher’s test,

see Table 3 for details). In contrast, much more mDrGenes and DmMGs are differential

expressed in KD-METTL3 and KD-WTAP, and the percentages in mDrGenes are significantly

higher than those in DmMGs (Fisher’s test, see Table 3 for details). We next compared the

degree of DE, which is represented by the negative log10 (FDR) calculated by DESeq2 (Fig 7).

Fig 3. Distribution of DmM sites in mDrGenes. All the sites are consistently enriched in the 3’UTR and CDS in the 4 datasets.

The plots was generated using the Guitar R/Bioconductor package [47].

doi:10.1371/journal.pcbi.1005287.g003
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The result shows that the DE degrees of mDrGenes are also higher than those of DmMGs. The

only exception is the FTO KD experiment, in which there are nearly no differential expression

genes. Taken together, we can conclude that mDrGenes are likely to include more DEGs than

DmMGs and their degree of DEs are also likely to be higher.

mDrGenes participate in several important biological processes

Functional enrichment analyses were carried out on the 4 mDrNets to help reveal the biologi-

cal processes regulated by the 4 enzymes at epitranscriptomic layer of gene regulation. The

results obtained using DAVID reveal a significant enrichment of multiple m6A-related path-

ways annotated by either the Kyoto Encyclopedia of Genes and Genomes (KEGG) [53] or

Gene Ontology (GO) biological process (BP) domains (Figs 8–11).

For KD-FTO, since FTO is a demethylation enzyme, we expected to observe mainly hyper-

methylation. However, m6A-Driver did report several hypo-methylation mDrGenes, suggest-

ing a potentially direct or indirect mode of FTO regulation to also enhance m6A. We next

examined the functional relationship between the hyper- and hypo-methylated genes and

found that there was little overlapping between their enriched functions (Fig 8 and Fig 9, see

S6 Fig and S7 Fig for detail). To keep consistency with paper [27], in which the KD-FTO data

is published, we adopt the whole reference genome as the control data set of enrichment analy-

sis. The hyper-methylated mDrGenes are clearly linked closely to neurological processes and

neuro signaling pathways. Several significantly enriched terms annotated by GO BP are syn-

apse and neuron signaling transmission (132 hyper mDrGenes, pBonferroni = 1.79×10−18),

synaptic transmission (43 hyper mDrGenes, pBonferroni = 1.77×10−13), transmission of nerve

impulse (50 genes in hyper mDrGenes, pBonferroni = 5.58×10−14).They are also likely associated

with neuron differentiation (65 hyper mDrGenes, pBonferroni = 1.81×10−11) and neuron devel-

opment (53 hyper mDrGenes, pBonferroni = 3.00×10−11) as well as embryonic development (54

Fig 4. Sequence motifs of the DmM sites in mDrGenes. The motifs were identified using MEME-ChIP webserver.

The shown motifs are the most enriched motifs in each dataset.

doi:10.1371/journal.pcbi.1005287.g004
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hyper mDrGenes in utero embryonic development, pBonferroni = 2.31×10−13 and 67 hyper

mDrGenes in chordate embryonic development, pBonferroni = 2.42×10−11), which may be

another proof of RNA methylation involved in steering stem cell pluripotency [34–36]. In

contrast, the hypo-methylated mDrGenes are more related to metabolic processes (79 hypo

mDrGenes in protein catabolic process, pBonferroni = 2.41×10−18 and 85 hypo mDrGenes in

macromolecule catabolic process, pBonferroni = 1.88×10−17) and cell cycle (65 hypo mDrGenes,

pBonferroni = 9.29×10−12). In addition, the hypo mDrGenes are enriched in Spliceosome

(17 hypo mDrGenes, pBonferroni = 8.25×10−4), which is also a KEGG term enriched in KD-

METTL3, KD-METTL14 and KD-WTAP data (Fig 11), implicating a potential role of m6A

in mRNA splicing. Note that WTAP itself is also splicing factor. However, this result suggests

that WTAP might also regulate splicing in an m6A dependent fashion. Taken together, our

predicted mDrGenes confirm the demethylation role of FTO but may suggest a direct or indi-

rect role of FTO in promoting m6A. Functional enrichment suggests that these two modes of

FTO function are involved in distinct biological processes and pathways.

Another interesting finding is that both hyper and hypo mDrGenes are enriched in cancer

related pathways including Chronic myeloid leukemia (20 hyper mDrGenes, pBonferroni =

3.27×10−6; 12 hypo mDrGenes, pBonferroni = 2.12×10−3) and Glioma (16 hyper mDrGenes,

pBonferroni = 8.01×10−5; 12 hypo mDrGenes, pBonferroni = 4.86×10−4) (Fig 9, see S7 Fig for

detailed information).

As FTO-KD data is extracted from mouse brain, so we also do enrichment analysis using

the brain tissue specific expressed genes as control data to check whether the pathways we find

above are really influenced by m6A methylation or by tissue specific expression. Brain tissue

Fig 5. Comparison of functional enrichment between mDrGenes predicted by m6A-Driver and DmMGs by exomePeak. The

figure shows the top 20 mostly enriched biological processes in mDrGenes and DmMGs, respectively. We can see that mDrGenes

identified by m6A-Driver clearly have higher functional enrichment for all four datasets.

doi:10.1371/journal.pcbi.1005287.g005
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specific expressed genes are defined here as genes who have a RPKM value over 1 in at least

half of the input samples, including treated and untreated ones. As is shown in S8 and S9 Figs,

the results are similar to make the whole reference genome as control data set, but the enriched

pathways get a bigger q-value due to the size reducing of control datasets, such as synaptic

transmission (43 hyper mDrGenes, pBonferroni = 1.09×10−5), transmission of nerve impulse

(50 genes in hyper mDrGenes, pBonferroni = 1.98×10−5), neuron differentiation (65 hyper

mDrGenes, pBonferroni = 1.89×10−8) and Pathways in cancer (64 hyper mDrGenes, pBonferroni =

5.12×10−6; 40 hypo mDrGenes, pBonferroni = 3.51×10−2). These results show that the mDrGenes

enriched pathways are really influenced by m6A methylation.

Fig 6. Number of mDrGenes predicted by m6A-Driver and DmMGs identified by exomePeak in four

datasets. We can see that exomePeak predicts more genes in the three methylase knockdown datasets but

m6A-Driver can find genes missed by exomePeak due to biological variance.

doi:10.1371/journal.pcbi.1005287.g006

Table 3. Count of differently expressed genes (DEGs) among mDrGenes and DmMGs.

Dataset #DEG DmMG mDrGene Fisher’s test p-value

#DE #all %DEG #DE #all %DEG 2-tailed greater less

KD-FTO 12 1 553 0.18% 0 1832 0 0.23 1 0.23

KD-M3 6197 1850 3089 59.89% 901 1352 66.64% 1.98E-5 1.06E-5 1

KD-M14 127 30 1846 1.63% 22 1251 1.76% 0.78 0.44 0.67

KD-WTAP 1575 271 1435 18.89% 103 375 27.47% 4.30E-4 2.32E-4 1.00

M3 is short for METTL3 and M14 is short for METTL14. “2-tailed” represents the2-tailed Fisher’s test, “greater” (or “less”) represents a one-tailed Fisher’s

test, where the null hypothesis is that the percentage of DEG in mDrGene is greater (or less) than that of DmMGs.

doi:10.1371/journal.pcbi.1005287.t003
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To further study the dynamics of m6A methylation, we applied the enrichment analysis to

mDrGenes predicted in KD-METTL3, KD-METTL14 and KD-WTAP and compared the sim-

ilarity and difference of their enriched GO biological processes (Fig 10, and also see S10 Fig

for more details) and KEGG pathways (Fig 11, and also see S11 Fig for more information). In

this case, we chose to perform enrichment on all mDrGenes in these three datasets instead of

analyzing hyper- and hypo-methylated mDrGenes separately, because there are little hyper

mDrGenes in these 3 datasets. There are significant overlapping biological processes among

these 3 sets of mDrGenes, but also exist enzyme specific functions (Fig 10). The common

biological processes include cell cycle (143 mDrGenes in KD-METTL3, pBonferroni =

2.52×10−20, 123 mDrGenes in KD-METTL14, pBonferroni = 6.71×10−15, 51 mDrGenes in KD-

WTAP, pBonferroni = 2.35×10−10), regulation of transcription (324 mDrGenes in KD-METTL3,

pBonferroni = 7.76×10−16, 315 mDrGenes in KD-METTL14, pBonferroni = 2.37×10−19, 103

mDrGenes in KD-WTAP, pBonferroni = 1.88×10−7) and positive regulation of molecular

metabolism, e.g., positive regulation of macromolecule metabolic process (137 mDrGenes in

KD-METTL3, pBonferroni = 5.19×10−14, 126 mDrGenes in KD-METTL14, pBonferroni = 8.12×10−13,

55 mDrGenes in KD-WTAP, pBonferroni = 9.27×10−11).

Fig 7. Degree of differential expression between mDrGenes and DmMGs. The degree is denoted by the negative log10 (FDR)

calculated by DESeq2. We can see that the DE degree of mDrGenes is higher than that of DmMGs.

doi:10.1371/journal.pcbi.1005287.g007
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Fig 8. Biological processes regulated by FTO. We show here a binary map depicting the GO biological process (BP)

categories enriched in m6A-driven genes identified in KD-FTO experiment. The enrichment analysis is conducted for the hyper

and hypo m6A-driven genes respectively using DAVID. The hyper FTO targeted m6A-driven genes are closely link to synaptic

transmission and cell-cell signaling, which is consistent with previous research. And we also find several other significant

biological processes and genes regulated by m6A such as embryonic development and neuron differentiation. This result

demonstrates that m6A-Driver can identify biological functionally significant m6A-driven genes.

doi:10.1371/journal.pcbi.1005287.g008
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Fig 9. Pathways regulated by FTO. We show here a binary map depicting the KEGG categories most enriched in

mDrGenes for KD-FTO dataset. The enrichment analysis is done to the hyper and hypo m6A-driven genes respectively using

DAVID. The m6A-driven genes are significantly enriched in cancer related pathway and some specific cancer such as chronic

myeloid leukemia and Glioma which suggests RNA methylation may play a role in cancer.

doi:10.1371/journal.pcbi.1005287.g009
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What is interesting is that the overlapping functions between METTL3 associated

mDrGenes and WTAP associated mDrGenes are positive regulations of metabolism and gene

expression. In contrast, the overlapping functions between METTL3 targeted mDrGenes

genes and METTL14 mDrGenes are mainly negative regulation of metabolism and gene

Fig 10. Biological processes regulated by methyltransferase complex. We show here a binary map depicting the GO biological

process (BP) categories most enriched in mDrGenes identified in KD-METTL3, KD-METTL14 and KD-WTAP using DAVID. The 3

components of RNA methylation complex target different biological processes, indicating that different methylation enzymes may

influence different biological processes via driving different genes.

doi:10.1371/journal.pcbi.1005287.g010
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Fig 11. Pathways regulated by methyltransferase complex. We show here a binary map depicting the KEGG

categories most enriched in mDrGenes identified in KD-METTL3, KD-METTL14 and KD-WTAP using DAVID.

There are significant overlapping pathways between the three enzymes targeted m6A-driven genes and also

enzyme specific functions. Two important consistent pathways are cancers and splicing which indicates m6A may

regulate these pathways through m6A-driven genes.

doi:10.1371/journal.pcbi.1005287.g011
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expression. The METTL14 mDrGenes are also strongly enriched in splicing, especially, e.g.,

RNA splicing (76 mDrGenes, pBonferroni = 2.71×10−22), RNA splicing, via transesterification

reactions (43 mDrGenes, pBonferroni = 1.38×10−13) and RNA splicing, via transesterification

reactions with bulged adenosine as nucleophile (43 mDrGenes, pBonferroni = 1.38×10−13). It is

consistent with that the most enriched motif in KD-METTL14 is similar to the binding motifs

of SRSF1 and SRSF9, two factors involved in alternative splicing. These suggest a potential role

of METTL14 in regulating splicing via m6A. In contrast, WTAP mDrGenes are enriched spe-

cifically in chromatin modification (26 genes, pBonferroni = 1.46×10−8), whereas METTL3

mDrGenes may influence the development of protein complex, e.g., protein complex assembly

(96 mDrGenes, pBonferroni = 1.86×10−14) and protein complex biogenesis (96 mDrGenes,

pBonferroni = 1.86×10−14).

Comparison of top KEGG pathways enriched in the three mDrGenes sets also revealed

common as well as methylase specific functions (see Fig 11). Particularly, the consensus func-

tions include cell cycle (38 mDrGenes in KD-METTL3, pBonferroni = 2.19×10−11, 27 mDrGenes

in KD-METTL14, pBonferroni = 8.64×10−7, 16 mDrGenes in KD-WTAP, pBonferroni = 1.08×10−5),

spliceosome (34 mDrGenes in KD-METTL3, pBonferroni = 8.9×10−9, 26 mDrGenes in KD-

METTL14, pBonferroni = 3.51×10−6, 14 mDrGenes in KD-WTAP, pBonferroni = 2.06×10−4) and

pathway in cancer (66 mDrGenes in KD-METTL3, pBonferroni = 2.68×10−10, 57 mDrGenes in

KD-METTL14, pBonferroni = 8.58×10−10, 30 mDrGenes in KD-WTAP, pBonferroni = 5.46×10−7)

especially Chronic myeloid leukemia (28 mDrGenes in KD-METTL3, pBonferroni = 8.66×10−11,

21 mDrGenes in KD-METTL14, pBonferroni = 2.52×10−7, 12 mDrGenes in KD-WTAP,

pBonferroni = 2.58×10−5). The significant overlapping pathways between METTL3 and METTL14

include Glioma (20 mDrGenes in KD-METTL3, pBonferroni = 1.37×10−6, 13 mDrGenes in

KD-METTL14, pBonferroni = 1.85×10−3), suggesting that these mDrGenes may be used as

biomarkers of glioma. We also notice that METTL3 mDrGenes are specifically enriched in Mel-

anoma (18 mDrGenes, pBonferroni = 1.32×10−4). A recent study have demonstrated that muta-

tions within intron 8 of FTO leads to increased melanoma risk [29], suggesting a link between

m6A and melanoma.

To help reveal the pathways potentially relevant to different modes of m6A functions,

we checked the overlaps between the enriched pathways in hyper and hypo mDrGenes in

KD-FTO and mDrGenes in KD-METTL3, KD-METTL14 and KD-WTAP (S12 and S13 Figs).

All 5 groups of mDrGenes are enriched in cell cycle and pathways in cancer, including espe-

cially Chronic myeloid leukemia. This further suggests that m6A is related to cancer. The

overlapping pathways between the hyper-mDrGenes in KD-FTO and those in METTL3/

METTL14 are mainly related to transcription including regulation of transcription and regula-

tion of gene expression. Indeed, it has been shown that m6A recruits YTHDF2 protein to regu-

late mRNA stability [54]. In contrast, the overlapping pathways between the hypo-mDrGenes

in KD-FTO and those in METTL3/METTL14 are related RNA splicing. Interestingly, nuclear

m6A-binding protein YTHDC1 is shown to promote exon inclusion of targeted mRNAs

through facilitating mRNA binding of splicing factor SRSF3 [55,56].

We further examined the mDrNets and their subnetworks associated with the enriched bio-

logical processes. Several sub-mDrNets for KD-FTO including intracellular signaling cascade,

synaptic transmission BP category, and transmission of nerve impulse, are shown in Fig 12.

They are consistent with our hypothesis that mDrGenes in the same biological process are in-

teracted with each other closely. That is also the reason why m6A-Driver can identify mDrGenes

that might not be consistently identified in most RSs due to the biological variance, but have sig-

nificant biological functions. This underscores the advantage of m6A-Driver in addressing vari-

ance among different replicates for predicting mDrGenes.
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Fig 12. Subnetworks of mDrNet in KD-FTO. (a) Sub-mDrNet associated with intracellular signaling cascade BP

category. (b) Sub-mDrNet associated with synaptic transmission BP category. (c) Sub-mDrNet associated with

transmission of nerve impulse BP category. The orange circle nodes denote hyper mDrGenes and the cyan triangle

m6A-Driver: Identifying mDrNet

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005287 December 27, 2016 19 / 31



For KD-METTL3, KD-METTL14 and KD-WTAP, since they form the m6A methyltrans-

ferase complex, we integrated the 3 mDrNets and examined the subnetworks associated with

the enriched pathways (Fig 13). Similar to KD-FTO, the mDrGenes enriched in the same path-

way are closely connected and many mDrGenes undetected as differential m6A genes in all

RSs are also identified. What is also interesting to notice is that the enriched pathways com-

mon in three datasets could be resulted from very different mDrGenes for each dataset, sug-

gesting the 3 m6A methylases collaboratively regulate the same pathway through different

mechanisms.

Because many m6A sites are detected in 3’UTRs that also contain microRNA binding sites.

It will be helpful to further examine if the mDrGenes are also enriched in certain microRNA

with significant functions. To test this, we download the microRNA-target information from

miRTarBase, a database curates experimentally validated microRNA-target interactions [57].

Then we performed Fisher’s test to test whether the m6A driven genes are enriched in targets

of certain microRNA families. Interestingly, although most mDrGenes are targeted by

microRNAs (60% in KD-FTO, 96% in KD-METTL3, 97% in KD-METTL14 and 97% in KD-

WTAP), not many microRNAs have targets enriched in mDrGenes. For KD-FTO, there are

only 2 microRNAs have p-value< 0.05, and for KD-METTL3, KD-METTL14 and KD-WTAP,

there are only 1, 1, 0, separately (Table 2). The information of all targeted mDrGenes by micro-

RNA is included in supplementary material (S1–S4 Texts).

Discussion

The MeRIP-seq technology significantly advances the study of m6A, enabling profiling m6A

methytranscriptome for specific cell conditions. However, existing algorithms focus mostly on

predicting m6A sites from MeRIP-seq data. Although they are powerful tools for MeRIP-seq

data analysis, they cannot directly assess the functional importance of these sites and associated

genes. To address this shortcoming, we proposed in this paper m6A-Driver, a novel algorithm

for detecting m6A-driven genes and their interaction network. m6A-Driver utilizes protein-

protein interaction networks to identify functional meaningful differentially m6A methylated

genes and overcomes the biases in predicting functional enrichment of sites due to different

sample replicates. The comparison on the p-values of top enriched biological processes in the

prediction results of m6A-Driver and exomePeak demonstrates that m6A-Driver could iden-

tify mDrGenes that are more functional relevant. In terms of the algorithm, comparison with

VarWalker, an algorithm for predicting mutation driver genes, shows that m6A-Driver is com-

putationally more efficient and can produce topological and biologically more robust predic-

tions. Furthermore, m6A-Driver generates a condition-specific m6A-driven network that

reveals the detailed functional circuitry underlying the biological condition.

The results on the FTO, METTL3, METTL14 and WTAP knockdown data demonstrated

that m6A-Driver can address the sample bias in MeRIP-Seq data and identify functional rele-

vant mDrGenes in a robust and efficient fashion. m6A-Driver predicted several significant bio-

logical progresses and pathways associated with each knockdown dataset and constructed four

mDrNet separately regulated by the four m6A (de)methylases. Functional enrichment analysis

across the four networks showed the involvement of m6A in a diverse processes and pathways

nodes denote hypo mDrGenes. The node size and edge width are corresponding to the frequency that they appear in

different replicates sets. The number labeled on the edge means the times that it reappears in all RS sets. mDrGenes in

the same biological process interact with each other closely, which is consistent with our hypothesis. For UNC13B,

STX1A and GRID2, although they are not predicted as differential m6A genes in all RS, m6A-Driver still identify them as

mDrGenes, because they have significant biological functions.

doi:10.1371/journal.pcbi.1005287.g012

m6A-Driver: Identifying mDrNet

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005287 December 27, 2016 20 / 31



including regulating cancer, transcription, and slicing, many of which have been reported in

the literature. The presented results in this paper demonstrate that m6A-Driver is an effective

Fig 13. Sub-mDrNet of KD-METTL3, KD-METTL14 and KD-WTAP. (a) Sub-mDrNet associated with Pathways in cancer.

(b) Sub-mDrNet associated with Spliceosome. (c) Sub-mDrNet associated with chronic myeloid leukemia. The circle nodes

are hypo mDrGenes and the triangle ones are hyper mDrGene. The orange nodes denote mDrGenes reappearing in at last

two consensus networks. The yellow nodes denote mDrGenes specifically from KD-METTL3 mDrNet. The cyan nodes

denote KD-METTL14 specific mDrGenes and the green ones denote WTAP specific mDrGenes. The node size and the edge

width represent the frequency that they reappear in different replicates sets (RSs). Though enriched in the same pathways

but the target mDrGenes are not all the same for the 3 methylation enzymes. Mean that, the 3 methylation enzymes may

drive different genes to influence the same pathway.

doi:10.1371/journal.pcbi.1005287.g013
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and reliable approach to identify functionally relevant m6A-driven genes and networks from

MeRIP-Seq data.

We want to point out that the inherent technical limitations of MeRIP-Seq can lead to

increased false positives in the predicted mDrGenes and their functional networks. As pointed

out earlier in the paper, the sample bias and the impact of library “size factor” from different con-

ditions can negatively impact the quality of the data. How to normalize MeRIP-Seq samples from

different conditions is still an open topic that requires additional research. Many useful normali-

zation methods such as the "geometric mean" approach proposed in DESeq can provide valuable

guidance. Nevertheless, the results from this and other papers showed that with careful process-

ing and modeling of the current MeRIP-Seq data, many important functions of m6A can be

predicted. With the continuing improvement of the MeRIP-Seq and related technologies, we

expect that m6A-Driver should produce increasingly more accurate predictions. In the current

m6A-Driver algorithm, identification of mDrGenes relies on a reference network and a threshold

to determine the candidate genes. So far, only PPI network is considered, and no reference net-

works for noncoding RNAs are included. As m6A is also prevalent in long noncoding RNAs

(lncRNAs), constructing a noncoding RNA interaction network and extending m6A-Driver algo-

rithm to lncRNAs will enable the study of m6A associated functions in lncRNAs. As a future

work, we can use the score in step 4 to help construct the consensus network. For a DmMGs

network of a biological replicate sets built by step 3, we can use peak calling score to transfer the

network to a weighted network. The weight of an edge in the network could be calculated as

w ¼ � lgðxÞ� lgðyÞ
2

, where x and y denote the peak calling FDR (adjusted p-value) of the two gene

nodes. Then all edges of the DmMGs networks are pooled together. For each edge, we can

calculate the consensus score as s ¼
Xm

i¼1

wi, where m is the number of replicate sets and wi is the

weight of the edge in network i. The final consensus m6A driven gene network can be built by set-

ting a threshold on s according to its distribution or the scale of the consensus network we need.

Materials and Methods

Datasets

FTO knockdown (KD-FTO) dataset is a MeRIP-Seq data [27] from the wild-type littermate as

well as FTO knockdown mice samples. There are 9 sets of biological replicates in this cohort,

and each biological replicate set (RS) contains two IP samples from a FTO knockdown mouse

and the wild-type littermate, respectively, as well as two corresponding input samples from the

two mice samples. In the original work [27], Hess et al. demonstrated that FTO-knockdown

mice have impaired dopamine release, reduced dopaminergic receptor responses and an

altered locomotor response to cocaine, which are related to specific m6A mRNA demethyla-

tion regulated by FTO.

METTL3, METTL14 and WTAP knockdown MeRIP-Seq datasets are from a recent study

which reveals that m6A regulates mRNA stability [44]. Each of the three cohorts consists of 4

RSs, each of which contains two IP samples from gene knockdown (treated) HeLa cells and

untreated HeLa cells, respectively, and two corresponding input samples. The study revealed

that knockdown of METTL3 led to decrease the binding of YTHDF2 to its targets, and

increase the stability of its target RNAs similar to that of YTHDF2 knockdown.

The reference network, PPI network, is built from the most recent version of PPI data from

BioGRID (release 3.4.128, compiled on August 25th, 2015) [45]. Based on the binary interac-

tions, we removed the isolated and self-interactions proteins to establish a PPI network with a

total of 16,062 proteins and 152,676 interactions.
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Prediction of m6A-driven genes and the network using the m6A-Driver

algorithm

m6A-Driver predicts mDrGenes and mDrNet from MeRIP-Seq data, where mDrGene is a

gene whose mRNA harbors at least one DmM site in a biological context of interest and whose

function is relevant to the context. m6A-Driver first divides the MeRIP-Seq data into several

RSs, each containing 2 paired samples, an IP sample paired with an input sample under the

treated condition and another pair under the untreated condition. Then, m6A-Driver predicts

mDrGenes and mDrNet by the following four steps. The workflow is shown in Fig 1.

Step 1. RS-specific prediction of DmMG using exomePeak. This step is designed to pre-

dict DmMGs for each RS. A gene is identified as a DmMG if its mRNA harbors at least one

hyper- or hypo-methylated m6A site in treated samples compared with untreated samples. The

DmM sites of a RS are detected by the exomePeak R package [38], which predicts the tran-

scriptome-wide m6A hyper- or hypo-methylated sites from the treated and untreated MeRIP-

Seq datasets. At the end of this step, a set of DmMGs are obtained for each RS.

Step 2. Prediction of RS-specific candidate DmMGs with the Random Walk with Restart

algorithm. The goal of this step is to predict potential DmMGs that not detected in a RS due to

the biological variance. RWR simulates a random walker from either a seed node or a set of

seed nodes, and moves to its immediate neighbors randomly at each step until it reaches a sta-

ble status. In the end, all the nodes in the graph are ranked by the probability of the random

walker reaching this node, which denotes the degree of closeness to the seed node(s). Given a

connected graph G with N nodes, RWR can be formally described as follows:

ptþ1 ¼ ð1 � lÞMpt þ lp0 ð1Þ

where pt is an N×1 vector whose ith element represents the probability of the walker traversing

to node i at step t, p0 is the N×1 initial probability vector, M is an N×N transition matrix of the

graph, which is the column-normalized adjacency matrix for G, and λ is a fixed parameter,

which denotes the restarting probability at a given time step (λ = 0.5 in this study). Generally,

if assuming that there are k initial genes from which the walker would start with an equal prob-

ability, the initial nodes will have a probability of 1 / k and the remaining nodes will have a

probability 0 in p0, meaning that p0 ¼ fp0
m
g ¼

�
1=k; start node

0; otherwise
, where μ = 1,2,� � �,n. Then, pt

is updated according to (1) iteratively until the difference between pt and pt+1 is below a prede-

fined threshold (10−6 in this work).

For each RS, we iteratively take each DmMG as the starting node, performing RWR to prior-

itize candidate DmMGs. According to the probability that the walker would reach the node

after the RWR enters the stable state, nodes ranked top 10 are held as candidate DmMGs. Previ-

ous studies suggested various ways to select candidate nodes including using the most accessible

node (i.e., top 1) [58, 59], top 5 [60], top 10 [61,62], top 20 [62], and top 100 nodes [63], but no

consensus rules have been proposed. In this work, we retained the top 10 accessible nodes to

keep a balanced tradeoff between choosing too few informative genes (e.g. top 1) and too many

irrelevant genes [46]. The threshold, top 10, is only an empirical primary filter of nodes to select

only the most highly accessible nodes from the starting node (DmMG); the candidate DmMGs

will be further assessed by their topological and biological significance in the next step.

Step 3. Topological and functional significance-based evaluation of the candidate

DmMGs. The goal of this step is to extract functionally and topologically significant candidate

DmMGs from the PPI network. To evaluate the topological significance of the candidate

nodes in the PPI network, Jia et al. proposed a strategy that utilizes randomized PPI networks

that maintain the topological characteristics of the original network (e.g., degree of each node)
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to estimate whether the candidate target genes defined as gene interact with target gene (i.e.,

DmMG identified in step 1 in this paper) are identified by chance [46]. To this end, 100 random

PPI networks, each of which preserves the degree distribution of the original PPI network, are

first generated through the switching algorithm proposed by Moli et al. [64]. Then, RWR is per-

formed, using each of DmMG as a starting node, in each of the 100 random networks and the

top 10 nodes with the highest probabilities are extracted. Finally, for each DmMG, the 10 candi-

date nodes in the original network, g1,g2,� � �,g10, are assessed by computing an empirical p-value:

p ¼ #fpðgnÞg

100
, where π(gν) is a random network in which gν(ν = 1,2,� � �,10), is found as the top 10

candidate genes after the restart random walk starting from the target DmMG. The empirical

p-value is calculated as the probability of a candidate DmMG to be randomly selected. Accord-

ing to the study of Jia et al., the candidate DmMGs with p< 0.05 should be retained as the sig-

nificant candidate DmMGs.

Note that the random PPI network maintains only the degree distribution of the original

network, indicating that the degree is the only property of nodes in the random network. Since

the rank of a gene in a random network is determined by its degree and the initial node’s

degree, it is possible that this degree-based filter of candidate DmMGs may remove functional

significant genes by mistake. Meanwhile, the randomization-based strategy may remove differ-

ent candidate genes for the same DmMG when adopting different sets of random PPI net-

works. In addition, performing RWR for each DmMG of each sample in each of the 100

networks will take a long time.

To address these issues, we combine the degree distributions of top 10 genes prioritized by

starting nodes with different degree in random networks and use the shortest path between

candidate DmMG and DmMG to assess candidate DmMGs. Although PPI network consists

of 16,062 nodes, these nodes only hold 312 kinds of degree di(di2[1,1975], i = 1,2,� � �,312). For

each kind of degree, we randomly selected a node with degree di as the starting node, denoted

as Seedi(i = 1,2,� � �,312), to initiate the random walk in each random network and retained the

top 10 nodes with the highest probabilities. After assessing all the 100 random networks, a can-

didate DmMGs set Sj(j = 1,2,� � �,312) can be formed. The normal occurrence of gene with

degree di in Sj is calculated as: freqij ¼
# random occurrence

# PPI occurrence where "random occurrence" is the counts

of genes with degree di selected as top 10 across the 100 random networks, that is, the counts

of genes with degree di in Sj, and "#PPI occurrence" is the counts of genes with degree di in PPI

network. Finally, we compute an empirical p-value: pij ¼
freqij
100

for the gene with degree di in Sj,

which indicates the probability of the gene to be randomly selected [46]. Moreover, to make

the filter more robust, we formulate a function pij = fj(di) to estimate the empirical p-value of

gene with degree di in Sj, and then solve it using the locfit algorithm [65].

Fig 14 shows the empirical p-value as a function of the degree, which is used to select top 10

genes in the random network initiated by the starting nodes with different degree. As is shown

that the empirical p-value monotonically increases along with the increase of top 10 genes’

degree and the rate of increase is higher if the initial node’s degree is larger. This implies that

filtering candidate genes based only on the empirical p-values could remove candidate genes

with biological significance.

To filter the candidate genes of a DmMG by both their topological and functional signifi-

cance, we first compute the empirical p-value of candidate DmMGs. For a candidate DmMG

with degree di, the p-values calculated by the regression function, pij = fj(di). Then, we calculate

the shortest path L between candidate DmMGs and the corresponding DmMG in PPI net-

work, which assesses the functional significance of the candidate DmMG. Finally, we retain

candidate DmMGs with p< 0.05 or L = 1 as significant candidate DmMGs. The procedure is

iteratively performed to candidate genes of each DmMG in each RS.
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Step 4. Construction of a consensus m6A-driven gene network. The goal of this step is to

extract mDrGenes from DmMGs identified in each RS. After detecting DmMGs and their can-

didate genes in each RS, all significant interactions from different RS are pooled together,

forming a universal candidate edges pool. Furthermore, we required both proteins involved in

an interaction to be encoded by DmMGs, meaning that a pair of DmMGs and its candidate

genes in the pool could be either identified in the same RS or in different RS set. We extracted

edges that consistently occur in every RS, and the DmMGs involved in the edges were identi-

fied as m6A-driven genes. Then all the eligible edges constitute the consensus mDrNet. The

selected mDrGenes are DmMGs identified in at least one RS, which means they contain the

information from original data, but they are not required to reappear in every RS to avoid sam-

ple bias. Also, mDrGenes are identified by consensus reappearance across all RS to enhance

their reliability. Moreover, mDrGenes are closely interacting in the PPI network, implying sig-

nificant functions.

Supporting Information

S1 Fig. ROC-like curves of three mrthylation enzymes knockdown data sets. The false posi-

tive rate (FPR) is the ratio of pseudo DMSs to all m6A methylation sites and the reported true

positive rate (RTPR) is the ratio of real DMSs to all m6A methylation sites. The black line is the

line of y = x.

(TIFF)

S2 Fig. Consensus network in KD-FTO dataset. The network consists of m6A-driven genes

identified in KD-FTO dataset. We can see that they are closely interacted with each other in

the network which indicates that m6A-driven genes regulated by FTO are functionally

Fig 14. The influence of nodes degree on the empirical p-value [46]. The top 10 genes of a random network denote the gene that rank

top 10 in the random network initiated by the starting node with a specific degree. We can see that the p-value monotonically increases along

with the increase of top 10 genes’ degree and the growth rate is enhanced when initial node’s degree is larger.

doi:10.1371/journal.pcbi.1005287.g014
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relevant.

(TIFF)

S3 Fig. Consensus network in KD-METTL3 dataset. The network consists of m6A-driven

genes identified in KD-METTL3 dataset. We can see that they are closely interacted with each

other in the network which indicates that m6A-driven genes regulated by METTL3 are func-

tionally relevant.

(TIFF)

S4 Fig. Consensus network in KD-METTL14 dataset. The network consists of m6A-driven

genes identified in KD-METTL14 dataset. We can see that they are closely interacted with

each other in the network which indicates that m6A-driven genes regulated by METTL14 are

functionally relevant.

(TIFF)

S5 Fig. Consensus network in KD-WTAP dataset. The network consists of m6A-driven

genes identified in KD-WTAP dataset. We can see that they are closely interacted with each

other in the network which indicates that m6A-driven genes regulated by WTAP are function-

ally relevant.

(TIFF)

S6 Fig. Biological processes regulated by FTO. We show here a heat map depicting the GO

biological process (BP) categories most enriched in m6A-driven genes identified in KD-FTO

dataset. The enrichment analysis is conducted for the hyper and hypo m6A-driven genes

respectively using DAVID. The FTO targeted hyper m6A-driven genes closely link to synaptic

transmission and cell-cell signaling. And we also find several other significant biological pro-

cesses and genes regulated by m6A such as embryonic development and neuron differentia-

tion. Thus demonstrates m6A-Driver could identify biological functionally significant m6A-

driven genes.

(TIFF)

S7 Fig. Pathways regulated by FTO. We show here a heat map depicting the KEGG categories

most enriched in m6A-driven genes identified in KD-FTO dataset. The enrichment analysis is

done to the hyperand hypo m6A-driven genes respectively using DAVID. The m6A-driven

genes are significantly enriched in cancer related pathway and some specific cancer such as

chronic myeloid leukemia and Glioma which suggest RNA methylation may play a role in can-

cer.

(TIFF)

S8 Fig. Binary biological processes regulated by FTO using the brain tissue specific

expressed genes as control data. We show here a binary map depicting the GO biological pro-

cess (BP) categories enriched in m6A-driven genes identified in KD-FTO experiment. The

enrichment analysis is conducted for the hyper and hypo m6A-driven genes respectively using

DAVID and adopting the brain tissue specific expressed genes as control data.Brain tissue spe-

cific expressed genes are genes who have a RPKM value over 1 in at least half of the input sam-

ples, including treated and untreated ones.

(TIFF)

S9 Fig. Binary pathways regulated by FTO using the brain tissue specific expressed genes

as control data. We show here a binary map depicting the KEGG categories most enriched in

mDrGenes for KD-FTO dataset. The enrichment analysis is conducted for the hyper and hypo

m6A-driven genes respectively using DAVID and adopting the brain tissue specific expressed
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genes as control data. Brain tissue specific expressed genes are genes who have a RPKM value

over 1 in at least half of the input samples, including treated and untreated ones.

(TIFF)

S10 Fig. Biological processes regulated by methyltransferase complex. We show here a heat

map depicting the GO biological process (BP) categories most enriched in m6A-diven genes

identified in KD-METTL3, KD-METTL14 and KD-WTAP using DAVID. There are signifi-

cant overlapping biological processes between the three enzymes targeted m6A-driven genes

and also enzyme specific functions, suggesting that different methylation enzymes may influ-

ence different biological processes via driving different genes.

(TIFF)

S11 Fig. Pathways regulated by methyltransferase complex. We show here a heat map de-

picting the KEGG categories most enriched in m6A-driven genes identified in KD-METTL3,

KD-METTL14 and KD-WTAP using DAVID. There are significant overlapping pathways

between the three enzymes targeted m6A-driven genes and also enzyme specific functions.

Two important consistent pathways are cancers and splicing which indicates m6A may regu-

late these pathways through m6A-driven genes.

(TIFF)

S12 Fig. Binary biological processes regulated by both FTO and methyltransferases. We

show here a binary map depicting the GO biological process (BP) categories most enriched in

mDrGenes identified in KD-FTO, KD-METTL3, KD-METTL14 and KD-WTAP using

DAVID. Enriched BPs in KD-FTO are divided into hyper and hypo groups. We only keep BPs

enriched in at least one group (hyper or hypo) of KD-FTO and enriched in at least 3 of the 5

groups to show significant overlap between the 5 group of BPs. The overlap BPs between FTO-

hyper group and METTL3/METTL14 are mainly about transcription, regulation of transcrip-

tion and regulation of gene expression. The overlap BPs between FTO-hypo group and

METTL3/METTL14 are mainly about RNA splicing and protein modification. This indicates

that the dynamic of m6A may regulate these biological processes in a direct or indirect way.

(TIFF)

S13 Fig. Binary pathways regulated by both FTO and methyltransferases. We show here a

binary map depicting the KEGG categories most enriched in mDrGenes identified in KD-

FTO, KD-METTL3, KD-METTL14 and KD-WTAP using DAVID. Enriched pathways in

KD-FTO are divided into hyper and hypo groups. We only keep pathways enriched in at least

one group (hyper or hypo) of KD-FTO and enriched in at least 3 of the 5 groups to show sig-

nificant overlap between the 5 group of pathways. All of the 5 group of mDrGenes are enriched

in pathway in cancer, especially in Chronic myeloid leukemia. This further illustrate the

dynamic of m6A is related to cancer. The overlap pathways between FTO-hypo group and

METTL3/METTL14/WTAP are cell cycle and spliceosome. This is consistent with the result

of BP enrichment analysis and confirm the relevance between dynamic m6A and splicing.

(TIFF)

S1 Text. microRNAs targeting mDrGenes in KD-FTO.

(TXT)

S2 Text. microRNAs targeting mDrGenes in KD-METTL3.

(TXT)

S3 Text. microRNAs targeting mDrGenes in KD-METTL14.

(TXT)
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S4 Text. microRNAs targeting mDrGenes in KD-WTAP.

(TXT)

Acknowledgments

We thank computational support from the UTSA Computational Systems Biology Core,

funded by the National Institute on Minority Health and Health Disparities (G12MD007591)

from the National Institutes of Health.

Author Contributions

Conceptualization: SYZ SWZ YH.

Data curation: SYZ JM.

Formal analysis: SYZ.

Funding acquisition: SWZ JM YH.

Investigation: SYZ LL.

Methodology: SYZ.

Project administration: SWZ.

Resources: SYZ LL.

Software: SYZ.

Supervision: SWZ YH.

Validation: SYZ JM.

Visualization: SYZ.

Writing – original draft: SYZ.

Writing – review & editing: SYZ SWZ JM YH.

References

1. Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007; 128(4):669–81. doi: 10.

1016/j.cell.2007.01.033 PMID: 17320505

2. Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet. 2012; 13(10):705–19. doi:

10.1038/nrg3273 PMID: 22986265

3. Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet. 2010;

11(3):191–203. doi: 10.1038/nrg2732 PMID: 20125086

4. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major sub-

strate of the obesity-associated FTO. Nat Chem Biol. 2011; 7(12):885–887. doi: 10.1038/nchembio.687

PMID: 22002720

5. Crain PF, McCloskey JA. The RNA modification database. Nucleic Acids Res. 1996; 24(1):98–99.

PMID: 8594611

6. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al.

Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012; 485

(7397):201–206. doi: 10.1038/nature11112 PMID: 22575960

7. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of

mRNA methylation reveals enrichment in 30 UTRs and near stop codons. Cell. 2012; 149(7):1635–

1646. doi: 10.1016/j.cell.2012.05.003 PMID: 22608085

8. Zheng G, Dahl JA, Niu Y, Fu Y, Klungland A, Yang Y-G, et al. Sprouts of RNA epigenetics. RNA Biol.

2013; 10(6):915–918. doi: 10.4161/rna.24711 PMID: 23619745

m6A-Driver: Identifying mDrNet

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005287 December 27, 2016 28 / 31

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005287.s017
http://dx.doi.org/10.1016/j.cell.2007.01.033
http://dx.doi.org/10.1016/j.cell.2007.01.033
http://www.ncbi.nlm.nih.gov/pubmed/17320505
http://dx.doi.org/10.1038/nrg3273
http://www.ncbi.nlm.nih.gov/pubmed/22986265
http://dx.doi.org/10.1038/nrg2732
http://www.ncbi.nlm.nih.gov/pubmed/20125086
http://dx.doi.org/10.1038/nchembio.687
http://www.ncbi.nlm.nih.gov/pubmed/22002720
http://www.ncbi.nlm.nih.gov/pubmed/8594611
http://dx.doi.org/10.1038/nature11112
http://www.ncbi.nlm.nih.gov/pubmed/22575960
http://dx.doi.org/10.1016/j.cell.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22608085
http://dx.doi.org/10.4161/rna.24711
http://www.ncbi.nlm.nih.gov/pubmed/23619745


9. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A

RNA methylation. Nat Rev Genet. 2014; 15(5):293–306. doi: 10.1038/nrg3724 PMID: 24662220

10. Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, et al. Selective elimination of

messenger RNA prevents an incidence of untimely meiosis. Nature. 2006; 442(7098):45–50. doi: 10.

1038/nature04881 PMID: 16823445

11. Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, et al. The YTH domain is a

novel RNA binding domain. J Biol Chem. 2010; 285(19):14701–14710. doi: 10.1074/jbc.M110.104711

PMID: 20167602

12. Brennan C, Steitz J. HuR and mRNA stability. Cell Mol Life Sci. 2001; 58(2):266–277. doi: 10.1007/

PL00000854 PMID: 11289308

13. Tuck MT, Wiehl PE, Pan T. Inhibition of 6-methyladenine formation decreases the translation efficiency

of dihydrofolate reductase transcripts. Int J Biochem Cell Biol. 1999; 31(8):837–851. PMID: 10481270

14. Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m 6 A Methyltransferase METTL3 Promotes Transla-

tion in Human Cancer Cells. Mol Cell. 2016; 62(3):335–345. doi: 10.1016/j.molcel.2016.03.021 PMID:

27117702

15. Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 50 UTR m 6 A promotes cap-

independent translation. Cell. 2015; 163(4):999–1010. doi: 10.1016/j.cell.2015.10.012 PMID:

26593424

16. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N6-methyladenosine modulates messenger

RNA translation efficiency. Cell. 2015; 161(6):1388–1399. doi: 10.1016/j.cell.2015.05.014 PMID:

26046440

17. Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, et al. Hypoxia induces the breast cancer stem

cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc

Natl Acad Sci. 2016; 113(14):E2047–E2056. doi: 10.1073/pnas.1602883113 PMID: 27001847

18. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian

nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014; 10(2): 93–95. doi: 10.1038/nchembio.

1432 PMID: 24316715

19. Ping X-L, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, et al. Mammalian WTAP is a regulatory sub-

unit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014; 24(2): 177–189. doi: 10.1038/

cr.2014.3 PMID: 24407421

20. Khoddami V, Cairns BR. Identification of direct targets and modified bases of RNA cytosine methyl-

transferases. Nat Biotechnol. 2013; 31(5):458–464. doi: 10.1038/nbt.2566 PMID: 23604283

21. Bokar J, Shambaugh M, Polayes D, Matera A, Rottman F. Purification and cDNA cloning of the Ado-

Met-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997; 3(11):1233–

1247. PMID: 9409616

22. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang C-M, Li CJ, et al. ALKBH5 is a mammalian RNA

demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013; 49(1):18–29. doi: 10.

1016/j.molcel.2012.10.015 PMID: 23177736

23. Liu L, Zhang S-W, Zhang Y-C, Liu H, Zhang L, Chen R, et al. Decomposition of RNA methylome reveals

co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome. Mol Biosyst.

2015; 11(1):262–274. doi: 10.1039/c4mb00604f PMID: 25370990

24. Loos R, Bouchard C. FTO: the first gene contributing to common forms of human obesity. Obes Rev.

2008; 9(3):246–250. doi: 10.1111/j.1467-789X.2008.00481.x PMID: 18373508

25. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC, et al. Inactivation of the Fto gene
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