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Abstract

As the most prevalent mammalian mRNA epigenetic modification, N6-methyladenosine
(m®A) has been shown to possess important post-transcriptional regulatory functions. How-
ever, the regulatory mechanisms and functional circuits of m®A are still largely elusive. To
help unveil the regulatory circuitry mediated by mRNA m®A methylation, we develop here
mCA-Driver, an algorithm for predicting m®A-driven genes and associated networks, whose
functional interactions are likely to be actively modulated by m®A methylation under a spe-
cific condition. Specifically, m®A-Driver integrates the PPI network and the predicted differ-
ential m®A methylation sites from methylated RNA immunoprecipitation sequencing
(MeRIP-Seq) data using a Random Walk with Restart (RWR) algorithm and then builds a
consensus m®A-driven network of m®A-driven genes. To evaluate the performance, we
applied m®A-Driver to build the context-specific m®A-driven networks for 4 known mCA (de)
methylases, i.e., FTO, METTL3, METTL14 and WTAP. Our results suggest that m®A-Driver
can robustly and efficiently identify m®A-driven genes that are functionally more enriched
and associated with higher degree of differential expression than differential méA methyl-
ated genes. Pathway analysis of the constructed context-specific m®A-driven gene networks
further revealed the regulatory circuitry underlying the dynamic interplays between the
methyltransferases and demethylase at the epitranscriptomic layer of gene regulation.

Author Summary

Powered by methylated RNA immunoprecipitation sequencing (MeRIP-Seq) technology,
recent studies have revealed a new mode of post transcriptional regulation mediated by
mRNA N6-methyladenosine (m°A). Currently, the analysis of m°A focuses mostly on pre-
diction of m°A sites as well as differential m°A methylation, and systematic approach for
predicting m®A functions is yet to emerge. We develop here m®A-Driver, the first net-
work-based approach, to identify m®A-driven genes and their associated networks, whose
functional interactions are likely to be actively modulated by m°A methylation under a
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specific condition. Our test results showed that m®A-Driver can robustly and efficiently
identify m®A-driven genes that are functionally more enriched and associated with higher
degree of differential expression than differential m®A methylated genes. m°®A-Driver is
an effective and reliable approach to identify functionally relevant m®A-driven genes and
networks from MeRIP-Seq data.

Introduction

Methylation, as a significant epigenetic modification of nucleic acids, regulates gene expres-
sion, influences grows and development of plants and animals, and is closely related to the
occurrence and development of disease. The epigenetic regulatory mechanisms and physiolog-
ical functions of DNA methylation have been well established through intensive studies in sim-
ple model organisms to human in the past decade [1-3]. However, RNA methylation, even
though prevalent in many organisms, has long been considered to have little functional rele-
vance. The discovery of obesity-associated FTO as a demethylase [4] of mRNA N6-methyla-
denosine (m°A) revealed that mRNA m°®A methylation can be reversed and is thus a highly
dynamic phenomenon. This discovery sparked the surged interests in study the prevalence of
m°A in different cells and the functions of m®A. Subsequently, using methylated RNA immu-
noprecipitation sequencing (MeRIP-seq) technique [5-7], transcriptome-wide distribution of
m°A in mammalian cells was profiled [6, 7], revealing for the first time a widespread occur-
rence of m°A in >25% transcripts. m®A was also shown to be enriched around the stop codon
of RNA transcripts and conserved between people and mouse [6, 7], implicating a potential
role played by m®A in post-transcriptional regulation [6, 8, 9]. Since then, m°A has been
shown to have a number of important biological functions, including promoting RNA degra-
dation [10], regulating RNA stability by modulating binding of RNA binding proteins [6, 11,
12], and controlling translation efficiency [13-17]. Meanwhile, the identification of m®A
methyltransferases and demethylases [4, 18-20] further revealed the regulators of epitrans-
criptome. We now know that the m°A methyltransferase complex consists of METTL3,
METTL14, and WTAP and functions as m°A "writers" in eukaryotes [9, 18, 21]. In contrast,
FTO and ALKBHS5 are identified to be de-methyltransferase, or mCA "erasers" [4, 9, 22], in-
dicating that mRNA m°®A methylation is a dynamic process [4] and directly regulated by a
number of methylases and demethylases [23]. Knockdown studies of these (de)methylases fur-
ther revealed their involvement in many significant physiological processes including obesity
[24-26], synaptic signaling [27], cancer [28, 29], sperm development [22], stem cell differentia-
tion [30], circadian periods [31], yeast meiosis [32, 33], and stem cell pluripotency [34-36].
Although these studies together greatly improve our understanding of the reversible mRNA
m°A methylation, the regulatory mechanisms and functional circuitry of m®A are still largely
elusive.

Currently, MeRIP-Seq is the most widely adopted high throughput approach for measuring
transcriptome-wide m®A methylation [6, 7, 37]. To obtain a transcriptome-wide m°A profile,
MeRIP-Seq produces two sets of samples, i.e., IP and input samples. While IP samples include
sequencing reads from m°A methylated RNA fragments pulled down with anti-m°®A antibody,
input samples measure the basal abundance of all transcripts, which are used as background for
assessing the enrichment of methylated fragment. Detecting m®A methylation site or "peak
detection" from MeRIP-Seq data can be achieved by comparing the enrichment of reads in the
IP samples vs. those in the input samples. Several algorithms including exomePeak have been
developed for m®A peak detection [38-41]. After the methylation sites are identified, differential
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m°A methylation (DmM) analysis can be also performed in a case-control study to further iden-
tify the dynamic m°A sites whose methylation status is significantly different under two experi-
mental conditions. Algorithms such as exomePeak [42] and MeTDiff [43] have also been
developed for this purpose. While peak detection and DmM analysis are essential steps for m°A
bioinformatics analysis, they do not yet provide direct information about the functional rele-
vance of m°A.

We focus in this paper on predicting m°A-driven genes (mDrGenes) and the m®A-driven
gene interaction network (mDrNet). Specifically, we refer mDrGenes as genes whose mRNAs
harbor DmM sites or differential m°A methylation genes (DmMGs), and thus may be under
dynamic epitranscriptomic regulation and be functionally significant to the biological context
of interest. Conceivably, when data is available, mDrGenes can be conveniently identified by
first predicting the DmMGs and then assessing their functional significance by using func-
tional networks such as Protein-Protein Interactions (PPI) network or biological pathways.
However, identifying functionally significant DmMGs when there are replicates can be non-
trivial. The challenge arises as a result of technical and biological bias, where significant
DmMGs identified in some replicates might not be significant in other replicates. Existing
algorithms for DmM analysis such as exomePeak and MeTDiff all devise different methods
ranging from taking consensus DmM sites [42] to statistically modeling of replicate samples
[43] to mitigate this bias. While they can help detect robust DmM sites, these DmM sites
might not be functionally significant DmMGs. As our goal emphasizes on detecting functional
significance, an approach that can address this bias in assessing functional significance is more
desirable and likely to better identify the m°A-driven genes and network.

To address the aforementioned issue, we propose in this paper m°A-Driver, an algorithm
that predicts mDrGenes by evaluating the consistency of RNA differential methylation from a
functional network perspective. Specifically, rather than predicting DmMGs directly, m°A-
Driver first performs DmM analysis on every possible replicate set (RS) independently, where
each RS includes two IP-input pairs, one from the treated/case condition and the other from
the untreated/control condition. Then, a DmM functional network is constructed for each RS
by searching the significant interactions with DmMGs in PPI network using a Random Walk
with Restart (RWR) algorithm. We adopt PPI network here to model functional interactions
of m°A mediating genes because m°A has been shown to regulate the process of translation
[13-17], in addition to its influence on gene expression. Finally, a consensus m®A-driven gene
network is built by taking all the significant reoccurring interactions. By assessing the consen-
sus among RS networks as opposed to RS DmMGs, m®A-Driver effectively addresses the sam-
ple bias that impacts functional prediction.

m®A-Driver was applied to four case-control studies that investigate the functions of the
component of methyltransferase complex (METTL3, METTL14, and WTAP) and demethylase
(FTO). In the end, m°A-driven gene networks were constructed for each (de)methylase to-
gether with an integrated network for the complete m°A methyltransferase complex. We
showed that the predicted m®A-driven genes have higher degree of differential expression and
more explicit functional relevance than DmMGs identified directly by previous approaches.
These results demonstrate the effectiveness of m°A-Driver in prioritizing functional significant
m®A-driven genes from m°A sequencing data.

Results
An overview of the m®A-Driver algorithm

The algorithm of m°A-Driver consists of four steps, depicted in Fig 1, with the first three steps
implemented in each RS and step 4 performed to combine the results from all RSs. In step 1,
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top accessible nodes in each of the 100 random networks, which are generated with the same degree distribution with the
original network. The normal occurrence frequency of certain degree indicates the probability that a node with this degree to be
selected by chance. (C,) The candidate genes are assessed by their topological and biological significance. Candidate genes
that are not observed by random chance, i.e., p<0.05, or are biological significant, i.e., L = 1, are retained as significant
candidate genes. (D) A consensus mPA-driven gene network is constructed by interactions recurring across all RSs.

doi:10.1371/journal.pchi.1005287.9001

exomePeak [42] is applied to detect DmMGs in each RS. In step 2, for each RS, the Random
Walk with Restart (RWR) is performed using every DmMG as the seed node separately to
search for their closely interacting genes in the PPI network. In step 3, the topological and bio-
logical significance of these DmM interacting genes are assessed and the genes that are deter-
mined to be insignificant are filtered out. The topological significance is estimated by their
occurrence as top nodes prioritized by the same RWR algorithm in 100 random networks gen-
erated with the same topological structures. Meanwhile, the biological significance is evaluated
by the length of their shortest path to the initial node (the seed DmMG). RS-specific DmM
interacting networks, each consisting of significant interacting genes, are constructed at

the end of step 3. Finally, in step 4, an mDrNet is constructed by assessing the interaction
recurrence across all RSs. The genes that make up the nodes of the mDrNet are predicted
mDrGenes determined by exomePeak. In this way, we extract a set of mDrGenes, or function-
ally relevant genes driven by m°A and a network that depicts the functional relationship of
mDrGenes.

An overview of the data

We applied m®A-Driver on 4 MeRIP-seq datasets, i.e., FTO knockdown dataset (KD-FTO) [23],
METTL3 knockdown dataset (KD-METTL3), METTL14 knockdown dataset (KD-METTL4),
and WTAP knockdown dataset (KD-WTAP) [44]. KD-FTO dataset is obtained from [27] that
profiles m®A in FTO gene knockdown mice and their wild-type littermate. There are 12 samples
(3 IP replicates paired with 3 input replicates for FTO knockdown mice and 3 IP replicates
paired with 3 input replicates under wild-type littermate). It was divided into 9 sets of biological
replicates and each biological replicate set (RS) contains two IP samples respectively from a FTO
knockdown mouse and a wild-type (WT) littermate and two corresponding input samples from
the two mice.

KD-METTL3, KD-METTL14 and KD-WTAP datasets are from a recent study, which
shows that m°®A regulates mRNA stability [44]. Each dataset contains 8 samples, 2 IP replicates
paired with 2 input replicates from the knockdown HeLa cells and 2 IP replicates paired with 2
input replicates from untreated HeLa cells. Similar to KD-FTO, samples in each of the three
datasets are then divided into 4 RSs, each of which contains two IP samples from the knock-
down HeLa cells and untreated HeLa cells respectively and two corresponding input samples.

We first predicted the DmM sites in each dataset using exomePeak. As the technical limita-
tion of MeRIP-Seq can lead to high sample bias, making the prediction results less reliable, we
then set out to check the quality of the prediction results. First of all, the specificity of the pre-
dictions by exomePeak and MeTDiff on these datasets has been evaluated in a previously pub-
lished paper [43], which shows that the false positive rates for all these datasets can be
controlled and there are high specific DmM sites predicted in all these datasets. Next, we fur-
ther examined the predictions of the three m°A methylase knockdown datasets, where we cre-
ated a set of pseudo control and pseudo knockdown sequencing samples by scrambling the
samples of a dataset so that the pseudo control and knockdown samples are both made up by a
real control replicate and a real knockdown replicate. We then performed exomePeak on both
the real dataset and the pseudo dataset and examined the prediction specificity at different
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thresholds by comparing the ratio of predicted DmM sites (or reported true positive rate,
RTPR) in the real dataset and those in the pseudo dataset (or false positive rate, FPR) using a
ROC-like curve. As is shown in S1 Fig, the percentage of DmM sites in the real datasets is
much higher than that in the pseudo dataset at different thresholds in all the 3 datasets. Taken
together, these results demonstrate that the false positive rates in these datasets can be con-
trolled and the exomePeak prediction results are of good specificity for subsequent analysis.

The reference network, PPI network, is built from the most recent version of PPI data from
BioGRID (release 3.4.128, compiled on August 25th, 2015) [45]. Based on the binary interac-
tions, we removed the isolated proteins and self-interaction proteins to establish a PPI network
with a total of 16,062 proteins and 152,676 interactions.

mCA-Driver filters candidate DmMGs in a more robust and efficient way

Jia et al. have proposed the VarWalker algorithm [46] to combine PPI network and mutation
data identified by next-generation sequencing (NGS) to build consensus networks for identify-
ing cancer driver genes. While VarWalker was proposed for predicting driver mutations, it
provides a general framework for prioritizing target genes from high-throughput sequencing
data assisted by PPI network. VarWalker evaluates candidate target genes (i.e., mutation gene
in cancer or DmMG in this work) by assessing their topological significance using random
networks which hold the same degree distribution with the PPI network. However, utilizing
only the topological characteristics may remove functionally significant candidate target
genes. Also, the filtering result is not steady because it will remove different candidate genes
for the same target gene when using different random networks. That is, VarWalker is not
robust enough. We propose in this paper an improved strategy to evaluate both the topological
and functional significance of candidate DmMGs in a more robust and efficient way, and the
approach is detailed in the Materials and Methods section.

To compare the robustness and efficiency of m®A-Driver and VarWalker in filtering candi-
date genes, we applied the two methods on 100 genes randomly selected from the DmMGs in
KD-METTL3 dataset to filter their candidate genes using two different sets of random net-
works. Each set contains 100 networks which hold the same topological property of PPI net-
work. A more robust algorithm should remove a consistent set of genes in two random network
sets. As is shown in Table 1, m°A-Driver only removed 1 different candidate gene when using
different random network sets, whereas VarWalker removed 40 different candidate genes. This
result demonstrates that m®A-Driver is more robust in filtering candidate genes. It is not sur-
prising to also notice that some of the removed genes by VarWalker have significant biological
functional connections with the seed (the DmMG) in the PPI network. Moreover, m°A can
filter candidate genes in a more efficient way. VarWalker needs to perform RWR for each
DmMG in each of the 100 random networks to compute the reoccurrence frequency of the can-
didate genes for calculating the p-value. In contract, m®A-Driver only needs the degree of a can-
didate gene and the degree of the seed gene to calculate its empirical p-value.

Table 1. Comparison of m®A-Driver and VarWalker.

Algorithm #RG by RNS1 #RG by RNS2 #DRG for each seed Running time
mCA-Driver 97 96 1 0.10s
VarWalker 241 229 40 37.02min

#RG represents the number of gene removed, RNS represents the random network set and #DRG represents the number of differential gene removed
between RNS1 and RNS2. While VarWalker filters 40 different candidate genes using different RNSs, m®A-Driver removes only 1 candidate genes. Also, it
takes 37.02 minutes for VarWalker to filter the candidate genes for 100 DmMGs but it takes only 0.1 second for méA-Driver. This result demonstrates that
mCA-Driver is more robust and efficient in filtering candidate DmMGs.

doi:10.1371/journal.pchi.1005287.t001
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The predicted mDrGenes closely interact with each other in the m°A-
driven gene network

To validate m®A-Driver, we applied it to the four different case-control MeRIP-seq datasets:
KD-FTO, KD-METTL3, KD-METTL14 and KD-WTAP. KD-FTO includes 9 RSs, based on
which an FTO knockdown mDrNet (S2 Fig) was built. The network consists of 1,832 mDrGenes
and 21,506 edges, with the maximal connected sub-graph containing 1,787 mDrGenes, implying
that there exist dense interactions among mDrGenes. KD-METTL3, KD-METTL14 and KD-
WTAP all include 4 RSs, based on which the corresponding context-specific mDrNets (S3-S5
Figs) were constructed by m°A-Driver. KD-METTL3 mDrNet contains 1,352 mDrGenes and
8,235 edges, with the maximal connected sub-graph including 1,339 mDrGenes; KD-METTL14
mDrNet consists of 1,251 mDrGenes and 8,452 edges, with itself being the maximal connected
sub-graph; KD-WTAP mDrNet has 375 mDrGenes and 1,980 edges, which is also its maximal
connected sub-graph. Similar to KD-FTO network, most mDrGenes in each of the 3 networks
are interacting with each other very closely, implying again that the predicted mDrGenes have
highly relevant functions.

Characteristics of the predicted mDrGenes

We next examined the characteristics of the predicted mDrGenes. We first investigated the
differential methylation of the mDrGenes. An mDrGenes is defined as a hyper mDrGenes if
its most differentially methylated site is hyper-methylated, but otherwise defined as a hypo
mDrGenes if its most differentially methylated site is hypo-methylated. We counted the num-
ber of hyper and hypo mDrGenes (Fig 2). As expected, mDrGenes in KD-FTO are mostly
hyper-methylated, whereas those in three other methylase knockdown datasets are more
hypo-methylated. This result is consistent with the fact that FTO is an m°A demethylase, but
METTL3, METTL14, and WTP are elements of m®A methyltransferase complex. We also calcu-
lated the average number of DmM sites for per gene and found that on average, an mDrGene
harbors more than one DmM sites (Table 2). It is interesting that mDrGenes in KD-FTO har-
bor more DmM sites than the other 3 datasets and KD-METTL3 mDrGenes harbor the least
number of DmM sites on average. We then investigated the DmM site distribution using the
Guitar R/Bioconductor package [47] in an mDrGene transcript (Fig 3). Overall, the distribu-
tions for the 4 datasets are very similar, where DmM sites are mostly enriched around the stop
codon and are distributed more in 3’UTR and CDS, which is consistent with the reported
results in the literature [6, 7].

Furthermore, we obtained the sequence motifs of DmM sites in mDrGenes for each of the
four datasets using MEME-ChIP webserver [48] (Fig 4). The reported RRACH mC®A motifs
[6, 7] was top ranked in KD-FTO and KD-METTL3, whereas the most enriched motifs in
KD-METTL14 and KD-WTAP are similar to the binding motifs of SRSF1 and SRSF9. Interest-
ingly, SRSF1 and SRSF9 are components of the SRSF protein that is involved in splice site
selection in alternative splicing [49].

mDrGenes are more functionally significant

We asked if mDrGenes are more functional relevant. To test this, we examined the functionally
significance between mDrGenes and DmMGs predicted by exomePeak. We performed GO
[50] enrichment analysis using DAVID (Database of Annotation, Visualization and Integrated
Discovery) [51] and then compared the enrichment degrees of the top enriched biological pro-
cesses (BP, Fig 5). Since a larger testing gene set tends to lead to a smaller enriched p-value
when performing DAVID, to make the comparison fair, we balanced the scale of mDrGenes
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Fig 2. Counts of hyper/hypo mDrGene. As is expected, there are more hyper mDrGenes in KD-FTO and more
hypo mDrGenes in KD-METTL3, KD-METTL14 and KD-WTAP.

doi:10.1371/journal.pcbi.1005287.9002

and DmMGs before enrichment analysis. For KD-FTO dataset, the scale of mDrGenes is larger
(Fig 6), so we randomly removed some mDrGenes to make the scales the same and then per-
formed the enrichment analyses for 10 times to calculate an average pponferroni fOr €ach enriched
term. After also performing enrichment analysis on DmMGs, we compared the pponferroni Of
top 20 enriched terms for DmMGs and scaled mDrGenes. Since, DmMGs have a larger scale
for KD-METTL3, KD-METTL14 and KD-WTAP datasets, to balance the scale, we selected
DmMGs that harbor top differently methylated DmM sites. Then, we performed enrichment
analyses and compared the pponferroni Of top 20 enriched terms for the mDrGenes and scaled
DmMGs. The result shows that mDrGenes are more significantly enriched than DmMGs in all
the top enriched biological processes, demonstrating that mDrGenes are more functional rele-
vant than DmMGs.

To further investigate the biological significance of mDrGenes, we evaluated the differential
expression (DE) of mDrGenes and DmMGs. Conceivably, a gene set is likely to be more

Table 2. Numbers of DmM sites and genes, and the average number of site per gene.

Dataset # Sites # Genes Avg. sites/gene
KD-FTO 10204 1832 5.57
KD-METTL3 2684 1352 1.99
KD-METTL14 3450 1251 2.76
KD-WTAP 804 375 2.14

doi:10.1371/journal.pchi.1005287.t002
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functionally important if it has more differentially expressed genes (DEGs) and/or its DEGs
are more differentially expressed. To this end, we applied DESeq2 [52] to the input replicates
of treated and untreated samples and determined a gene to be DEG if the adjusted p-value is
less than 0.05. We first examined the percentage of DEGs in mDrGenes and DmMGs in the
four datasets. We found that there are very few DEGs in mDrGenes and DmMGs for both
KD-FTO and KD-METTL14 dataset, and thus the percentages of DEGs in mDrGenes and
DmMGs are very low for these two datasets. Not surprisingly, no significant differences
between the percentages of DEGs in mDrGenes and DmMGs can be observed (Fisher’s test,
see Table 3 for details). In contrast, much more mDrGenes and DmMGs are differential
expressed in KD-METTL3 and KD-WTAP, and the percentages in mDrGenes are significantly
higher than those in DmMGs (Fisher’s test, see Table 3 for details). We next compared the
degree of DE, which is represented by the negative log10 (FDR) calculated by DESeq2 (Fig 7).
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Fig 4. Sequence motifs of the DmM sites in mDrGenes. The motifs were identified using MEME-ChIP webserver.
The shown motifs are the most enriched motifs in each dataset.

doi:10.1371/journal.pchi.1005287.9004

The result shows that the DE degrees of mDrGenes are also higher than those of DmMGs. The
only exception is the FTO KD experiment, in which there are nearly no differential expression
genes. Taken together, we can conclude that mDrGenes are likely to include more DEGs than
DmMGs and their degree of DEs are also likely to be higher.

mDrGenes participate in several important biological processes

Functional enrichment analyses were carried out on the 4 mDrNets to help reveal the biologi-
cal processes regulated by the 4 enzymes at epitranscriptomic layer of gene regulation. The
results obtained using DAVID reveal a significant enrichment of multiple m°A-related path-
ways annotated by either the Kyoto Encyclopedia of Genes and Genomes (KEGG) [53] or
Gene Ontology (GO) biological process (BP) domains (Figs 8-11).

For KD-FTO, since FTO is a demethylation enzyme, we expected to observe mainly hyper-
methylation. However, m°A-Driver did report several hypo-methylation mDrGenes, suggest-
ing a potentially direct or indirect mode of FTO regulation to also enhance m°A. We next
examined the functional relationship between the hyper- and hypo-methylated genes and
found that there was little overlapping between their enriched functions (Fig 8 and Fig 9, see
S6 Fig and S7 Fig for detail). To keep consistency with paper [27], in which the KD-FTO data
is published, we adopt the whole reference genome as the control data set of enrichment analy-
sis. The hyper-methylated mDrGenes are clearly linked closely to neurological processes and
neuro signaling pathways. Several significantly enriched terms annotated by GO BP are syn-
apse and neuron signaling transmission (132 hyper mDrGenes, Pponferroni = 1.79x10718),
synaptic transmission (43 hyper mDrGenes, Pgonferroni = 1.77x10™"), transmission of nerve
impulse (50 genes in hyper mDrGenes, Pgonferroni = 5.58x10™"*). They are also likely associated
with neuron differentiation (65 hyper mDrGenes, pponferroni = 1.81x10™"") and neuron devel-
opment (53 hyper mDrGenes, Pponferroni = 3.00x1071) as well as embryonic development (54
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hyper mDrGenes in utero embryonic development, pgonferroni = 2.31x107 "% and 67 hyper
mDrGenes in chordate embryonic development, pgonferroni = 2.42x107'Y), which may be
another proof of RNA methylation involved in steering stem cell pluripotency [34-36]. In
contrast, the hypo-methylated mDrGenes are more related to metabolic processes (79 hypo
mDrGenes in protein catabolic process, Pponferroni = 2-41x107*% and 85 hypo mDrGenes in
macromolecule catabolic process, Pgonferroni = 1.88x107"7) and cell cycle (65 hypo mDrGenes,
PBonferroni = 9-29x107"?). In addition, the hypo mDrGenes are enriched in Spliceosome

(17 hypo mDrGenes, Pponferroni = 8.25x10™*), which is also a KEGG term enriched in KD-
METTL3, KD-METTLI14 and KD-WTAP data (Fig 11), implicating a potential role of m°A
in mRNA splicing. Note that WTAP itself is also splicing factor. However, this result suggests
that WTAP might also regulate splicing in an m°A dependent fashion. Taken together, our
predicted mDrGenes confirm the demethylation role of FT'O but may suggest a direct or indi-
rect role of FTO in promoting m®A. Functional enrichment suggests that these two modes of
FTO function are involved in distinct biological processes and pathways.

Another interesting finding is that both hyper and hypo mDrGenes are enriched in cancer
related pathways including Chronic myeloid leukemia (20 hyper mDrGenes, Pponferroni =
3.27x107% 12 hypo mDrGenes, pgonferroni = 2.12x107°) and Glioma (16 hyper mDrGenes,
PBonferroni = 8-01x107%; 12 hypo mDrGenes, Pgonferroni = 4.86x10~%) (Fig 9, see S7 Fig for
detailed information).

As FTO-KD data is extracted from mouse brain, so we also do enrichment analysis using
the brain tissue specific expressed genes as control data to check whether the pathways we find
above are really influenced by m°A methylation or by tissue specific expression. Brain tissue
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specific expressed genes are defined here as genes who have a RPKM value over 1 in at least
half of the input samples, including treated and untreated ones. As is shown in S8 and S9 Figs,
the results are similar to make the whole reference genome as control data set, but the enriched
pathways get a bigger q-value due to the size reducing of control datasets, such as synaptic
transmission (43 hyper mDrGenes, Pgonferroni = 1.09%x107°), transmission of nerve impulse

(50 genes in hyper mDrGenes, Pgonferroni = 1.98x107°), neuron differentiation (65 hyper
mDrGenes, Pgonferroni = 1.89%x107%) and Pathways in cancer (64 hyper mDrGenes, Pgonferroni =
5.12x107% 40 hypo mDrGenes, pponferroni = 3-51% 1072). These results show that the mDrGenes
enriched pathways are really influenced by m®A methylation.

Table 3. Count of differently expressed genes (DEGs) among mDrGenes and DmMGs.

Dataset #DEG DmMG mDrGene Fisher’s test p-value

#DE #all %DEG #DE #all %DEG 2-tailed greater less
KD-FTO 12 1 553 0.18% 0 1832 0 0.23 1 0.23
KD-M3 6197 1850 3089 59.89% 901 1352 66.64% 1.98E-5 1.06E-5 1
KD-M14 127 30 1846 1.63% 22 1251 1.76% 0.78 0.44 0.67
KD-WTAP 1575 271 1435 18.89% 103 375 27.47% 4.30E-4 2.32E-4 1.00

M3 is short for METTL3 and M14 is short for METTL14. “2-tailed” represents the2-tailed Fisher’s test, “greater” (or “less”) represents a one-tailed Fisher's

test, where the null hypothesis is that the percentage of DEG in mDrGene is greater (or less) than that of DmMGs.

d0i:10.1371/journal.pchi.1005287 .t003
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To further study the dynamics of m°A methylation, we applied the enrichment analysis to
mDrGenes predicted in KD-METTL3, KD-METTL14 and KD-WTAP and compared the sim-
ilarity and difference of their enriched GO biological processes (Fig 10, and also see S10 Fig
for more details) and KEGG pathways (Fig 11, and also see S11 Fig for more information). In
this case, we chose to perform enrichment on all mDrGenes in these three datasets instead of
analyzing hyper- and hypo-methylated mDrGenes separately, because there are little hyper
mDrGenes in these 3 datasets. There are significant overlapping biological processes among
these 3 sets of mDrGenes, but also exist enzyme specific functions (Fig 10). The common
biological processes include cell cycle (143 mDrGenes in KD-METTL3, pponferroni =
2.52x107%%, 123 mDrGenes in KD-METTLI14, Pponerroni = 6.71x107"%, 51 mDrGenes in KD-
WTAP, pponferroni = 2.35x107'9), regulation of transcription (324 mDrGenes in KD-METTL3,
PBonferroni = 7.76x107'%, 315 mDrGenes in KD-METTL14, pgonferroni = 2.37x107"%, 103
mDrGenes in KD-WTAP, pponferroni = 1.88x1077) and positive regulation of molecular
metabolism, e.g., positive regulation of macromolecule metabolic process (137 mDrGenes in
KD-METTL3, Pponerroni = 519107, 126 mDrGenes in KD-METTLI14, Pgonferroni = 8.12x107"2,
55 mDrGenes in KD-WTAP, pgonterron = 9-27x107).
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Fig 8. Biological processes regulated by FTO. We show here a binary map depicting the GO biological process (BP)
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and hypo m®A-driven genes respectively using DAVID. The hyper FTO targeted m®A-driven genes are closely link to synaptic
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doi:10.1371/journal.pchi.1005287.g008
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d0i:10.1371/journal.pchi.1005287.9009
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components of RNA methylation complex target different biological processes, indicating that different methylation enzymes may
influence different biological processes via driving different genes.

doi:10.1371/journal.pchi.1005287.9010

What is interesting is that the overlapping functions between METTL3 associated

mDrGenes and WTAP associated mDrGenes are positive regulations of metabolism and gene
expression. In contrast, the overlapping functions between METTL3 targeted mDrGenes
genes and METTL14 mDrGenes are mainly negative regulation of metabolism and gene
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doi:10.1371/journal.pcbi.1005287.9011
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expression. The METTL14 mDrGenes are also strongly enriched in splicing, especially, e.g.,
RNA splicing (76 mDrGenes, Pponferroni = 271X 107%%), RNA splicing, via transesterification
reactions (43 mDrGenes, Ponferroni = 1.38x107"°) and RNA splicing, via transesterification
reactions with bulged adenosine as nucleophile (43 mDrGenes, Pgonferroni = 1.38x107'%). It is
consistent with that the most enriched motif in KD-METTLI14 is similar to the binding motifs
of SRSF1 and SRSF9, two factors involved in alternative splicing. These suggest a potential role
of METTLI14 in regulating splicing via m°A. In contrast, WTAP mDrGenes are enriched spe-
cifically in chromatin modification (26 genes, pgonferroni = 1.46x10°%), whereas METTL3
mDrGenes may influence the development of protein complex, e.g., protein complex assembly
(96 mDrGenes, Pponferroni = 1.86x107'*) and protein complex biogenesis (96 mDrGenes,
PBonferroni = 1.86x107"%).

Comparison of top KEGG pathways enriched in the three mDrGenes sets also revealed
common as well as methylase specific functions (see Fig 11). Particularly, the consensus func-
tions include cell cycle (38 mDrGenes in KD-METTL3, Pponferroni = 2.19x107"", 27 mDrGenes
in KD-METTLI14, Pponferroni = 8-64x1077, 16 mDrGenes in KD-WTAP, Pponferroni = 1.08x107°),
spliceosome (34 mDrGenes in KD-METTL3, pgonferroni = 8.9x107%, 26 mDrGenes in KD-
METTLI4, Pgonferroni = 3-51x107%, 14 mDrGenes in KD-WTAP, pgonferroni = 2.06x10™*) and
pathway in cancer (66 mDrGenes in KD-METTL3, pgonferroni = 2.68x107'° 57 mDrGenes in
KD-METTL14, Pponferroni = 8.58x107'%, 30 mDrGenes in KD-WTAP, ppongerron; = 5.46x1077)
especially Chronic myeloid leukemia (28 mDrGenes in KD-METTL3, pgonferroni = 8.66x107"%,
21 mDrGenes in KD-METTLI14, pponferroni = 2.52x1077, 12 mDrGenes in KD-WTAP,
PBonferroni = 2.58x107°). The significant overlapping pathways between METTL3 and METTL14
include Glioma (20 mDrGenes in KD-METTL3, pgonferroni = 1.37x107%, 13 mDrGenes in
KD-METTLI4, Pgonferroni = 1.85%107°), suggesting that these mDrGenes may be used as
biomarkers of glioma. We also notice that METTL3 mDrGenes are specifically enriched in Mel-
anoma (18 mDrGenes, Pponferroni = 1.32x107%). A recent study have demonstrated that muta-
tions within intron 8 of FTO leads to increased melanoma risk [29], suggesting a link between
m°A and melanoma.

To help reveal the pathways potentially relevant to different modes of m®A functions,
we checked the overlaps between the enriched pathways in hyper and hypo mDrGenes in
KD-FTO and mDrGenes in KD-METTL3, KD-METTL14 and KD-WTAP (S12 and S13 Figs).
All 5 groups of mDrGenes are enriched in cell cycle and pathways in cancer, including espe-
cially Chronic myeloid leukemia. This further suggests that m°A is related to cancer. The
overlapping pathways between the hyper-mDrGenes in KD-FTO and those in METTL3/
METTL14 are mainly related to transcription including regulation of transcription and regula-
tion of gene expression. Indeed, it has been shown that m®A recruits YTHDF?2 protein to regu-
late mRNA stability [54]. In contrast, the overlapping pathways between the hypo-mDrGenes
in KD-FTO and those in METTL3/METTL14 are related RNA splicing. Interestingly, nuclear
m°®A-binding protein YTHDCI is shown to promote exon inclusion of targeted mRNAs
through facilitating mRNA binding of splicing factor SRSF3 [55,56].

We further examined the mDrNets and their subnetworks associated with the enriched bio-
logical processes. Several sub-mDrNets for KD-FTO including intracellular signaling cascade,
synaptic transmission BP category, and transmission of nerve impulse, are shown in Fig 12.
They are consistent with our hypothesis that mDrGenes in the same biological process are in-
teracted with each other closely. That is also the reason why m°A-Driver can identify mDrGenes
that might not be consistently identified in most RSs due to the biological variance, but have sig-
nificant biological functions. This underscores the advantage of m®A-Driver in addressing vari-
ance among different replicates for predicting mDrGenes.
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Fig 12. Subnetworks of mDrNet in KD-FTO. (a) Sub-mDrNet associated with intracellular signaling cascade BP
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nodes denote hypo mDrGenes. The node size and edge width are corresponding to the frequency that they appear in
different replicates sets. The number labeled on the edge means the times that it reappears in all RS sets. mDrGenes in
the same biological process interact with each other closely, which is consistent with our hypothesis. For UNC13B,
STX1A and GRID2, although they are not predicted as differential m®A genes in all RS, m®A-Driver still identify them as
mDrGenes, because they have significant biological functions.

doi:10.1371/journal.pcbi.1005287.9012

For KD-METTL3, KD-METTL14 and KD-WTAP, since they form the m°A methyltrans-
ferase complex, we integrated the 3 mDrNets and examined the subnetworks associated with
the enriched pathways (Fig 13). Similar to KD-FTO, the mDrGenes enriched in the same path-
way are closely connected and many mDrGenes undetected as differential m°A genes in all
RSs are also identified. What is also interesting to notice is that the enriched pathways com-
mon in three datasets could be resulted from very different mDrGenes for each dataset, sug-
gesting the 3 m®A methylases collaboratively regulate the same pathway through different
mechanisms.

Because many m°A sites are detected in 3’UTRs that also contain microRNA binding sites.
It will be helpful to further examine if the mDrGenes are also enriched in certain microRNA
with significant functions. To test this, we download the microRNA-target information from
miRTarBase, a database curates experimentally validated microRNA-target interactions [57].
Then we performed Fisher’s test to test whether the m®A driven genes are enriched in targets
of certain microRNA families. Interestingly, although most mDrGenes are targeted by
microRNAs (60% in KD-FTO, 96% in KD-METTL3, 97% in KD-METTL14 and 97% in KD-
WTAP), not many microRNAs have targets enriched in mDrGenes. For KD-FTO, there are
only 2 microRNAs have p-value < 0.05, and for KD-METTL3, KD-METTL14 and KD-WTAP,
there are only 1, 1, 0, separately (Table 2). The information of all targeted mDrGenes by micro-
RNA is included in supplementary material (S1-54 Texts).

Discussion

The MeRIP-seq technology significantly advances the study of m°A, enabling profiling m°A
methytranscriptome for specific cell conditions. However, existing algorithms focus mostly on
predicting m°A sites from MeRIP-seq data. Although they are powerful tools for MeRIP-seq
data analysis, they cannot directly assess the functional importance of these sites and associated
genes. To address this shortcoming, we proposed in this paper m®A-Driver, a novel algorithm
for detecting m°®A-driven genes and their interaction network. m®A-Driver utilizes protein-
protein interaction networks to identify functional meaningful differentially m°A methylated
genes and overcomes the biases in predicting functional enrichment of sites due to different
sample replicates. The comparison on the p-values of top enriched biological processes in the
prediction results of m®A-Driver and exomePeak demonstrates that m®A-Driver could iden-
tify mDrGenes that are more functional relevant. In terms of the algorithm, comparison with
VarWalker, an algorithm for predicting mutation driver genes, shows that m®A-Driver is com-
putationally more efficient and can produce topological and biologically more robust predic-
tions. Furthermore, m®A-Driver generates a condition-specific m®A-driven network that
reveals the detailed functional circuitry underlying the biological condition.

The results on the FTO, METTL3, METTL14 and WTAP knockdown data demonstrated
that m®A-Driver can address the sample bias in MeRIP-Seq data and identify functional rele-
vant mDrGenes in a robust and efficient fashion. m®A-Driver predicted several significant bio-
logical progresses and pathways associated with each knockdown dataset and constructed four
mDrNet separately regulated by the four m®A (de)methylases. Functional enrichment analysis
across the four networks showed the involvement of m°A in a diverse processes and pathways
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Fig 13. Sub-mDrNet of KD-METTL3, KD-METTL14 and KD-WTAP. (a) Sub-mDrNet associated with Pathways in cancer.
(b) Sub-mDrNet associated with Spliceosome. (c) Sub-mDrNet associated with chronic myeloid leukemia. The circle nodes
are hypo mDrGenes and the triangle ones are hyper mDrGene. The orange nodes denote mDrGenes reappearing in at last
two consensus networks. The yellow nodes denote mDrGenes specifically from KD-METTL3 mDrNet. The cyan nodes
denote KD-METTL14 specific mDrGenes and the green ones denote WTAP specific mDrGenes. The node size and the edge
width represent the frequency that they reappear in different replicates sets (RSs). Though enriched in the same pathways
but the target mDrGenes are not all the same for the 3 methylation enzymes. Mean that, the 3 methylation enzymes may

drive different genes to influence the same pathway.

doi:10.1371/journal.pcbi.1005287.9013
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including regulating cancer, transcription, and slicing, many of which have been reported in
the literature. The presented results in this paper demonstrate that m®A-Driver is an effective
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and reliable approach to identify functionally relevant m°A-driven genes and networks from
MeRIP-Seq data.

We want to point out that the inherent technical limitations of MeRIP-Seq can lead to
increased false positives in the predicted mDrGenes and their functional networks. As pointed
out earlier in the paper, the sample bias and the impact of library “size factor” from different con-
ditions can negatively impact the quality of the data. How to normalize MeRIP-Seq samples from
different conditions is still an open topic that requires additional research. Many useful normali-
zation methods such as the "geometric mean" approach proposed in DESeq can provide valuable
guidance. Nevertheless, the results from this and other papers showed that with careful process-
ing and modeling of the current MeRIP-Seq data, many important functions of m®A can be
predicted. With the continuing improvement of the MeRIP-Seq and related technologies, we
expect that m°A-Driver should produce increasingly more accurate predictions. In the current
mC®A-Driver algorithm, identification of mDrGenes relies on a reference network and a threshold
to determine the candidate genes. So far, only PPI network is considered, and no reference net-
works for noncoding RNAs are included. As m°A is also prevalent in long noncoding RNAs
(IncRNAs), constructing a noncoding RNA interaction network and extending m®A-Driver algo-
rithm to IncRNAs will enable the study of m°A associated functions in IncRNAs. As a future
work, we can use the score in step 4 to help construct the consensus network. For a DmMGs
network of a biological replicate sets built by step 3, we can use peak calling score to transfer the
network to a weighted network. The weight of an edge in the network could be calculated as
w= w, where x and y denote the peak calling FDR (adjusted p-value) of the two gene
nodes. Then all edges of the DmMGs networks are pooled together. For each edge, we can

calculate the consensus score as s = Z w,, where m is the number of replicate sets and w; is the
i=1

weight of the edge in network i. The final consensus m®A driven gene network can be built by set-

ting a threshold on s according to its distribution or the scale of the consensus network we need.

Materials and Methods
Datasets

FTO knockdown (KD-FTO) dataset is a MeRIP-Seq data [27] from the wild-type littermate as
well as FTO knockdown mice samples. There are 9 sets of biological replicates in this cohort,
and each biological replicate set (RS) contains two IP samples from a FTO knockdown mouse
and the wild-type littermate, respectively, as well as two corresponding input samples from the
two mice samples. In the original work [27], Hess et al. demonstrated that FTO-knockdown
mice have impaired dopamine release, reduced dopaminergic receptor responses and an
altered locomotor response to cocaine, which are related to specific m°’A mRNA demethyla-
tion regulated by FTO.

METTL3, METTL14 and WTAP knockdown MeRIP-Seq datasets are from a recent study
which reveals that m°A regulates mRNA stability [44]. Each of the three cohorts consists of 4
RSs, each of which contains two IP samples from gene knockdown (treated) HeLa cells and
untreated HeLa cells, respectively, and two corresponding input samples. The study revealed
that knockdown of METTL3 led to decrease the binding of YTHDF?2 to its targets, and
increase the stability of its target RN As similar to that of YTHDF2 knockdown.

The reference network, PPI network, is built from the most recent version of PPI data from
BioGRID (release 3.4.128, compiled on August 25th, 2015) [45]. Based on the binary interac-
tions, we removed the isolated and self-interactions proteins to establish a PPI network with a
total of 16,062 proteins and 152,676 interactions.
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Prediction of m®A-driven genes and the network using the m°A-Driver
algorithm

m°A-Driver predicts mDrGenes and mDrNet from MeRIP-Seq data, where mDrGene is a
gene whose mRNA harbors at least one DmM site in a biological context of interest and whose
function is relevant to the context. m®A-Driver first divides the MeRIP-Seq data into several
RSs, each containing 2 paired samples, an IP sample paired with an input sample under the
treated condition and another pair under the untreated condition. Then, m°®A-Driver predicts
mDrGenes and mDrNet by the following four steps. The workflow is shown in Fig 1.

Step 1. RS-specific prediction of DmMG using exomePeak. This step is designed to pre-
dict DmMGs for each RS. A gene is identified as a DmMG if its mRNA harbors at least one
hyper- or hypo-methylated m°A site in treated samples compared with untreated samples. The
DmM sites of a RS are detected by the exomePeak R package [38], which predicts the tran-
scriptome-wide m°A hyper- or hypo-methylated sites from the treated and untreated MeRIP-
Seq datasets. At the end of this step, a set of DmMGs are obtained for each RS.

Step 2. Prediction of RS-specific candidate DmMGs with the Random Walk with Restart
algorithm. The goal of this step is to predict potential DmMGs that not detected in a RS due to
the biological variance. RWR simulates a random walker from either a seed node or a set of
seed nodes, and moves to its immediate neighbors randomly at each step until it reaches a sta-
ble status. In the end, all the nodes in the graph are ranked by the probability of the random
walker reaching this node, which denotes the degree of closeness to the seed node(s). Given a
connected graph G with N nodes, RWR can be formally described as follows:

p=(1—-2)Mp' + Jp’ (1)

where p'is an Nx1 vector whose ith element represents the probability of the walker traversing
to node i at step ¢, p° is the Nx1 initial probability vector, M is an NxN transition matrix of the
graph, which is the column-normalized adjacency matrix for G, and A is a fixed parameter,
which denotes the restarting probability at a given time step (4 = 0.5 in this study). Generally,
if assuming that there are k initial genes from which the walker would start with an equal prob-
ability, the initial nodes will have a probability of 1 / k and the remaining nodes will have a

e 0 ) . . 1/k, start node .
probability 0 in p”, meaning that p° = {p)} = ~,where y = 1,2, - -,n. Then, p
0, otherwise

is updated according to (1) iteratively until the difference between p’ and p
fined threshold (107 in this work).

For each RS, we iteratively take each DmMG as the starting node, performing RWR to prior-
itize candidate DmMGs. According to the probability that the walker would reach the node
after the RWR enters the stable state, nodes ranked top 10 are held as candidate DmMGs. Previ-
ous studies suggested various ways to select candidate nodes including using the most accessible
node (i.e., top 1) [58, 59], top 5 [60], top 10 [61,62], top 20 [62], and top 100 nodes [63], but no
consensus rules have been proposed. In this work, we retained the top 10 accessible nodes to
keep a balanced tradeoff between choosing too few informative genes (e.g. top 1) and too many
irrelevant genes [46]. The threshold, top 10, is only an empirical primary filter of nodes to select
only the most highly accessible nodes from the starting node (DmMG); the candidate DmMGs
will be further assessed by their topological and biological significance in the next step.

Step 3. Topological and functional significance-based evaluation of the candidate
DmMGs. The goal of this step is to extract functionally and topologically significant candidate
DmMGs from the PPI network. To evaluate the topological significance of the candidate
nodes in the PPI network, Jia et al. proposed a strategy that utilizes randomized PPI networks
that maintain the topological characteristics of the original network (e.g., degree of each node)

“1is below a prede-
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to estimate whether the candidate target genes defined as gene interact with target gene (i.e.,
DmMG identified in step 1 in this paper) are identified by chance [46]. To this end, 100 random
PPI networks, each of which preserves the degree distribution of the original PPI network, are
first generated through the switching algorithm proposed by Moli et al. [64]. Then, RWR is per-
formed, using each of DmMG as a starting node, in each of the 100 random networks and the
top 10 nodes with the highest probabilities are extracted. Finally, for each DmMG, the 10 candi-
date nodes in the original network, g1,2,,- - -,g10, are assessed by computing an empirical p-value:

= %, where 71(g,) is a random network in which g,(v = 1,2,- - -,10), is found as the top 10
candidate genes after the restart random walk starting from the target DmMG. The empirical
p-value is calculated as the probability of a candidate DmMG to be randomly selected. Accord-
ing to the study of Jia et al., the candidate DmMGs with p < 0.05 should be retained as the sig-
nificant candidate DmMGs.

Note that the random PPI network maintains only the degree distribution of the original
network, indicating that the degree is the only property of nodes in the random network. Since
the rank of a gene in a random network is determined by its degree and the initial node’s
degree, it is possible that this degree-based filter of candidate DmMGs may remove functional
significant genes by mistake. Meanwhile, the randomization-based strategy may remove differ-
ent candidate genes for the same DmMG when adopting different sets of random PPI net-
works. In addition, performing RWR for each DmMG of each sample in each of the 100
networks will take a long time.

To address these issues, we combine the degree distributions of top 10 genes prioritized by
starting nodes with different degree in random networks and use the shortest path between
candidate DmMG and DmMG to assess candidate DmMGs. Although PPI network consists
of 16,062 nodes, these nodes only hold 312 kinds of degree d;(d;€[1,1975], i = 1,2, - -,312). For
each kind of degree, we randomly selected a node with degree d; as the starting node, denoted
as Seed;(i = 1,2, - ,312), to initiate the random walk in each random network and retained the
top 10 nodes with the highest probabilities. After assessing all the 100 random networks, a can-
didate DmMGs set Si(j=1,2,--,312) can be formed. The normal occurrence of gene with

__ #random occurrence

degree d; in ; is calculated as: freq; = =5mocutence where "random occurrence” is the counts

#PPI occurrence
of genes with degree d; selected as top 10 across the 100 random networks, that is, the counts
of genes with degree d; in §;, and "#PPI occurrence" is the counts of genes with degree d; in PPI
frea,
100
which indicates the probability of the gene to be randomly selected [46]. Moreover, to make

the filter more robust, we formulate a function p;; = fi(d;) to estimate the empirical p-value of

network. Finally, we compute an empirical p-value: p; = < for the gene with degree d; in §;,

gene with degree d; in §;, and then solve it using the locfit algorithm [65].

Fig 14 shows the empirical p-value as a function of the degree, which is used to select top 10
genes in the random network initiated by the starting nodes with different degree. As is shown
that the empirical p-value monotonically increases along with the increase of top 10 genes’
degree and the rate of increase is higher if the initial node’s degree is larger. This implies that
filtering candidate genes based only on the empirical p-values could remove candidate genes
with biological significance.

To filter the candidate genes of a DmMG by both their topological and functional signifi-
cance, we first compute the empirical p-value of candidate DmMGs. For a candidate DmMG
with degree dj, the p-values calculated by the regression function, p;; = fi(d;). Then, we calculate
the shortest path L between candidate DmMGs and the corresponding DmMG in PPI net-
work, which assesses the functional significance of the candidate DmMG. Finally, we retain
candidate DmMGs with p < 0.05 or L = 1 as significant candidate DmMGs. The procedure is
iteratively performed to candidate genes of each DmMG in each RS.
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Fig 14. The influence of nodes degree on the empirical p-value [46]. The top 10 genes of a random network denote the gene that rank
top 10 in the random network initiated by the starting node with a specific degree. We can see that the p-value monotonically increases along
with the increase of top 10 genes’ degree and the growth rate is enhanced when initial node’s degree is larger.

doi:10.1371/journal.pcbi.1005287.9014

Step 4. Construction of a consensus m°A-driven gene network. The goal of this step is to
extract mDrGenes from DmMGs identified in each RS. After detecting DmMGs and their can-
didate genes in each RS, all significant interactions from different RS are pooled together,
forming a universal candidate edges pool. Furthermore, we required both proteins involved in
an interaction to be encoded by DmMGs, meaning that a pair of DmMGs and its candidate
genes in the pool could be either identified in the same RS or in different RS set. We extracted
edges that consistently occur in every RS, and the DmMGs involved in the edges were identi-
fied as m°A-driven genes. Then all the eligible edges constitute the consensus mDrNet. The
selected mDrGenes are DmMGs identified in at least one RS, which means they contain the
information from original data, but they are not required to reappear in every RS to avoid sam-
ple bias. Also, mDrGenes are identified by consensus reappearance across all RS to enhance
their reliability. Moreover, mDrGenes are closely interacting in the PPI network, implying sig-
nificant functions.

Supporting Information

S1 Fig. ROC-like curves of three mrthylation enzymes knockdown data sets. The false posi-
tive rate (FPR) is the ratio of pseudo DMSs to all m®A methylation sites and the reported true
positive rate (RTPR) is the ratio of real DMSs to all mC®A methylation sites. The black line is the
line of y = x.

(TIFF)

$2 Fig. Consensus network in KD-FTO dataset. The network consists of m°A-driven genes
identified in KD-FTO dataset. We can see that they are closely interacted with each other in
the network which indicates that m°A-driven genes regulated by FTO are functionally
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relevant.
(TIFF)

$3 Fig. Consensus network in KD-METTL3 dataset. The network consists of m®A-driven
genes identified in KD-METTL3 dataset. We can see that they are closely interacted with each
other in the network which indicates that m°A-driven genes regulated by METTL3 are func-
tionally relevant.

(TIFF)

$4 Fig. Consensus network in KD-METTL14 dataset. The network consists of m®A-driven
genes identified in KD-METTLI14 dataset. We can see that they are closely interacted with
each other in the network which indicates that m°A-driven genes regulated by METTL14 are
functionally relevant.

(TIFF)

S5 Fig. Consensus network in KD-WTAP dataset. The network consists of m°A-driven
genes identified in KD-WTAP dataset. We can see that they are closely interacted with each
other in the network which indicates that m°A-driven genes regulated by WTAP are function-
ally relevant.

(TIFF)

S6 Fig. Biological processes regulated by FTO. We show here a heat map depicting the GO
biological process (BP) categories most enriched in m®A-driven genes identified in KD-FTO
dataset. The enrichment analysis is conducted for the hyper and hypo m®A-driven genes
respectively using DAVID. The FTO targeted hyper m°A-driven genes closely link to synaptic
transmission and cell-cell signaling. And we also find several other significant biological pro-
cesses and genes regulated by m°A such as embryonic development and neuron differentia-
tion. Thus demonstrates m®A-Driver could identify biological functionally significant m°A-
driven genes.

(TIFF)

S7 Fig. Pathways regulated by FTO. We show here a heat map depicting the KEGG categories
most enriched in m°A-driven genes identified in KD-FTO dataset. The enrichment analysis is
done to the hyperand hypo m®A-driven genes respectively using DAVID. The m°A-driven
genes are significantly enriched in cancer related pathway and some specific cancer such as
chronic myeloid leukemia and Glioma which suggest RNA methylation may play a role in can-
cer.

(TIFF)

S8 Fig. Binary biological processes regulated by FTO using the brain tissue specific
expressed genes as control data. We show here a binary map depicting the GO biological pro-
cess (BP) categories enriched in m®A-driven genes identified in KD-FTO experiment. The
enrichment analysis is conducted for the hyper and hypo m°®A-driven genes respectively using
DAVID and adopting the brain tissue specific expressed genes as control data.Brain tissue spe-
cific expressed genes are genes who have a RPKM value over 1 in at least half of the input sam-
ples, including treated and untreated ones.

(TIFF)

S9 Fig. Binary pathways regulated by FTO using the brain tissue specific expressed genes
as control data. We show here a binary map depicting the KEGG categories most enriched in
mDrGenes for KD-FT'O dataset. The enrichment analysis is conducted for the hyper and hypo
m°A-driven genes respectively using DAVID and adopting the brain tissue specific expressed
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genes as control data. Brain tissue specific expressed genes are genes who have a RPKM value
over 1 in at least half of the input samples, including treated and untreated ones.
(TIFF)

S$10 Fig. Biological processes regulated by methyltransferase complex. We show here a heat
map depicting the GO biological process (BP) categories most enriched in m°A-diven genes
identified in KD-METTL3, KD-METTL14 and KD-WTAP using DAVID. There are signifi-
cant overlapping biological processes between the three enzymes targeted m®A-driven genes
and also enzyme specific functions, suggesting that different methylation enzymes may influ-
ence different biological processes via driving different genes.

(TIFF)

S11 Fig. Pathways regulated by methyltransferase complex. We show here a heat map de-
picting the KEGG categories most enriched in m®A-driven genes identified in KD-METTLS3,
KD-METTL14 and KD-WTAP using DAVID. There are significant overlapping pathways
between the three enzymes targeted m®A-driven genes and also enzyme specific functions.
Two important consistent pathways are cancers and splicing which indicates m®A may regu-
late these pathways through m®A-driven genes.

(TIFF)

S12 Fig. Binary biological processes regulated by both FTO and methyltransferases. We
show here a binary map depicting the GO biological process (BP) categories most enriched in
mDrGenes identified in KD-FTO, KD-METTL3, KD-METTL14 and KD-WTAP using
DAVID. Enriched BPs in KD-FTO are divided into hyper and hypo groups. We only keep BPs
enriched in at least one group (hyper or hypo) of KD-FTO and enriched in at least 3 of the 5
groups to show significant overlap between the 5 group of BPs. The overlap BPs between FTO-
hyper group and METTL3/METTL14 are mainly about transcription, regulation of transcrip-
tion and regulation of gene expression. The overlap BPs between FT'O-hypo group and
METTL3/METTL14 are mainly about RNA splicing and protein modification. This indicates
that the dynamic of m®A may regulate these biological processes in a direct or indirect way.
(TIFF)

$13 Fig. Binary pathways regulated by both FTO and methyltransferases. We show here a
binary map depicting the KEGG categories most enriched in mDrGenes identified in KD-
FTO, KD-METTL3, KD-METTL14 and KD-WTAP using DAVID. Enriched pathways in
KD-FTO are divided into hyper and hypo groups. We only keep pathways enriched in at least
one group (hyper or hypo) of KD-FTO and enriched in at least 3 of the 5 groups to show sig-
nificant overlap between the 5 group of pathways. All of the 5 group of mDrGenes are enriched
in pathway in cancer, especially in Chronic myeloid leukemia. This further illustrate the
dynamic of m®A is related to cancer. The overlap pathways between FTO-hypo group and
METTL3/METTL14/WTAP are cell cycle and spliceosome. This is consistent with the result
of BP enrichment analysis and confirm the relevance between dynamic m°A and splicing.
(TIFF)

S1 Text. microRNAs targeting mDrGenes in KD-FTO.
(TXT)

S2 Text. microRNAs targeting mDrGenes in KD-METTL3.
(TXT)

$3 Text. microRNAs targeting mDrGenes in KD-METTL14.
(TXT)
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S$4 Text. microRNAs targeting mDrGenes in KD-WTAP.
(TXT)

Acknowledgments

We thank computational support from the UTSA Computational Systems Biology Core,
funded by the National Institute on Minority Health and Health Disparities (G12MD007591)
from the National Institutes of Health.

Author Contributions

Conceptualization: SYZ SWZ YH.

Data curation: SYZ JM.

Formal analysis: SYZ.

Funding acquisition: SWZ JM YH.

Investigation: SYZ LL.

Methodology: SYZ.

Project administration: SWZ.

Resources: SYZ LL.

Software: SYZ.

Supervision: SWZ YH.

Validation: SYZ JM.

Visualization: SYZ.

Writing - original draft: SYZ.

Writing - review & editing: SYZ SWZ JM YH.

References

1.

Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007; 128(4):669-81. doi: 10.
1016/j.cell.2007.01.033 PMID: 17320505

Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet. 2012; 13(10):705-19. doi:
10.1038/nrg3273 PMID: 22986265

Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet. 2010;
11(3):191-208. doi: 10.1038/nrg2732 PMID: 20125086

Jia G, FuY, Zhao X, Dai Q, Zheng G, Yang Y, et al. N6-methyladenosine in nuclear RNA is a major sub-
strate of the obesity-associated FTO. Nat Chem Biol. 2011; 7(12):885-887. doi: 10.1038/nchembio.687
PMID: 22002720

Crain PF, McCloskey JA. The RNA modification database. Nucleic Acids Res. 1996; 24(1):98-99.
PMID: 8594611

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al.
Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012; 485
(7397):201-206. doi: 10.1038/nature11112 PMID: 22575960

Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. Comprehensive analysis of
mRNA methylation reveals enrichment in 3 UTRs and near stop codons. Cell. 2012; 149(7):1635—
1646. doi: 10.1016/j.cell.2012.05.003 PMID: 22608085

Zheng G, Dahl JA, Niu Y, Fu Y, Klungland A, Yang Y-G, et al. Sprouts of RNA epigenetics. RNA Biol.
2013; 10(6):915-918. doi: 10.4161/rna.24711 PMID: 23619745

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005287 December 27,2016 28/31


http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005287.s017
http://dx.doi.org/10.1016/j.cell.2007.01.033
http://dx.doi.org/10.1016/j.cell.2007.01.033
http://www.ncbi.nlm.nih.gov/pubmed/17320505
http://dx.doi.org/10.1038/nrg3273
http://www.ncbi.nlm.nih.gov/pubmed/22986265
http://dx.doi.org/10.1038/nrg2732
http://www.ncbi.nlm.nih.gov/pubmed/20125086
http://dx.doi.org/10.1038/nchembio.687
http://www.ncbi.nlm.nih.gov/pubmed/22002720
http://www.ncbi.nlm.nih.gov/pubmed/8594611
http://dx.doi.org/10.1038/nature11112
http://www.ncbi.nlm.nih.gov/pubmed/22575960
http://dx.doi.org/10.1016/j.cell.2012.05.003
http://www.ncbi.nlm.nih.gov/pubmed/22608085
http://dx.doi.org/10.4161/rna.24711
http://www.ncbi.nlm.nih.gov/pubmed/23619745

©-PLOS | Sotoer o

mEA-Driver: Identifying mDrNet

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A
RNA methylation. Nat Rev Genet. 2014; 15(5):293-306. doi: 10.1038/nrg3724 PMID: 24662220

Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, et al. Selective elimination of
messenger RNA prevents an incidence of untimely meiosis. Nature. 2006; 442(7098):45-50. doi: 10.
1038/nature04881 PMID: 16823445

Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, Pudimat R, et al. The YTH domain is a
novel RNA binding domain. J Biol Chem. 2010; 285(19):14701-14710. doi: 10.1074/jbc.M110.104711
PMID: 20167602

Brennan C, Steitz J. HUR and mRNA stability. Cell Mol Life Sci. 2001; 58(2):266—277. doi: 10.1007/
PL0O0000854 PMID: 11289308

Tuck MT, Wiehl PE, Pan T. Inhibition of 6-methyladenine formation decreases the translation efficiency
of dihydrofolate reductase transcripts. Int J Biochem Cell Biol. 1999; 31(8):837-851. PMID: 10481270

Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m 6 A Methyltransferase METTL3 Promotes Transla-
tion in Human Cancer Cells. Mol Cell. 2016; 62(3):335-345. doi: 10.1016/j.molcel.2016.03.021 PMID:
27117702

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, et al. 5 UTR m 6 A promotes cap-
independent translation. Cell. 2015; 163(4):999—1010. doi: 10.1016/j.cell.2015.10.012 PMID:
26593424

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. N6-methyladenosine modulates messenger
RNA translation efficiency. Cell. 2015; 161(6):1388-1399. doi: 10.1016/j.cell.2015.05.014 PMID:
26046440

Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen |, et al. Hypoxia induces the breast cancer stem
cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc
Natl Acad Sci. 2016; 113(14):E2047-E2056. doi: 10.1073/pnas.1602883113 PMID: 27001847

LiudJ, YueY,Han D, Wang X, FuY, Zhang L, et al. AMETTL3-METTL14 complex mediates mammalian
nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014; 10(2): 93-95. doi: 10.1038/nchembio.
1432 PMID: 24316715

Ping X-L, Sun B-F, Wang L, Xiao W, Yang X, Wang W-J, et al. Mammalian WTAP is a regulatory sub-
unit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014; 24(2): 177-189. doi: 10.1038/
cr.2014.3 PMID: 24407421

Khoddami V, Cairns BR. Identification of direct targets and modified bases of RNA cytosine methyl-
transferases. Nat Biotechnol. 2013; 31(5):458—464. doi: 10.1038/nbt.2566 PMID: 23604283

Bokar J, Shambaugh M, Polayes D, Matera A, Rottman F. Purification and cDNA cloning of the Ado-
Met-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997; 3(11):1233—
1247. PMID: 9409616

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang C-M, Li CJ, et al. ALKBHS5 is a mammalian RNA
demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013; 49(1):18—-29. doi: 10.
1016/j.molcel.2012.10.015 PMID: 23177736

Liu L, Zhang S-W, Zhang Y-C, Liu H, Zhang L, Chen R, et al. Decomposition of RNA methylome reveals
co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome. Mol Biosyst.
2015; 11(1):262-274. doi: 10.1039/c4mb00604f PMID: 25370990

Loos R, Bouchard C. FTO: the first gene contributing to common forms of human obesity. Obes Rev.
2008; 9(3):246—250. doi: 10.1111/}.1467-789X.2008.00481.x PMID: 18373508

Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Briining JC, et al. Inactivation of the Fto gene
protects from obesity. Nature. 2009; 458(7240):894—898. doi: 10.1038/nature07848 PMID: 19234441

Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, et al. Overexpression of Fto leads to
increased food intake and results in obesity. Nat Genet. 2010; 42(12):1086—1092. doi: 10.1038/ng.713
PMID: 21076408

Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Brénneke HS, et al. The fat mass and obesity
associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 2013; 16
(8):1042—-1048. doi: 10.1038/nn.3449 PMID: 23817550

Garcia-Closas M, Couch FJ, Lindstrom S, Michailidou K, Schmidt MK, Brook MN, et al. Genome-wide
association studies identify four ER negative-specific breast cancer risk loci. Nat Genet. 2013; 45
(4):392-398. doi: 10.1038/ng.2561 PMID: 23535733

Consortium G. A variant in FTO shows association with melanoma risk not due to BMI. Nat Genet.
2013; 45(4):428-432. doi: 10.1038/ng.2571 PMID: 23455637

WangY, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes

developmental regulators in embryonic stem cells. Nat Cell Biol. 2014; 16(2): 191-198. doi: 10.1038/
nch2902 PMID: 24394384

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005287 December 27,2016 29/31


http://dx.doi.org/10.1038/nrg3724
http://www.ncbi.nlm.nih.gov/pubmed/24662220
http://dx.doi.org/10.1038/nature04881
http://dx.doi.org/10.1038/nature04881
http://www.ncbi.nlm.nih.gov/pubmed/16823445
http://dx.doi.org/10.1074/jbc.M110.104711
http://www.ncbi.nlm.nih.gov/pubmed/20167602
http://dx.doi.org/10.1007/PL00000854
http://dx.doi.org/10.1007/PL00000854
http://www.ncbi.nlm.nih.gov/pubmed/11289308
http://www.ncbi.nlm.nih.gov/pubmed/10481270
http://dx.doi.org/10.1016/j.molcel.2016.03.021
http://www.ncbi.nlm.nih.gov/pubmed/27117702
http://dx.doi.org/10.1016/j.cell.2015.10.012
http://www.ncbi.nlm.nih.gov/pubmed/26593424
http://dx.doi.org/10.1016/j.cell.2015.05.014
http://www.ncbi.nlm.nih.gov/pubmed/26046440
http://dx.doi.org/10.1073/pnas.1602883113
http://www.ncbi.nlm.nih.gov/pubmed/27001847
http://dx.doi.org/10.1038/nchembio.1432
http://dx.doi.org/10.1038/nchembio.1432
http://www.ncbi.nlm.nih.gov/pubmed/24316715
http://dx.doi.org/10.1038/cr.2014.3
http://dx.doi.org/10.1038/cr.2014.3
http://www.ncbi.nlm.nih.gov/pubmed/24407421
http://dx.doi.org/10.1038/nbt.2566
http://www.ncbi.nlm.nih.gov/pubmed/23604283
http://www.ncbi.nlm.nih.gov/pubmed/9409616
http://dx.doi.org/10.1016/j.molcel.2012.10.015
http://dx.doi.org/10.1016/j.molcel.2012.10.015
http://www.ncbi.nlm.nih.gov/pubmed/23177736
http://dx.doi.org/10.1039/c4mb00604f
http://www.ncbi.nlm.nih.gov/pubmed/25370990
http://dx.doi.org/10.1111/j.1467-789X.2008.00481.x
http://www.ncbi.nlm.nih.gov/pubmed/18373508
http://dx.doi.org/10.1038/nature07848
http://www.ncbi.nlm.nih.gov/pubmed/19234441
http://dx.doi.org/10.1038/ng.713
http://www.ncbi.nlm.nih.gov/pubmed/21076408
http://dx.doi.org/10.1038/nn.3449
http://www.ncbi.nlm.nih.gov/pubmed/23817550
http://dx.doi.org/10.1038/ng.2561
http://www.ncbi.nlm.nih.gov/pubmed/23535733
http://dx.doi.org/10.1038/ng.2571
http://www.ncbi.nlm.nih.gov/pubmed/23455637
http://dx.doi.org/10.1038/ncb2902
http://dx.doi.org/10.1038/ncb2902
http://www.ncbi.nlm.nih.gov/pubmed/24394384

©-PLOS | Sotoer o

mEA-Driver: Identifying mDrNet

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

Fustin J-M, Doi M, Yamaguchi Y, Hida H, Nishimura S, Yoshida M, et al. RNA-methylation-dependent
RNA processing controls the speed of the circadian clock. Cell. 2013; 155(4):793-806. doi: 10.1016/j.
cell.2013.10.026 PMID: 24209618

Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR. RNA methylation by the MIS complex regulates a
cell fate decision in yeast. PLoS Genet. 2012; 8(6):e1002732. doi: 10.1371/journal.pgen.1002732
PMID: 22685417

Schwartz S, Agarwala SD, Mumbach MR, Jovanovic M, Mertins P, Shishkin A, et al. High-resolution
mapping reveals a conserved, widespread, dynamic mRNA methylation program in yeast meiosis. Cell.
2013; 155(6):1409—1421. doi: 10.1016/j.cell.2013.10.047 PMID: 24269006

Chen T, Hao Y-J, Zhang Y, Li M-M, Wang M, Han W, et al. m6A RNA Methylation Is Regulated by
MicroRNAs and Promotes Reprogramming to Pluripotency. Cell stem cell. 2015; 16(3):289-301. doi:
10.1016/j.stem.2015.01.016 PMID: 25683224

Geula S, Moshitch-Moshkovitz S, Dominissini D, Mansour AA, Kol N, Salmon-Divon M, et al. m6A
mRNA methylation facilitates resolution of naive pluripotency toward differentiation. Science. 2015; 347
(6225):1002—1006. doi: 10.1126/science.1261417 PMID: 25569111

Zhao BS, He C. Fate by RNA methylation: m6A steers stem cell pluripotency. Genome Biol. 2015; 16
(1):43.

Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. Transcriptome-wide
mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel
sequencing. Nat Protoc. 2013; 8(1):176—189. doi: 10.1038/nprot.2012.148 PMID: 23288318

Meng J, Cui X, Rao MK, Chen Y, Huang Y. Exome-based analysis for RNA epigenome sequencing
data. Bioinformatics. 2013; 29(12):1565—1567. doi: 10.1093/bioinformatics/btt171 PMID: 23589649

LiY, Song S, Li C, Yu J. MeRIP-PF: An Easy-to-use Pipeline for High-resolution Peak-finding in MeRIP-
Seq Data. Genomics Proteomics Bioinformatics. 2013; 11(1):72—75. doi: 10.1016/j.gpb.2013.01.002
PMID: 23434047

Cui X, Meng J, Rao M, Chen Y, Huang Y. HEPeak: an HMM-based exome peak-finding package for
RNA epigenome sequencing data. BMC Genomics. 2015; 16(4):1.

Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. Mammalian WTAP is a regulatory subunit
of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014; 24(2):177—-189. doi: 10.1038/cr.
2014.3 PMID: 24407421

Meng J, Lu Z, Liu H, Zhang L, Zhang S, Chen Y, et al. A protocol for RNA methylation differential analy-
sis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods. 2014; 69(3):274-281.
doi: 10.1016/j.ymeth.2014.06.008 PMID: 24979058

Cui X, Zhang L, Meng J, Rao M, Chen Y, Huang Y. MeTDiff: a Novel Differential RNA Methylation Anal-
ysis for MeRIP-Seq Data. IEEE/ACM Trans Comput Biol Bioinform. 2015; PP(99):1.

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of
messenger RNA stability. Nature. 2014; 505(7481):117-120. doi: 10.1038/nature 12730 PMID:
24284625

Chatr-aryamontri A, Breitkreutz B-J, Oughtred R, Boucher L, Heinicke S, Chen D, et al. The BioGRID
interaction database: 2015 update. Nucleic Acids Res. 2015; 43(D1): D470-D478.

Jia P, Zhao Z. VarWalker: personalized mutation network analysis of putative cancer genes from next-
generation sequencing data. PLoS Comput Biol. 2014; 10(2):e1003460. doi: 10.1371/journal.pcbi.
1003460 PMID: 24516372

Cui X, Wei Z, Zhang L, Liu H, Sun L, Zhang S-W, et al. Guitar: An R/Bioconductor Package for Gene
Annotation Guided Transcriptomic Analysis of RNA-Related Genomic Features. Biomed Res Int.
2016;2016.

Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27
(12):1696—1697. doi: 10.1093/bioinformatics/btr189 PMID: 21486936

Manley JL, Krainer AR. A rational nomenclature for serine/arginine-rich protein splicing factors (SR pro-
teins). Genes Dev. 2010; 24(11):1073-1074. doi: 10.1101/gad.1934910 PMID: 20516191

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene Ontology: tool for the unifi-
cation of biology. Nat Genet. 2000; 25(1):25-29. doi: 10.1038/75556 PMID: 10802651

Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehen-
sive functional analysis of large gene lists. Nucleic Acids Res. 2009; 37(1):1-13. doi: 10.1093/nar/
gkn923 PMID: 19033363

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data
with DESeq2. Genome Biol. 2014; 15(12):550. doi: 10.1186/s13059-014-0550-8 PMID: 25516281

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005287 December 27,2016 30/31


http://dx.doi.org/10.1016/j.cell.2013.10.026
http://dx.doi.org/10.1016/j.cell.2013.10.026
http://www.ncbi.nlm.nih.gov/pubmed/24209618
http://dx.doi.org/10.1371/journal.pgen.1002732
http://www.ncbi.nlm.nih.gov/pubmed/22685417
http://dx.doi.org/10.1016/j.cell.2013.10.047
http://www.ncbi.nlm.nih.gov/pubmed/24269006
http://dx.doi.org/10.1016/j.stem.2015.01.016
http://www.ncbi.nlm.nih.gov/pubmed/25683224
http://dx.doi.org/10.1126/science.1261417
http://www.ncbi.nlm.nih.gov/pubmed/25569111
http://dx.doi.org/10.1038/nprot.2012.148
http://www.ncbi.nlm.nih.gov/pubmed/23288318
http://dx.doi.org/10.1093/bioinformatics/btt171
http://www.ncbi.nlm.nih.gov/pubmed/23589649
http://dx.doi.org/10.1016/j.gpb.2013.01.002
http://www.ncbi.nlm.nih.gov/pubmed/23434047
http://dx.doi.org/10.1038/cr.2014.3
http://dx.doi.org/10.1038/cr.2014.3
http://www.ncbi.nlm.nih.gov/pubmed/24407421
http://dx.doi.org/10.1016/j.ymeth.2014.06.008
http://www.ncbi.nlm.nih.gov/pubmed/24979058
http://dx.doi.org/10.1038/nature12730
http://www.ncbi.nlm.nih.gov/pubmed/24284625
http://dx.doi.org/10.1371/journal.pcbi.1003460
http://dx.doi.org/10.1371/journal.pcbi.1003460
http://www.ncbi.nlm.nih.gov/pubmed/24516372
http://dx.doi.org/10.1093/bioinformatics/btr189
http://www.ncbi.nlm.nih.gov/pubmed/21486936
http://dx.doi.org/10.1101/gad.1934910
http://www.ncbi.nlm.nih.gov/pubmed/20516191
http://dx.doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1093/nar/gkn923
http://www.ncbi.nlm.nih.gov/pubmed/19033363
http://dx.doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281

©-PLOS | Sotoer o

mEA-Driver: Identifying mDrNet

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG for representation and analysis of
molecular networks involving diseases and drugs. Nucleic Acids Res. 2010; 38(suppl 1):D355-D60.

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. N6-methyladenosine-dependent regulation of
messenger RNA stability. Nature. 2014; 505(7481):117-120. doi: 10.1038/nature12730 PMID:
24284625

Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. Nuclear m6A Reader YTHDC1 Regulates
mRNA Splicing. Mol Cell. 2016; 61(4):507-519. doi: 10.1016/j.molcel.2016.01.012 PMID: 26876937

Roundtree IA, He C. Nuclear m6A Reader YTHDC1 Regulates mRNA Splicing. Trends Genet. 2016;
32(6): 320—321. doi: 10.1016/j.tig.2016.03.006 PMID: 27050931

Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, et al. miRTarBase: a database curates
experimentally validated microRNA—target interactions. Nucleic Acids Res. 2010:gkq1107.

Li Y, Patra JC. Genome-wide inferring gene—phenotype relationship by walking on the heterogeneous
network. Bioinformatics. 2010; 26(9):1219-1224. doi: 10.1093/bioinformatics/btq108 PMID: 20215462

Zhang S-W, Shao D-D, Zhang S-Y, Wang Y-B. Prioritization of candidate disease genes by enlarging
the seed set and fusing information of the network topology and gene expression. Mol Biosyst. 2014; 10
(6):1400-1408. doi: 10.1039/c3mb70588a PMID: 24695957

Li Y, Li J. Disease gene identification by random walk on multigraphs merging heterogeneous genomic
and phenotype data. BMC Genomics. 2012; 13(Suppl 7):S27.

ZhuJ, QinY, Liu T, Wang J, Zheng X. Prioritization of candidate disease genes by topological similarity
between disease and protein diffusion profiles. BMC Bioinformatics. 2013; 14(Suppl 5):S5.

Fouss F, Francoisse K, Yen L, Pirotte A, Saerens M. An experimental investigation of kernels on graphs
for collaborative recommendation and semisupervised classification. Neural Netw. 2012; 31:53—-72. doi:
10.1016/j.neunet.2012.03.001 PMID: 22497802

Nakaoka H, Cui T, Tajima A, Oka A, Mitsunaga S, Kashiwase K, et al. A systems genetics approach
provides a bridge from discovered genetic variants to biological pathways in rheumatoid arthritis. PLoS
One. 2011; 6(9):€25389. doi: 10.1371/journal.pone.0025389 PMID: 21980439

Milo R, Kashtan N, Itzkovitz S, Newman M, Alon U. On the uniform generation of random graphs with
prescribed degree sequences. arXiv preprint cond-mat/0312028. 2003.

Loader C. Local regression and likelihood: Springer Science & Business Media; 2006.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005287 December 27,2016 31/31


http://dx.doi.org/10.1038/nature12730
http://www.ncbi.nlm.nih.gov/pubmed/24284625
http://dx.doi.org/10.1016/j.molcel.2016.01.012
http://www.ncbi.nlm.nih.gov/pubmed/26876937
http://dx.doi.org/10.1016/j.tig.2016.03.006
http://www.ncbi.nlm.nih.gov/pubmed/27050931
http://dx.doi.org/10.1093/bioinformatics/btq108
http://www.ncbi.nlm.nih.gov/pubmed/20215462
http://dx.doi.org/10.1039/c3mb70588a
http://www.ncbi.nlm.nih.gov/pubmed/24695957
http://dx.doi.org/10.1016/j.neunet.2012.03.001
http://www.ncbi.nlm.nih.gov/pubmed/22497802
http://dx.doi.org/10.1371/journal.pone.0025389
http://www.ncbi.nlm.nih.gov/pubmed/21980439

