
1. Introduction
Hot and humid heat exposures challenge the health of outdoor workers engaged in such as construction, agri-
culture, first response, manufacturing, military, or resource extraction. Furthermore, workers produce additional 
metabolic heat through exertional activity, coping with radiant heat from machines, and may wear heat-insulating 
protective equipment (Cai et al., 2019; Vega-Arroyo et al., 2019). Elevated heat exposure increases the risk of 
deaths, illnesses, and injuries among outdoor workers and reduces workers' productivity and cognitive func-
tioning (Garzon-Villalba et al., 2016; Riley et al., 2012, 2018; Spector & Sheffield, 2014; Varghese et al., 2019; 
Venugopal et al., 2019).

Most outdoor heat-related deaths can be prevented with occupational and exertional heat management practices 
(Arbury et al., 2016; Hosokawa et al., 2019; Lemke et al., 2019). For example, the State of California Depart-
ment of Industrial Regulation (2018) requires outdoor workers to take breaks in the shade and rehydrate when 
air temperatures exceed 80 degrees Fahrenheit (26.6°C). In addition to air temperature, previous studies have 
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Plain Language Summary Guidelines for the duration and intensity of work that can be safely 
performed depend on a complex heat exposure metric. This metric considers air temperature, humidity, wind 
speed, and solar radiation. However, the most common U.S. heat exposure metric only considers temperature 
and humidity. Thus, the safe outdoor work guidelines have not been widely applied since the complex heat 
exposure metric was not widely available nor rigorously evaluated. The US National Oceanic and Atmospheric 
Administration National Weather Service (NOAA NWS) started issuing experimental WBGT in Fall of 2019. 
This study validated the complex heat exposure information with weather prediction models and ground-based 
weather stations. We found fairly reliable correspondence between estimated and local values. However, we 
found that the differences varied according to geographical features, time, and the climatic zone.
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found that wind speed, solar radiation, and humidity influence heat exposure and the human body's ability to 
thermoregulate. Therefore, many guidelines are based on Wet Bulb Globe Temperature (WBGT), which inte-
grates a broader suite of physical characteristics and is more applicable to outdoor workers than heat index, 
which is calculated with relative humidity and air temperature. Multiple occupational heat exposure and safety 
guidelines use WBGT to determine the intensity of work and duration of rest that can be safely completed 
(American College of Sports Medicine, 2012; Occupational Safety and Health, 2016; Occupational Safety and 
Health Administration, 2014; U.S. Department of Defense, 2003). The U.S. National Oceanic and Atmospheric 
Administration National Weather Service (NOAA NWS) started to issue experimental WBGT forecasts using the 
National Digital Forecast Database (NDFD), which is generated by regional Weather Forecast Offices (WFOs). 
This NOAA NWS WBGT forecast is experimental and is continually refined by feedback from NWS teams. 
However, few studies have investigated the difference between simulated WBGT and observed WBGT. Thus, this 
study's overarching purpose was to validate a modified hindcasted WBGT calculated from historical NDFD with 
WBGT estimated from ground-based weather stations across the continental U.S. from 2018 to 2019.

Much of the research suggested an association between weather conditions and geographical variables (Behnke 
et al., 2016; Daly et al., 2008; Rubel et al., 2017). For example, many studies have found the local climate is 
altered by coastal effects (Daly et al., 2008; Fleuret & Atkinson, 2007), local land use and land cover (Davey & 
Pielke, 2005) and topographical features (Behnke et al., 2016; Daly et al., 2008; Myrick & Horel, 2006; Zardi & 
Whiteman, 2013). Therefore, we considered the following geographical features that should theoretically influ-
ence WBGT statistical biases: elevation, slope, aspect, land cover, local topographic features, distance from the 
coastline, and climate division information. On the windward side of a mountain, moisture saturation and precip-
itation increase, and air temperature decrease as the elevation increases (Behnke et al., 2016; Daly et al., 2008). A 
large number of studies found that wind direction and air flows vary in accordance with features of terrain such 
as valley bottom, mid-slope, or ridge top (Albergel et al., 2018; Daly et al., 2008; Myrick & Horel, 2006; Page 
et al., 2018; Zardi & Whiteman, 2013). Therefore, we will consider geographical features and climate zones to 
answer the following questions: (a) To what extent can systematic WBGT errors be explained by local geographic 
patterns and temporal cycles; and (b) Which climatic zones have the strongest/weakest association with the differ-
ence between estimated and in situ WBGT?

2. Method
2.1. Scope of Study

This study focuses on the “warm” seasons (from April to October) of 2018–2019 during the “daylight” hours 
(05–21) in the 48 continental states in the United States.

2.2. Gridded Weather Data for Estimated WBGT

2.2.1. National Digital Forecast Database

The NDFD was developed to efficiently provide weather information to the Weather Enterprise (e.g., academia, 
government, and private industry). The NDFD currently has a gridded horizontal resolution of 2.5 km and data 
from NDFD are available at the National Centers for Environmental Information (NCEI) website (National 
Centers for Environmental Information (NCEI), 2021). Expert forecasters can consider local and regional terrain 
to predict the NDFD at local WFOs (Page et al., 2018). NDFD is updated every 30 min when new, and revised 
digital data from the WFO or NOAA National Centers for Environmental Prediction becomes available. This 
study used the NDFD model's historical temperature, dew point temperature, wind speed (10 m above ground), 
and relative humidity variables. However, the NDFD provides cloud cover but not solar radiation values, which is 
a crucial variable for estimating WBGT. The NOAA NWS process of estimating solar radiation evolved over the 
course of this project. While the experimental forecasts using Dimiceli et al.'s (2013) algorithm were not available 
until 2019, the historical NDFD forecasts (which do not include solar radiation) were systematically archived. To 
complement the NDFD, we gathered solar radiation data from the European Centre for Medium-Range Weather 
Forecasts Reanalysis v5 (ERA5) which provided relatively accurate and accessible and comprehensive weather 
information (Tang et al., 2019).
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2.2.2. ERA5

ERA5 provides an hourly forecast of approximately 300 atmospheric, land, and oceanic weather variables. The 
data is continuously updated within 5 days of real-time, and the data has a horizontal spatial resolution of 30 km. 
For this study, the model provided hourly surface solar radiation (Tang et al., 2019). The data is available at the 
European Centre for Medium-Range Weather Forecasts website (European Centre for Medium-Range Weather 
Forecasts, 2021).

2.3. In Situ Weather Data for Observed WBGT

2.3.1. Data Collection

We collected historical in situ weather information from a patchwork of institutions due to the limited number of 
NOAA NCEI stations that recorded downward hourly solar radiation. Figure 1 provides the names of organiza-
tions that shared observational weather data free of charge for research purposes from 1,152 nationwide stations 
across 40 states (Table A1) (Colorado State University, 2020; Cooperative Agriculture Weather Network, 2020; 
Illinois State, 2019; Kansas Mesonet, 2017; Michigan State University, 2020; Missouri Mesonet, 2020; North 
Carolina State University, 2020; North Dakota Agriculture Weather Network Center, 2020; South Alabama, 2020; 
STEM, 2020; University of Arizona, 2020; University of Florida, 2020).

2.3.2. Quality Control for In Situ Data

We applied a statistically based quality control (QC) method to filter out suspicious observations (Napoly 
et al., 2018). We first flagged hourly WBGT outliers by identifying observations with z-scores within the upper 
or lower 0.5% of all hourly WBGT data across the study period (Grassmann et al., 2018). If more than 20% of a 
station's observations in a month were flagged, QC removed the entire month's data. Furthermore, if a station was 
missing more than 20% of its study months, it was considered potentially erroneous, and the station was dropped 
from the study (Napoly et al., 2018). Through this process, 41% of the total station months were removed. Of the 
1,152 candidate stations, 622 (53.9%) were used for the analysis. The number of stations that were included by 
year and month is indicated in Table A2. The stations were geographically distributed throughout the nation as 

Figure 1. Location of stations. Note. Following information indicates abbreviation of the institutes and number of 
stations in the parentheses. AgEBB, Commercial Agriculture Program, Missouri University (29); AgriMet, Cooperative 
Agriculture Weather Network (28); AZMET, The Arizona Meteorological Network (83); CoAgMet, Colorado Agricultural 
Meteorological Network (77); ENVIRO_WEATHER, Michigan State University (95); FAWM, Florida Automated Weather 
Network (42); HPRCC, High Plains Regional Climate Center (113); Kansas, Kansas Mesonet (17); NCE CoNet:North 
Carolina Climate Office (39); NDAWN, North Dakota Agricultural Weather Network (152); NOAA:National Oceanic and 
Atmospheric Administration (6); NRCS, Natural Resources Conservation Service (138); SAM, South Alabama Mesonet (23); 
STEM:Weather STEM (141); WARM, Illinois Water and Atmospheric Resources (6); WSU, Washington State University 
(160); ZiaMet, New Mexico State University (10).
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follows; the Midwest and Great Plains had 270, the Northeast had 4, the South had 118, and the West had 230. 
The stations provided hourly solar radiation, air temperature, wind speed, and dew point temperature or relative 
humidity (Figure 1).

2.4. Geographical Data Collection

Many studies suggest that regions' topography such as large water bodies, the proximity to the ocean, land use, and 
influences local climatic conditions (Albergel et al., 2018; Daly et al., 2008; I. Gultepe et al., 2014; Oke, 1982). 
In addition, companion studies suggest gridded historical weather data's accuracy varies based on each regional 
climate zone (Behnke et al., 2016). Therefore, the analysis included elevation and terrain information from a 30 m 
resolution digital elevation model (NASA, 2007). Validation studies found the vertical height error was less than 
16 m (Cooper et al., 2006). The US NED Multi-Scale Topographic Position Index (mTPI) from Conservation 
Science Partners (Conservation Science Partners (CSP), 2020; Theobald et al., 2015) and accessed via Google 
Earth Engine inferred whether in situ stations were located in a ridge or a valley. Validation studies suggest the 
mTPI (m/km) is highly correlated with the spatial rate of temperature changes (°C/km) which showed Pearson's 
correlation 0.792 (Theobald et al., 2015). Positive values correspond to ridges and negative values to valleys. 
Moreover, Daly et al. (2008) suggest land use and land cover influence the local climate of gridded weather prod-
ucts. Intuitively, land use and land cover alter heat, moisture, and momentum fluxes (Behnke et al., 2016; Daly 
et al., 2008; Eliasson & Svensson, 2003; Geiger, Aron, and Todhunter, 2009; Myrick & Horel, 2006). This study 
used the United States Geological Survey (USGS) National Land Cover Database (NLCD) CONUS 2016 (United 
States Geological Survey (USGS), 2016). NLCD data was derived from an unsupervised classification of 30-m 
Landsat data that has an overall classification accuracy of 88% (L. Yang et al., 2018).

We included coastal proximity information based on previous studies' findings of the influence of large water 
bodies and local sea breeze dynamics (Daly et al., 2008). The coastal proximity was collected from a 1:1,000,000-
map Scale Coastline of the United States (United States Geological Survey (USGS), 2014) by calculating the 
minimum distance from each individual in situ station's location with the “geopandas” package in Python 3.7 
(Jordahl et  al.,  2021). Coastal influences diminish over distances from 1 to 50  km. In the summertime, the 
temperature differences between inland and coast can exceed 20 degrees Celsius within 5–20 km from the coast-
line (Daly et al., 2002; Perry & Hollis, 2005). Therefore, we indicated the stations that are located within 5 km as 
a compromise between local coastal and sea breeze effects.

We included the Köppen-Geiger climate classification to consider the variations of the WBGT among different 
climate zones. Beck et al. (2018) updated global maps of the Köppen-Geiger climate classification at a 1-km reso-
lution for a contemporary climatology period (1980–2016) (Table 1). The Köppen-Geiger climate classification 
is based on mean temperature and precipitation. The continental US has 19 different climate zones.

2.5. Data Processing

2.5.1. Wet Bulb Globe Temperature Estimation

WBGT is a relatively conservative measure of heat exposure that increases the risk of occupational injury or 
heat-related illness (Yaglou & Minaed, 1957).

WBGT = 0.7 𝑇𝑇nw + 0.2 𝑇𝑇𝑔𝑔 + 0.1 𝑇𝑇𝑎𝑎 (1)

In Equation 1, WBGT is the weighted sum of natural wet bulb temperature (Tnw), black globe temperature (Tg), 
and ambient air temperature (Ta). Natural wet bulb temperature is directly related to air temperature and humidity 
and indirectly to wind speed and radiation. Black globe temperature is influenced by solar and thermal radiation 
and wind speed via convective cooling. Thus, WBGT captures physical processes (conduction, convection, radi-
ation, and evaporation) that influence the human body's thermoregulation.

This study analyzed WBGT estimated from NOAA NWS's NDFD (hourly air temperature, dew point tempera-
ture, wind speed at 10m) and hourly solar radiation from ERA reanalysis (est_WBGT). We estimated 2 m from 
10m wind speeds using a vertical wind profile power law for a radiatively cooled rural area (stability class C) 
(Liljegren et al., 2008). We compared hourly est_WBGT with in situ_WBGT from the observation weather infor-
mation. There are multiple thermodynamic and/or derived empirical methods to approximate WBGT based on 
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weather observations (Gaspar & Quintela, 2009; Hunter & Minyard, 1999). We choose Liljegren et al.'s (2008) 
approach since inter-comparison studies suggest the two most common algorithms (Dimiceli et  al.,  2013; 
Liljegren et al., 2008) perform well across different climatic zones (Lemke & Kjellstrom, 2012; Patel et al., 2013; 
Rennie et al., 2021).

The “HeatStress” package in R implements Liljegren et al.'s (2008) algorithm to convert weather information to 
WBGT for both est_WBGT and in situ_WBGT. The function requires air temperature, relative humidity, solar 
radiation, and dewpoint temperature. Some weather stations from SAM, FAWM, ENVIRO, Kansas, AgEBB, 
and CoAgMet provided relative humidity, which was subsequently converted to dew point temperature using the 
“meteocalc” package in Python 3.7.

2.6. Analysis

The aim of the analysis was to examine which geographic variables were associated with the difference between 
est_WBGT and in situ_WBGT (dependent variable). We constructed a Gaussian distribution mixed-effects 
model with a random effect to control for stations nested within climate regions using the “lme4” R statistical 
computing package (Casa et al., 2015). The hourly difference was calculated during the warm season (April to 
October) and potential daylight hours (5 a.m. to 9 p.m.). The study focused on the WBGT difference to illustrate 
how the statistical corrections could improve accuracy. The independent variables were elevation, aspect, topo-
graphic position index, land use, location within 5 km from coastline, month, and beta spline of the hour of the 
day and month of the year. WBGT, elevation, and hour of the day were modeled as continuous variables, while 
the remaining independent variables were categorical (Table 1).

To consider the diurnal and annual WBGT cycle, we created a beta-spline basis with 3-degrees of freedom for 
the hour of the day and month of the year with the “splines” package (version 4.0.2) in R (R Development Core 
Team, 2010). Splines use piecewise polynomial functions to model non-linear cycles. We modeled stations nested 
within Köppen-Geiger climate zones with a random effect to estimate a region-specific statistical bias. Due to 
the somewhat small number of stations within some regions and a moderately large number of independent 
variables, the mixed-effects models were fit by Restricted Maximum Likelihood (Zuur et al., 2010). We recate-
gorized the land use category as well based on microclimate and similar effects on WBGT statistical biases. We 
merged “pasture and hay” and “grassland and herbaceous” to “Herbaceous” and “Wood wetlands” and “Emergent 

Data name Variables Data type Categories Data source

30 M Digital Elevation Map Elevation Continuous N/A NASA (2007); Farr 
et al. (2007)

30 M DEM Aspect Categorical East, flat, north, northeast, southwest, south, 
southwest, west, northwest, and north

NASA (2007); Farr 
et al. (2007)

National Land Cover Database 
(NLCD)

Land use Categorical Open water developed open space, developed 
low intensity, developed medium intensity, 
developed high intensity, barren land (rock/
sand/clay), deciduous forest, evergreen 
forest, mixed forest, shrub/scrub, grassland/
herbaceous, pasture/hay, cultivated crops, 
woody wetlands, emergent herbaceous 
wetlands

United States Geological 
Survey (USGS) (2016) 
and Yang et al. (2018)

US NED mTPI (Multi-Scale 
Topographic Position 
Index)

Topographic Position Index Categorical Ridge and valley index (1: ridge, 0: valley) Conservation Science 
Partners (CSP) (2020) 
and Theobal et al. (2015)

1:1,000,000-Scale Coastline of 
the United States

Coastal proximity Categorical Distance from the coastline (1: within 5 km, 0: 
outside 5 km)

United States Geological 
Survey (USGS) (2014)

Köppen-Geiger climate 
classification

Köppen-Geiger climate 
classification

Tropical (Af, Am, Aw), arid steppe (BSh, BSk), 
arid desert (BWh, BWk), temperate (Cfa, Csb, 
Csa, Cfb), cold and no dry season (Dfa, Dfb), 
and cold and dry (Dsa, Dsb, Dwa, Dwb)

Beck et al. (2018)

Table 1 
Geographical Variables and Data Sources
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herbaceous wetlands” to “Wetlands”. We also applied interaction terms between the month of the year and each 
land category to consider seasonally varying land use effects. We conducted the ANOVA test to compare the 
interaction between land use and month and applied the interaction term. We confirmed the model's normality of 
residuals and homogeneity of variance and reported the Akaike Information Criterion (AIC).

Additionally, we examined the effect of geographical features by comparing the AIC between a null model and 
the full model. We created a null model with an intercept and against the difference between est_WBGT and in 
situ_WBGT (absolute value of est_WBGT minuses in situ_WBGT). Then, we computed the variance of both null 
and full models with the AIC function (Chambers & Hastie, 1992). We also compared the null and full model's 
AIC as a metric of the benefits of considering local geographic characteristics for estimating WBGT.

3. Results
3.1. Descriptive Statistics

Florida has the highest average monthly WBGT (26.8°C) among 40 continental states with observational infor-
mation. Montana has the lowest monthly average WBGT (1.65°C). The most significant monthly difference 
between est_WBGT and in situ_WBGT was shown in Vermont (7.22°C). Figure  2 displays each individual 
station's monthly max and the difference value.

This section summarizes the station locations' local land cover and coastal proximity. The stations were located 
in 12 out of 20 land use categories. Approximately half of the study stations (54.6%) were in cultivated crop-
land. More than 10% of stations (26.3%) were located in herbaceous. Other stations were in shrub/scrub (7.6%), 
developed high intensity (1.9%), evergreen forest (2.3%), deciduous forest (2.3%), wetlands (2.4%), open water 
(1.6%), barren land (0.6%), and mixed forest (0.5%). Moreover, among the stations we gathered, 3.1% of stations 
are located within 5 km from the coast.

With the Köppen-Geiger climate classification, we report how many stations were located in each multi-class 
climate zone. The stations were located in 18 out of 19 continental U.S. classifications (Beck et al., 2018). The 
study subsequently grouped the climate categories into six more general climate regions to increase the number 
of stations per region (Figure 3). The stations were located in the Cold, no dry season (4.8%), Temperate (21.3%), 
and Arid steppe (12.6%) climate groups. Reflecting the proportion of the U.S. covered by each climate group, 
there were a small number of stations in Cold dry (4.8%) and Tropical climates (0.8%) (Table 2).

3.2. In Situ_WBGT and est_WBGT Relationship

We examined how incorporating geographical variables can further adjust for differences by comparing the 
null model and full model. The null model had a substantially higher AIC than the full model, suggesting that 
geographical variables could further improve accuracy between in situ_WBGT and est_WBGT (delta AIC: 
321,855.2, df = 55). The mean absolute error, which is the absolute difference between observed and fitted values 
of the null model and full model was 2.97°C WBGT.

We found a statistically significant association between the geographic variables and differences between est_
WBGT and in situ_WBGT. Through these results, we found that aspect, coastal proximity, time of the day, land 
use, the month of the year (May, June, July, August, and September), and the topographic position index showed 
a statistically significant relationship with the WBGT difference. We also discovered a significant effect of the 
month on land use (df = 24, deviance 10,282,188, p < 0.05).

The absolute difference between est_WBGT and in situ_WBGT was bigger at locations within 5 km (0.75, 95% 
CI: 0.73, 0.75) from the coast. The difference tended to be bigger in valleys than ridges (−0.23, 95% CI: −0.24, 
−0.23). Except for wetlands, most land use type WBGT difference was bigger compared to barren land. Mixed 
forest tended to have 1.95 more significant differences than barren land. High intensity tended to have 0.12 
bigger difference than barren land (Figure 4). The results showed that the difference between est_WBGT and in 
situ_WBGT varied throughout the day (Figure 5a). The differences tend to be smaller around noon but larger in 
the morning (5–10 hr) and afternoon (13–21 hr). The relationship between month of the year and the absolute 
difference of simulated and in situ WBGT tended to be bigger from April to July and October. Among the land 
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Figure 2. Each individual station's monthly max, and difference value ((a) average Wet Bulb Globe Temperature (WBGT), 
(b) maximum WBGT, (c) average difference between est_WBGT and obs_WBGT). (Maximum, average difference were 
calculated from each state's monthly average, maximum and average difference between est_WBGT and in situ_WBGT).
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use category, mixed forest showed the biggest difference throughout the year, and other land use showed similar 
trends (Figure 5b).

The WBGT difference also varied according to Köppen-Geiger climate categories (Figure 6). Except for tropi-
cal climate, the differences were statistically significant. The biggest differences were shown in the arid desert 
climates (1.46: 95% CI: 1.45,1 .47). The magnitude of this difference was higher than any other climate zone. 
The map illustrates that the arid climate areas in Washington, California, Nevada, Utah, Arizona, New Mexico, 
and Texas states have the biggest differences. The rest of the areas seem to have a 0.1°C–0.6°C difference. The 
NDFD forecasts overestimated WBGT in Cold and no dry climate (−0.64; 95% CI: −0.65, −0.64), Cold and dry 
climate −0.46; 95% CI: −0.47, −0.45), and Arid steppe (−0.12; 95% CI: −0.12, −0.11). We also visualized the 
difference between predicted value from the model and input data (absolute value of simulated WBGT minus in 

Figure 3. Köppen-Geiger climate map with station location (Köppen-Geiger climate map is created based on Beck et al. (2018)).

Köppen-Geiger climate group Köppen-Geiger climate categories Abbreviation Number of stations (%) Köppen-Geiger climate group summary (%)

Tropical Tropical, rainforest Af 1 (0.16) 5 (0.8)

Tropical, monsoon Am 2 (0.32)

Tropical, Savannah Aw 2 (0.32)

Arid steppe Arid, steppe, hot BSh 2 (0.32) 147 (23.7)

Arid, steppe, cold BSk 145 (23.35)

Arid desert Arid, desert, hot BWh 6 (0.97) 78 (12.6)

Arid, desert, cold BWk 72 (11.59)

Temperate Temperate, no dry season, hot summer Cfa 110 (17.71) 132 (21.3%)

Temperate, no dry season, warm summer Cfb 5 (0.81)

Temperate, dry summer, hot summer Csa 1 (0.16)

Temperate, dry summer, warm summer Csb 16 (2.58)

Cold, no dry season Cold, no dry season, hot summer Dfa 119 (19.16) 229 (36.9)

Cold, no dry season, warm summer Dfb 109 (17.55)

Cold, no dry season, cold summer Dfc 1 (0.16)

Cold dry Cold, dry summer, warm summer Dsb 14 (2.25) 30 (4.8)

Cold, dry winter, hot summer Dwa 3 (0.48)

Cold, dry winter, warm summer Dwb 13 (2.09)

Table 2 
Number of Stations According to Köppen-Geiger Climate
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situ WBGT) to illustrate the relative importance of region-to-region and within region (Figure 7). The average 
difference was 0.69°C WBGT across the US. One station showed 7°C difference in Colorado state, 4°C–5°C 
difference was shown from 6 stations.

Figure 4. Regression coefficients and the 95% confidence intervals for the difference between estimated and observed Wet Bulb Globe Temperature.
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4. Discussion
The results suggest that the forecasts can be statistically improved by considering geographical features such as 
land use, topography, and distance from the coasts (Daly et al., 2008). This analysis illustrates the added value 
of geographical and temporal variables to decrease the discrepancy between in situ_WBGT and est_WBGT. The 
results showed statistically significant statistical biases according to aspect, coastal proximity, land use, topo-
graphic position index, and Köppen-Geiger climate categories.

This section contextualizes the aspect and topographic position index study results in the broader literature. 
Mountain climates' dynamics are affected by slope, aspect, radiation, heat, cloudiness, wind, and precipita-
tion (Barry, 2008; Du Vivier & Cassano, 2013; Gultepe, 2015; I. Gultepe et al., 2014; Kilpelainen et al., 2011; 
Monson & Baldocchi, 2014; Reeve & Kolstad, 2011). Previous studies have shown topography creates local 
airflows such as cold air drainage, adiabatic cooling, and diurnal mountain wind (Zardi & Whiteman, 2013). 
These processes can be challenging to model due to the complex terrain, differential solar heating, and wind 
speeds (Albergel et al., 2018; Page et al., 2018; Zardi & Whiteman, 2013). A previous NDFD validation study 
found the largest discrepancies between NDFD and observed wind speeds in complex terrain such as Colorado 
(Myrick & Horel, 2006). Colle et al.'s (2003) study of the dynamically downscaled Eta Model similarly found 
comparatively large wind speed statistical biases over the Rocky Mountains and western plains. Slater's (2016) 
research also found accounting for topography improved daily solar radiation predictions.

Moreover, we discovered significant differences in land use and land cover, which aligns with several published 
studies (Bonan, 1997; Chen et al., 2011; Eliasson & Svensson, 2003; Oke, 1973, 1982). The biosphere and atmos-
phere interact through heat, water, and energy fluxes that theoretically cause discrepancies between observed and 
est_WBGT (Monson, 2014; Monson & Baldocchi, 2014; Pielke et al., 1991). In urban areas, air temperature can 
be 9°C warmer than surrounding areas due to impervious surfaces, air pollution, and tall buildings (Eliasson & 
Svensson, 2003; Oke, 1973, 1982).

Figure 5. Relationship between the time of day and month of year and absolute difference between simulated and in situ Wet Bulb Globe Temperature (absolute value 
of est_WBGT—in situ_WBGT) ((a) time of day and (b) month of year according to landsue).
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Stations close to the coastline tended to exhibit larger biases than inland observation stations. Marine inversions 
and sea breezes may account for NDFD forecast overestimates. The results align with Daly et al.'s (2008) research 
that suggested reanalysis models tend to underestimate the air temperature near the coastal area rather than inland 
areas. Relatedly, mesoscale modeling and validation studies confirmed temperatures or heatwave biases near 
coastal areas (Chen et al., 2011; Colle, 2003; Perry & Hollis, 2005). Chen et al. (2011) validated the Advanced 
Research Weather Research and Forecasting model and observation data in the Houston-Galveston area, which is 
located along the coast. The study discovered that incorporating land use data increased sea breeze dynamics due 
to the differential heating of land surfaces.

This study discovered the differences varied up to 2.5°C according to the time of the day from 5 to 10 and 15 to 
17, which is the hottest time of the day. Moreover, the result of this study indicated that the estimated average 
differences varied from −0.64°C to 1.46°C according to the Köppen-Geiger climate categories. Humid and hot 
climates, where WBGT information is needed the most, tended to have ±0.5°C differences. This may be accurate 
enough for many, but not all WBGT based decisions. For example, local observations are still needed to distin-
guish between heat exposures near-critical activity/work and rest decision thresholds that differ by 2°C. The most 
significant differences were observed in the arid desert climates (1.46: 95% CI: 1.45, 1.47), such as Nevada, Utah, 
Arizona, Colorado, and New Mexico.

Figure 6. Random effect coefficient.
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Tnw contributes 70% of WBGT (Equation 1). We believe that the uncertainty of WBGT is caused by complex 
interaction among several weather variables such as solar radiation, wind speed, humidity, and air tempera-
ture. Many studies evaluated each weather variable's accuracy with in situ data found the most considerable 
uncertainties in the west US or arid climate (D. Yang & Bright, 2020; Daly et al., 2015; Hilliker et al., 2010; 
Ramon et al., 2019; Rennie et al., 2021; Urban et al., 2021). For example, Rennie et al. (2021) validated WBGT 
at 139 sites. This site similarly found lower WBGT accuracy in the southwestern U.S. due to lower humidity 
and complex topography. Hilliker et al. (2010) compared temperature, dewpoint temperature, and wind speed 
from the NDFD with ASOS and AWS network discovered that NDFD might not resolve the dynamic of local 
effect in complex terrain. Similar results were shown in Daly et al. (2015) study, which investigated long-term 
dewpoint temperature. Daly et al. (2015) found higher absolute errors of dew point temperature in the Rocky 
Mountains, Cascades, and Sierra Nevada areas that have a dry climate and discussed that the error might have 
been caused by complex terrain. While reanalysis models generally exhibit larger errors in mountainous regions, 
ERA5 performs moderately well in desert areas due to a higher proportion of days with clear sky conditions (D. 
Yang & Bright, 2020; Slater, 2016).

Moreover, air temperature comprises 10% component of the WBGT weighting (Equation 1), Behnke et al. (2016) 
found that the Northern and Southern Rockies showed the greatest differences with in situ data. Therefore, further 
research should be conducted to refine WBGT conversion algorithms in hot and arid climates. The statistically 
adjusted WBGT may improve forecasts on the order of 2°C–3°C. This improvement in accuracy can be critically 
important around established WBGT thresholds for scheduling work and rest schedules.

The results of this study seem promising, but there are some limitations that need to be addressed. The study is 
limited by the number (621 stations across 35 states) and geographic distribution of weather stations that collect 
downward solar radiation. More than half of the stations (53.5%) were in agricultural cultivated crops land or 
pasture/hay lands. Only 12% of the stations were in urban areas, and 5% were located in natural forests and 
wetlands. Moreover, northeast regions had fewer stations than other areas, which may understate the amount of 
local variability, particularly in mountainous areas. Future analysis could more accurately consider building heter-
ogeneity in urban areas, which directly alter microclimates (Carter et al., 2020; Chen et al., 2011; Oke, 1982).

This study chose to approximate WBGT from weather stations instead of using the limited number of directly 
observed WBGT measurements. Weather STEM is the only network that directly measures WBGT, and these 
stations are primarily located in high schools, universities, and football stadiums. Clearly, local WBGT observa-
tions are still the best method for estimating health risks. STEM is mostly for football players. We believe local 
WBGT networks must be expanded to cover other at-risk groups such as outdoor workers, athletes, the elderly, 
and children (Tripp et al., 2020).

Figure 7. Difference between model predicted value and input data (absolute value of simulated Wet Bulb Globe 
Temperature (WBGT) minus in situ WBGT.
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To generate more applicable WBGT information for decision-making, a finer scale of geographical and tempo-
ral weather data sets is required. Notable advances in the horizontal modeling resolution will be necessary to 
optimally support WBGT heat management decisions. Some studies suggest a 10–25 m spatial scale is required 
to capture sea breeze, convection, and mountain terrain effects (Dadic et al., 2010; Du Vivier & Cassano, 2013; 
Gultepe,  2015; Liston,  2004; Mott et  al.,  2008). Weather modeling that can represent complex small-scale 
processes in a computationally efficient manner is currently under development (Du Vivier & Cassano, 2013; 
Gultepe, 2015).

5. Conclusion
This research validated simulated WBGT with in situ WBGT. The est_WBGT, after statistical adjustment, seems 
to be reliable for most parts of the U.S. However, we found that the differences varied according to geographi-
cal features, temporal variables, and the Köppen-Geiger climatic zones. The results of this study indicated that 
Arid climates showed the largest differences, and other climate regions showed minor to moderate (−0.64°C to 
1.46°C) differences. In general, est_WBGT can be fairly reliable.

Despite these promising results, we need to improve the accuracy of weather information. Since many occupa-
tional heat exposure guidelines are based on WBGT, inaccurate climate information can cause health problems 
or misapplication of currently available guidelines. Therefore, we suggested improving the model by applying 
statistical bias corrections.

Appendix A
This study gathered in situ hourly weather data from 12 different institutes (Table A1). We conducted quality 
control analysis of the in situ data, and Table A2 describes the number of stations included in the analysis in each 
month and year.

Code Name Area Website

AgEBB Commercial Agriculture Program, Missouri 
University

Missouri http://agebb.missouri.edu/weather/stations/

AgriMet Cooperative Agriculture Weather Network Columbia-Pacific Northwest Region https://www.usbr.gov/pn/agrimet/agrimetmap/
agrimap.html

AZMET The Arizona Meteorological Network Arizona https://cals.arizona.edu/AZMET/az-data.htm

CoAgMet Colorado Agricultural Meteorological Colorado https://coagmet.colostate.edu

ENVIRO WEATHER Michigan State University Michigan https://mawn.geo.msu.edu

FAWM Florida Automated Weather Network Florida https://fawn.ifas.ufl.edu

HPRCC High Plains Regional Climate Center Midwest https://hprcc.unl.edu/index.php

Kansas Kansas Mesonet Kansas http://mesonet.k-state.edu/weather/historical/

NCE CoNet North Carolina Climate Office North Carolina https://climate.ncsu.edu

NDAWN North Dakota Agricultural Weather Network North Dakota https://ndawn.ndsu.nodak.edu/station-info.
html?station=104

NOAA National Oceanic and Atmospheric 
Administration

US https://www.esrl.noaa.gov/gmd/grad/surfrad/
sitepage.html

NRCS Natural Resources Conservation Service US https://www.nrcs.usda.gov/wps/portal/nrcs/site/
national/home/

SAM South Alabama Mesonet Alabama http://chiliweb.southalabama.edu/archived_data.
php

STEM Weather STEM Eastern US https://franklin-oh.weatherstem.com/data

Table A1 
Data Sources
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Figure A1 describes the interaction terms of land use and month of year coefficients and 95% confidence inter-
vals for the difference between estimated and observed WBGT.

Year Month Number of stations included for the analysis

2018 4 620

2018 5 614

2018 6 611

2018 7 611

2018 8 608

2018 9 608

2018 10 622

2019 4 564

2019 5 559

2019 6 562

2019 7 551

2019 8 556

2019 9 582

2019 10 595

Table A2 
Number of Stations That Were Included for the Analysis After Quality Control

Table A1 
Continued

Code Name Area Website

WARM Illinois Water and Atmospheric Resources Illinois http://www.isws.illinois.edu/warm/icnsitemap.asp

WSU Washington State University Washington http://weather.wsu.edu/?p=92950

ZiaMet New Mexico State University New Mexico https://weather.nmsu.edu/ziamet/request/station/
nmcc-cr-1/data/
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Figure A1. Regression coefficients and the 95% confidence intervals for the difference between estimated and observed Wet Bulb Globe Temperature (interaction 
terms land use and moth of year).



GeoHealth

AHN ET AL.

10.1029/2021GH000527

16 of 19

Conflict of Interest
The authors declare no conflicts of interest relevant to this study.

Data Availability Statement
The archived data from the National Digital Forecast Database (NDFD) (National Centers for Environmental 
Information (NCEI), 2021)) and ERA5 (European Centre for Medium-Range Weather Forecasts, 2021) were 
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Conservation Science Partners (Theobald et al., 2015) and 30 m resolution digital elevation model (NASA, 2007) 
were accessed via Google Earth Engine, National Land Cover Database CONUS 2016 (United States Geological 
Survey, 2016), and a 1:1,000,000-map Scale Coastline (United States Geological Survey, 2014) were collected 
from the United States Geological Survey and the coastal proximity was calculated with the minimum distance 
from each individual in situ station's location with the “geopandas” package in Python 3.7 (Jordahl et al., 2021; 
https://doi.org/10.5281/ZENODO.5573592), Köppen-Geiger climate classification at a 1-km resolution for a 
contemporary climatology period (1980–2016) from Beck et al.  (2018). Figures were made with the package 
“tmap” in R (version 4.1.0) (Tennekes, 2018). The storage of the data set is licensed under Harvard Dataverse 
(https://doi.org/10.7910/DVN/2HMGVH; Ahn, 2022).
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