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Abstract

Background: FUS-DDIT3 is a chimeric protein generated by the most common chromosomal translocation t(12;16)(q13;p11)
linked to liposarcomas, which are characterized by the accumulation of early adipocytic precursors. Current studies indicate
that FUS-DDIT3- liposarcoma develops from uncommitted progenitors. However, the precise mechanism whereby FUS-
DDIT3 contributes to the differentiation arrest remains to be elucidated.

Methodology/Principal Findings: Here we have characterized the adipocyte regulatory protein network in liposarcomas of
FUS-DITT3 transgenic mice and showed that PPARc2 and C/EBPa expression was altered. Consistent with in vivo data, FUS-
DDIT3 MEFs and human liposarcoma cell lines showed a similar downregulation of both PPARc2 and C/EBPa expression.
Complementation studies with PPARc but not C/EBPa rescued the differentiation block in committed adipocytic precursors
expressing FUS-DDIT3. Our results further show that FUS-DDIT3 interferes with the control of initiation of translation by
upregulation of the eukaryotic translation initiation factors eIF2 and eIF4E both in FUS-DDIT3 mice and human liposarcomas
cell lines, explaining the shift towards the truncated p30 isoform of C/EBPa in liposarcomas. Suppression of the FUS-DDIT3
transgene did rescue this adipocyte differentiation block. Moreover, eIF4E was also strongly upregulated in normal adipose
tissue of FUS-DDIT3 transgenic mice, suggesting that overexpression of eIF4E may be a primary event in the initiation of
liposarcomas. Reporter assays showed FUS-DDIT3 is involved in the upregulation of eIF4E in liposarcomas and that both
domains of the fusion protein are required for affecting eIF4E expression.

Conclusions/Significance: Taken together, this study provides evidence of the molecular mechanisms involve in the
disruption of normal adipocyte differentiation program in liposarcoma harbouring the chimeric gene FUS-DDIT3.
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Copyright: � 2008 Pérez-Mancera et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Research in ISG group is supported partially by FEDER and by MEC (SAF2006-03726 and PETRI Nu 95-0913.OP), Junta de Castilla y León (CSI03A05), FIS
(PI050087, PI050116), Fundación de Investigación MMA, Federación de Cajas de Ahorro Castilla y León (I Convocatoria de Ayudas para Proyectos de Investigación
Biosanitaria con Células Madre), CDTEAM project (CENIT-Ingenio 2010) and MEC Consolider-Ingenio 2010 (Ref. CSD2007-0017). MSM is supported by the Ramon y
Cajal Scientific Spanish Program, Fondo Investigacion Sanitaria (FIS PI04-1271), Junta de Castilla y León (SA085A06) and Fundación Manuel Solorzano, University
of Salamanca.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: isg@usal.es

Introduction

Myxoid/round cell liposarcoma is the most common subtype of

liposarcoma, accounting for about 40% of all cases [1,2]. The

tumor cells are characterized by the chromosomal translocation

t(12;16)(q13;p11), which produces the FUS-DDIT3 oncogene [3–

5]. This oncogene consists of the NH2-terminal domain of FUS

(previously termed translocated in liposarcoma, TLS) fused to the

entire codifying sequence of DDIT3 (previously termed CHOP)

[4,5]. The NH2-terminal domain of FUS confers the transactiva-

tion domain to the fusion protein [6,7]. DDIT3 is a member of the

C/EBP family of transcription factors which contains a basic

leucine zipper domain and a DNA binding domain, able to form

heterodimers with and inactivate other C/EBP members [8–12].

FUS-DDIT3 has not been found in tumor types other than

myxoid/round cell liposarcoma [3–5].

Early in vitro approaches have shown the transforming effects of

FUS-DDIT3 in NIH-3T3 fibroblast [13], but not in 3T3-L1

preadipocytes, suggesting that the activity of FUS-DDIT3 was

influenced by the cellular environment. Moreover, it has been

demonstrated that FUS-DDIT3 blocks the adipogenic potential of

NIH-3T3 fibroblast by interfering with the C/EBPb activity [14].

The ability of FUS-DDIT3 to block adipocyte differentiation is

shared, in vitro, for DDIT3 in 3T3-L1 preadipocytes [15–16], but

not in mouse embryonic fibroblasts (MEFs) derived from FUS-

DDIT3 and DDIT3 transgenic mice, where FUS-DDIT3, but not

DDIT3, is able to block the adipocyte differentiation program in

MEFs [17,18]. However, FUS-DDIT3 shares with DDIT3 the

PLoS ONE | www.plosone.org 1 July 2008 | Volume 3 | Issue 7 | e2569



capacity to induce liposarcomas in a xenograft model of human

fibrosarcoma cells, suggesting that at least in vitro, preadipocytes

are not the only target cell of the chromosomal translocation

t(12;16)(q13;p11) [19]. Interestingly, FUS-DDIT3 is not able to

block adipogenesis in MEFs obtained from aP2-FUS-DDIT3

mice, which express FUS-DDIT3 under the control of the aP2

promoter, a downstream target of PPARc expressed in late stages

of adipogenesis [20]. Further support to the idea that liposarcoma

develops from uncommitted cells comes from the studies showing

that the expression of FUS-DDIT3 in primary mesenchymal

progenitor cells give rise to myxoid liposarcoma-like tumors [21],

confirming that the cell type is critical for the oncogenic activity of

FUS-DDIT3. In agreement with this view is the genomic analysis

carried out in human myxoid liposarcoma [22], which is

compatible with the genetic program of a primitive target cell

from which myxoid liposarcoma could arise. Consistent with this

notion, we reported the first in vivo evidence for a link between a

chimeric protein generated by a chromosomal translocation and a

human solid tumor by the generation of transgenic mice

expressing FUS-DDIT3 transgene under the control of the

ubiquitous E1Fa promoter, which has found to be functional in

mesenchymal progenitor/stem cells [21]. These FUS-DDIT3

transgenic mice developed liposarcomas that resemble their

human counterpart [17]. Despite ubiquitously expression of

FUS-DDIT3 oncogene, these mice exclusively developed liposar-

comas, suggesting that FUS–DDIT3 may impose an adipocytic

program with a partial developmental blockade in mesenchymal

cell progenitors. The immature nature of liposarcoma cell

progenitors was confirmed by the generation of aP2-FUS-DDIT3

transgenic mice, where FUS-DDIT3, expressed in adipocytes, but

not in progenitor cells, is not able to induce liposarcoma

development [20]. Moreover, mice expressing the altered form

DDIT3–FUS, created by the in-frame fusion of the FUS domain

to the carboxy end of DDIT3 also developed liposarcomas [18]

indicating that the activity of the fusion protein FUS-DDIT3 is

independent of the chimeric junction. By contrast, mice expressing

high levels of DDIT3, which lacks the FUS domain, were not able

to develop any tumor despite its tumorigenicity in vitro [19]

although the co-expression of the FUS domain was able to restore

liposarcoma development suggesting that it plays a critical role in

the pathogenesis of liposarcoma [22]. Taken together, these data

indicate that FUS-DDIT3-liposarcomas develop from uncommit-

ted progenitor cells in which FUS-DDIT3 prevents the develop-

ment of adipocytic precursors [23–24].

Previous studies have identified a number of transcription

factors involved in adipocyte differentiation. These include PPARc
and members of the C/EBP family of transcription factors [25–

27]. Many of the components of the gene regulatory network that

controls the differentiation of adipocytes have been elucidated in

studies of cultured 3T3-L1 preadipocytes and MEFs. These

transcription factors are expressed as a cascade in which C/EBPb
and C/EBPd, expressed during the first stages of the adipocyte

differentiation program, induce the expression of C/EBPa and

PPARc, the master regulator of adipogenesis. A positive feedback

loop mechanism between PPARc and C/EBPa enhances their

activities. This transcriptional cascade finishes with the expression of

markers of mature adipocytes such as ap2, adiponectin and adipsin

[25–27]. There are two PPARc isoforms generated by alternative

splicing, PPARc1 and PPARc2, being PPARc2 more efficient to

induce terminal differentiation in vitro [28]. In an adipocytic context,

the truncated isoforms of C/EBPb and C/EBPa (LIP and p30,

respectively) have a negative effect on adipogenesis, while the full

length isoforms (LAP and p42, respectively) enhance the adipocyte

differentiation program [28–30].

The fact that FUS-DDIT3–associated liposarcomas initiate in

uncommitted progenitor cells and generate early adipocytic

precursors indicate an important role for FUS-DDIT3 in the

control of early adipocytic development. In this model, the

presence of FUS-DDIT3 would prevent the development of the

adipocytic precursors, leading to the observed buildup of the early

precursors in liposarcomas [24]. However, little is known about

the molecular mechanisms underlying this phenotype. Here, we

have unmasked the molecular pathways preventing the develop-

ment of the adipocytic precursors in liposarcomas induced by the

expression of the fusion protein FUS-DDIT3. We demonstrate

that FUS-DDIT3 interferes with the PPARc and C/EBPa
activities. In addition, we show that the regulation of the

translation machinery by FUS-DDIT3 plays an important role

in the blockade of adipogenesis associated to liposarcoma

development. The present study establishes for the first time the

role of FUS-DDIT3 in preventing the development of adipocytic

precursors in liposarcoma.

Materials and Methods

Mice
Animals were housed under non-sterile conditions in a

conventional animal facility. FUS-DDIT3 mice have been

previously described [17]. CombitTA-FUS-DDIT3 mice were

generated by cloning the human FUS-DDIT3 cDNA into the

Combi-tTA vector [31–33]. Linear DNA fragments for microin-

jection were obtained by NotI digestion and injected into

CBA6C57BL/6J fertilized eggs. All experiments were done

according to the relevant regulatory standards.

Histological analysis
Tumor samples were closely examined under the dissecting

microscope and processed into paraffin, sectioned and examined

histologically. All samples were taken from homogenous and viable

portions of the resected sample by the pathologist and fixed within

2–5 min. of excision. Hematoxylin- and eosin-stained sections of

each tissue were reviewed by a single pathologist (Teresa Flores).

For comparative studies, age-matched mice were used.

Preparation of primary mouse embryonic fibroblasts
(MEFs)

Primary embryonic fibroblasts were harvested from 13.5 d.p.c.

embryos and prepared as described [34]. Briefly, head and organs

were removed; fetal tissue was rinsed in PBS, minced, and rinsed

twice in PBS. Fetal tissue was treated with trypsin/EDTA and

incubated for 30 min at 37 uC and subsequently dissociated in

medium. After removal of large tissue clamps, the remaining cells

were plated out in a 175 cm2 flask. After 48 h, confluent cultures

were frozen down. These cells were considered as being passage 1

MEFs. For continuous culturing, MEF cultures were split 1:3.

MEFs and the wNX ecotropic packaging cell line were grown at

37 uC in Dubelcos-modified Eagle’s medium (DMEM; Boehringer

Ingelheim) supplemented with 10% heat-inactivated FBS (Boeh-

ringer Ingelheim). All the cells were negative for mycoplasma

(MycoAlertTM Mycoplasma Detection Kit, Cambrex).

Adipocyte differentiation
Wild-type, FUS-DDIT3 and CombitTA-FUS-DDIT3 MEFs

were cultured at 37uC in standard D-MEM:F12 medium (Gibco)

supplemented with 10% heat-inactivated FBS (Hyclone),

100 units/ml penicillin (Biowhittaker), and 100 mg/ml streptomy-

cin (Biowhittaker). 106 cells of each genotype were plated to 10 cm

plastic dishes and propagated to confluence. Two days after

Function of FUS-DDIT3
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confluence, the adipocyte differentiation program was induced by

feeding the cells with standard medium supplemented with

0.5 mM 3-isobutyl-1-Methylxantine (Sigma), 1 mM dexamethasone

(Sigma) and 5 mg/ml insulin (Sigma) for two days, and then, with

standard medium supplemented with 5 mg/ml insulin for 6 days.

This medium was renewed every two days. After 8 days, the

appearance of cytoplasmic lipid accumulation was observed by Oil-

Red-O staining. Briefly, cells were washed with phosphate-buffered

saline (PBS), and then fixed with 3.7% formaldehyde for 2 minutes.

After a wash with water, cells were stained with 60% filtered Oil-

Red-O stock solution (0.5 g of Oil-Red-O (Sigma) in 100 ml of

isopropanol) for 1 hour at room temperature. Finally, cells were

washed twice in water and photographed. Lipid accumulation was

defined as percentage of cells that are Oil-Red-O positive.

RNA Extraction
Total RNA from liposarcoma samples were isolated in two steps

using TRIzol (Life Technologies, Inc., Grand Island, NY) followed

by Rneasy Mini-Kit (Qiagen Inc., Valencia, CA) purification

following the manufacturer’s RNA Clean-up protocol with the

optional Oncolumn Dnase treatment. Total RNA from liposar-

coma cell lines was isolated using the Rneasy Mini-Kit (Qiagen

Inc., Valencia, CA). The integrity and the quality of RNA were

verified by electrophoresis and its concentration measured.

Reverse Transcription-PCR (RT-PCR)
To analyze expression of FUS-DDIT3 in human liposarcoma

cell lines, CombitTA-FUS-DDIT3 MEFs, and mouse liposarco-

mas, RT-PCR was performed according to the manufacturer’s

protocol in a 20-ml reaction containing 50 ng of random

hexamers, 3 mg of total RNA, and 200 units of Superscript II

RNase H- reverse transcriptase (GIBCO/ BRL). The sequences of

the specific primers, which amplifiy specifically the fusion region,

were as follows: FUS-F1: 59-GGTTATGGCAATCAAGACCAG-

39 and DDIT3-B1: 59-CTTGCAGGTCCTCATACCAGG-39.

The thermocycling parameters for the polymerase chain reaction

were as follows: 30 cycles at 94uC for 1 min, 60uC for 1 min and

72uC for 1 min. The PCR products were confirmed by

hybridization with specific probes. Amplification of b-actin served

as a control to assess the quality of each RNA sample.

Retroviral infection
FUS-DDIT3 MEFs were infected with high-titers retrovirus stocks

produced by transient transfection of wNX cells. The day before the

infection, cells were plate at 106 cells per 10-cm dish. Infected MEFs

were selected for 3 days with 2 mg/mL of puromycin (Sigma) and

replated to carry out the adipocyte differentiation protocol. The

mouse PPARc2 and rat C/EBPa cDNAs were subcloned in the

pQCXIP retroviral vector (Clontech).

Western blot analysis
Whole-cell extracts of exponentially growing cells were

prepared in lysis buffer (65 mM Tris pH7, 1% NP40, 2 mM

EDTA, 100 mM NaCl) containing the complete cocktail of

proteases inhibitors (Roche), and protein concentrations were

determined with the Bradford assay reagent (Bio-Rad Laborato-

ries, Inc., Melville, NY, USA). Human adipocyte extract was

obtained from Zen-Bio (#TCE-A10-1). Western blot analysis of

different cells and tissues were carried out using the Mini Tratans-

Blot Cell system (BIO-RAD). Lysates were run on a 10% SDS-

PAGE gel and transferred to a PVDF membrane. After blocking

in 5% dry milk, the membrane was probed with the following

primary antibodies: PPARc (H-100 and E-8, Santa Cruz

Biotechnology), C/EBPb (C-19, Santa Cruz Biotechnology), C/

EBPd (M-17, Santa Cruz Biotechnology), C/EBPa (14AA, Santa

Cruz Biotechnology), FABP4 (aP2) (#10004944, Cayman Chem-

ical), adiponectin (Chemicon International, #MAB3608), eIF2a
(Cell Signaling#9722), eIF4E (Cell Signaling#9742) and actin (I-

19, Santa Cruz Biotechnology). Reactive bands were detected with

an ECL plus system (Amersham).

Luciferase assays
The reporter containing the proximal part of the hPPARc2

promoter cloned in front of the luciferase gene (pGL3-

hPPARc2p1000 vector) was kindly provided by Dr. Johan Auwerx

(35). The ratC/EBPawtpSG5 and ratC/EBPbwtpSG5 expression

vectors were kindly provided by Dr. Achim Leutz (25). The

reporter containing the ratC/EBPa promoter (pCEBP1171) was

kindly provided by Dr. Ana Perez-Castillo (36). The expression

vectors pcDNA3-hFUS-DDIT3, BOS-hDDIT3 and pcDNA3-

NH2-hFUS were generated by cloning the corresponding cDNAs

into the expression plasmids. For reporter assays, U2OS cells

(human bone osteosarcoma epithelial cells) were transfected using

Dual-Luciferase (Promega) with normalization to Renilla lucifer-

ase, and mean6standard error was determined from at least three

data points. U2OS cells were maintained in DMEM supplement-

ed with 10% fetal bovine serum.

CAT assays
The CAT reporter containing the ,2.5 kb proximal promoter

region of the murine eIF4E promoter, pm4ECAT, was kindly

provided by Dr. Emmett V. Schmidt. C3H10T1/2 cells were

maintained in DMEM supplemented with 10% fetal bovine serum.

The transfections were carried out using the Profection Mammalia

Transfection System Kit (PROMEGA). Cells were harvested

,60 hr later and extracts were assayed for CAT activity. Relative

CAT activities were determined by comparing the ratios of

acetylated/unacetylated [14C]chloramphenicol present in spots cut

from the thin-layer chromatographs. Equivalent amounts of protein

(15–25 mg as determined with Bio-Rad protein kit) and a reaction

time of 1 hr were used in all CAT assays, which kept all values within

the linear range. Values (average of three independent experiments)

show CAT activities relative to extracts of cells transfected with the

CAT reporter alone set to a value of 1.

Results

Expression of adipogenic genes in liposarcomas arisen in
FUS-DDIT3 transgenic mice

The development of adipose tissue involves a differentiation

switch that activates a new program of gene expression, followed by

accumulation of lipids in a hormone-sensitive manner [25–27].

However, liposarcomas are characterized for the accumulation of

committed adipocytic precursors named adipoblasts (Figure 1A).

To explore the molecular basis through which FUS-DDIT3 impairs

the normal adipocyte differentiation program, we examined the

expression levels of the proteins responsible for normal adipogenesis

in liposarcomas arisen in FUS-DDIT3 transgenic mice [17]. Fresh

liposarcoma samples were lysed in NP40 lysis buffer and analyzed by

western-blot. As shown in Figure 1B, the liposarcomas expressed

high levels of C/EBPd and C/EBPb (LIP and LAP isoforms), which

are expressed during the early stages of adipogenesis. On the

contrary, liposarcomas expressed low levels of both the transcription

factors involved in the late stages of adipogenesis, such as PPARc1,

PPARc2 and C/EBPa (Figure 1B) and the mature adipocyte

markers, such as ap2 and adiponectin (Figure 1C). The expression

of the FUS-DDIT3 transgene in liposarcomas was assessed by RT-

Function of FUS-DDIT3
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Figure 1. Adipogenic gene expression in liposarcomas of FUS-DDIT3 transgenic mice and in human liposarcoma cell lines carrying
the translocation t(12;16)(q13;p11). (A) Hematoxylin/eosin stained sections showing the presence of lipoblasts with round nuclei and
accumulation of intracellular lipid in a liposarcoma arisen in the chest region of FUS-DDIT3 mouse (106 and 406 magnifications are shown). (B)
Western blot analyses of regulators of adipocyte function in white adipose tissue (WAT), liposarcoma arisen in FUS-DDIT3 transgenic mice and human
liposarcomas cell lines expressing FUS-DDIT3 (LIS-3 and LIS-4). Cell and tissue extracts (10 mg) were resolved in SDS-PAGE gel (10% acrylamide),
followed by immunoblotting analysis with anti-C/EBPb, anti-C/EBPd, anti-PPARc, anti-C/EBPa and anti-actin antibodies. These data are representative
of three independent experiments. (C) Western blot analysis of fat cell markers such as aP2 and adiponectin in liposarcomas of FUS-DDIT3 transgenic
mice and in human liposarcoma cell lines carrying the translocation t(12;16)(q13;p11). These data are representative of three independent
experiments. (D) Expression of the human FUS-DDIT3 oncogene by RT-PCR both in liposarcomas of FUS-DDIT3 transgenic mice and in human
liposarcoma cell lines carrying the translocation t(12;16)(q13;p11).
doi:10.1371/journal.pone.0002569.g001
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PCR (Figure 1D). Interestingly, we found that the truncated C/

EBPalpha-p30 isoform was expressed at higher levels than the full

length C/EBPalpha-p42 isoform (Figure 1B), which is congruent

with a blockade in adipocyte differentiation and a transformed

phenotype similar to that observed in preadipocyte 3T3-L1 [30].

Taken together, these results suggest that FUS-DDIT3 could

prevent adipocytic precursors to differentiate by acting on

transcription factors involved in both the early stages of adipogenesis

and the late ones.

Expression pattern of transcription factors governing
adipogenesis in human liposarcoma cells

Next, we wanted to confirm that the characteristic expression

pattern of transcription factors governing adipogenesis detected in

liposarcomas coming from FUS-DDIT3 transgenic mice was also

present in human liposarcoma cells. In order to address this aim, we

took advantage of two human liposarcoma cell lines harboring the

chromosomal translocation t(12;16) and expressing the FUS-DDIT3

chimeric gene (Figure 1D). The analysis of the expression pattern of

these transcription factors in both human liposarcoma cell lines

confirmed an expression pattern similar to that previously observed in

liposarcomas derived from FUS-DDIT3 transgenic mice (Figure 1B-
C), although we detected variable, although low, levels of PPARc1 in

the human liposarcoma cell lines. These results demonstrate that

tumors arisen in the FUS-DDIT3 transgenic mouse mimic human

liposarcomas both histologically and molecularly. Taken together,

these findings suggest that FUS-DDIT3 could prevent the develop-

ment of committed adipocytic precursors in liposarcoma through the

interference with PPARc and C/EBPa expression, two transcription

factors with a critical role in adipogenesis.

In vivo suppression of FUS-DDIT3 rescues the adipocyte
differentiation block

The above results support the view that FUS-DDIT3 expression

is enough to induce the adipocyte differentiation block. In order to

determine this, we generated transgenic mice using the Combi-

tTA system, in which the expression of FUS-DDIT3 gene could be

exogenously regulated. This system, which has the transactivator

and the tet-operator minimal promoter driving the expression

gene unit on a single plasmid [31–33], ensures the integration of

the transactivator and reporter gene units in equal copy numbers

in a direct cis-configuration at the same chromosomal locus and

prevents genetic segregation of the control elements during

breeding. Insertion of the FUS-DDIT3 gene under the control of

the tetO-minimal promoter yielded the plasmid CombitTA-FUS-

DDIT3 and mice were generated. CombitTA-FUS-DDIT3

expression was determined in MEFs after culturing for two days

in the presence or absence of tetracycline (Figure 2A). Com-

bitTA-FUS-DDIT3 was detected in MEFs without tetracycline

but not in cells cultured with tetracycline (20 ng/ml). To further

examine the contribution of FUS-DDIT3 to adipogenesis, we

isolated MEFs from days 13.5 of CombitTA-FUS-DDIT3

embryos (Figure 2B). At day 8 after hormonal induction, there

is not lipid accumulation, defined as percentage of cells that are

Oil-Red-O positive, in CombitTA-FUS-DDIT3 MEFs (1–3%).

However, this differentiation block was reverted upon doxycycline

treatment of CombitTA-FUS-DDIT3 MEFs (15–25%)

(Figure 2B). Similarly, the impaired expression of PPARc and

C/EBPa in liposarcomas of CombitTA-FUS-DDIT3 mice was

normalized following administration of tetracycline (4 gr/L in the

drinking water for 2 weeks, a dose sufficient to suppress of

exogenous -FUS-DDIT3 expression) (Figure 2C). The demon-

stration that FUS-DDIT3 downregulation was sufficient to

normalize the adipocyte differentiation capacity of FUS-DDIT3

cells further indicates that PPARc2 and C/EBPa were regulated

directly by FUS-DDIT3.

The adipogenesis defects in FUS-DDIT3 MEFs can be
rescued by ectopic expression of PPARc2

Our data revealed that PPARc2 expression is modulated by

FUS-DDIT3, suggesting an interesting link between this gene and

FUS-DDIT3. In order to confirm this transcriptional regulation

we re-introduced PPARc2 in both control and FUS-DDIT3

MEFs by retroviral transduction and evaluated the adipogenesis

capacity and the expression level of PPARc2 by western-blot

(Figure 3). The adipogenesis of MEFs by hormonal induction is a

well established model system for the study of adipocyte

differentiation [34,35]. To further examine the contribution of

PPARc2 to FUS-DDIT3-mediated adipogenesis, we isolated

MEFs from days 13.5 of FUS-DDIT3 and control embryos. At

day 8 after hormonal induction, there is lipid accumulation in

control MEFs (20–35%) and this lipid accumulation is lacking in

FUS-DDIT3 MEFs (Figure 3A). However, retrovirus-mediated

expression of PPARc2 in FUS-DDIT3-MEFS re-established the

adipocyte differentiation capacity to wild-type levels as shown in

Figure 3A. The demonstration that PPARc2 was sufficient to

normalize the adipocyte differentiation capacity of FUS-DDIT3

cells further indicates that PPARc2 was regulated directly by FUS-

DDIT3 and it plays a critical role in the blockade of the adipocyte

differentiation of FUS-DDIT3 adipocytic precursors.

FUS-DDIT3 represses the PPARc2 promoter
Because the results so far suggest that FUS-DDIT3directly

regulates PPARc2 expression, we examined whether FUS-DDIT3

might be directly involved in the control of PPARc2 transcription.

A 1 kb proximal promoter region of human PPARc2 was

previously shown to be sufficient to drive the PPARc29s expression

in reporter assays [34,35] and it is active in U2OS cells when co-

transfected with C/EBPb expression vector (Figure 4). To

directly assess the ability of FUS-DDIT3 to activate transcription

from DNA sequences present in the PPARc2 promoter, an

expression vector containing a FUS-DDIT3 cDNA was co-

transfected into U2OS cells along with the reporter vector

containing the PPARc2 promoter (pGL3-hPPARc2p1000 vector)

and with C/EBPb expression vector. Co-expression of FUS-

DDIT3 repressed luciferase activity (Figure 4).

Previous results have provided evidence that both the FUS and

the DDIT3 domains of FUS-DDIT3 play a specific and critical role

in the pathogenesis of liposarcoma [18]. Thus, we next investigated

which FUS-DDIT3 domain was responsible for the repression of the

PPARc2 promoter. Using the same system, we showed that while

the co-expression of the domain NH2-FUS did not produce any

effect on the transactivation capability of C/EBPb, the co-expression

of the DDIT3 domain produced a dramatic repression in the

activation of the PPARc2 promoter by C/EBPb, indicating that the

DDIT3 domain of FUS-DDIT3 was involved in the repression of the

PPARc activity in liposarcomas by interfering with the C/EBPb
activity (Figure 4). FUS-DDIT3 might be inhibiting this C/EBPb
transcriptional activity by forming heterodimer as it has been

previously shown in NIH-3T3 fibroblasts [14].

C/EBPa cannot rescue the impaired adipogenesis of FUS-
DDIT3 MEFs

To further define the molecular mechanism by which FUS-

DDIT3 alters the adipogenic potential of MEF, we next addressed

how FUS-DDIT3 regulates the expression of C/EBPa. In

Function of FUS-DDIT3
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Figure 1B we have previously shown that liposarcomas arisen in

FUS-DDIT3 transgenic mice, similarly to humans, expressed

lower levels of C/EBPa than wild type WAT, which is associated

with an immature phenotype. This observation suggests that FUS-

DDIT3 regulates C/EBPa expression. In order to examine

whether FUS-DDIT3 might be directly involved in the control

of C/EBPa transcription, we carried out reporter gene assays

using a luciferase reporter gene containing 1171 bp of the

promoter region of the rat C/EBPa gene (pCEBP1171) [36].

This reporter was previously shown to be sufficient to drive the C/

EBPa9s expression in reporter assays [36] and it is active in U2OS

cells when co-transfected with C/EBPb expression vector

(Figure 5A). To directly assess the ability of FUS-DDIT3 to

activate transcription from DNA sequences present in the C/

EBPa promoter, an expression vector containing a FUS-DDIT3

cDNA was co-transfected into U2OS cells along with the reporter

vector containing the C/EBPa promoter (pCEBP1171) and with

C/EBPb expression vector. Co-expression of FUS-DDIT3 re-

pressed luciferase activity (Figure 5A). Therefore, FUS-DDIT3 is

also the primary responsible for the transcriptional down-

regulation of C/EBPa by interfering with C/EBPb activity.

However, it has been previously reported that ectopic expression

of C/EBPa is unable to induce adipogenesis in a PPARc null

background [37], although in contrast, PPARc restores adipocitic

potential in C/EBPa null fibroblast [38]. We have shown that

PPARc2 induces terminal adipocyte differentiation in FUS-DDIT3

expressing MEF (Figure 3A). Thus and with the aim of clarifying

the relationship between the PPARc and C/EBPa pathways in

liposarcomas, we next assessed the role of the C/EBPa downreg-

ulation in the process of adipogenesis in FUS-DDIT3 MEFs, as these

MEFs show a dramatic downregulation and inactivation of PPARc
(Figure 1B). We investigated whether C/EBPa was also able to

Figure 2. CombitTA-FUS-DDIT3 expression and effect of FUS-DDIT3 on adipocyte differentiaton. A) Analysis of the tetracycline
(Doxycycline) dependent CombitTA-FUS-DDIT3 expression by RT-PCR in the presence (+tet) or in the absence (-tet) of doxycycline in MEF (the time of
treatment with doxycycline was 48 hours). Actin was used to check the RNA integrity and loading. B) Adipocyte differentiation in CombitTA-FUS-
DDIT3 MEFs after suppression of FUS-DDIT3 expression by tetracycline treatment. CombitTA-FUS-DDIT3 MEFs in the presence (+tet) or in the absence
(-tet) of doxycycline were cultered up to confluence and grown in the presence of standard adipose differentiation induction medium. At day 8 after
induction of adipocyte differentiation, cells were fixed and stained for neutral lipids with Oil-Red-O and the morphological differentiation is shown
(the original magnification is 620). This experiment was repeated three times using cells prepared from different embryos and similar results were
obtained. C) Western blot analyses of PPARc, and C/EBPa in liposarcoma arisen in CombitTA-FUS-DDIT3 mice in the presence (+tet) or in the absence
(2tet) of doxycycline. Doxycycline was given at 4 mg/mL for 4 weeks.
doi:10.1371/journal.pone.0002569.g002
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overcome the blockade in adipocyte differentiation shown by FUS-

DDIT3-MEF. FUS-DDIT3 MEFs were infected with a retroviral

vector expressing C/EBPa. To define whether overexpression of C/

EBPa could rescue adipogenesis in FUS-DDIT3 cells, adipocytic

differentiation was induced in FUS-DDIT3 MEFs infected either

with empty vector or with the C/EBPa expressing vector. Of

interest, the impaired adipocyte differentiation block in FUS-DDIT3

MEFs was not normalized by restoring C/EBPa at day 8 after

hormonal induction, (Figure 5B), although the retroviral vector was

producing C/EBPa correctly as defined by western-blot

(Figure 5C).

FUS-DDIT3 up-regulates expression of eIF4E in
liposarcomas

Although the inactivation of C/EBPa is not required, itself, for

the blockade of adipogenesis in mesenchymal progenitor cells by

FUS-DDIT3, however, the C/EBPa isoform ratio shift towards

the truncated isoform both in mouse liposarcomas and in human

liposarcoma cell lines (Figure 1B). It has been previously reported

that the control of initiation of translation of C/EBPa and C/

EBPb by the eukaryotic translation initiation factors eIF2 and

eIF4E is critical for the behavior of preadipocytes 3T3-L1. Thus,

high levels of the eukaryotic translation initiation factors produce a

shift towards truncated C/EBP isoforms that, in turn, induce a

blockade in the terminal differentiation of 3T3-L1 cells [30]. Thus,

we next studied the expression level of eIF2a and eIF4E in FUS-

DDIT3-liposarcomas. Analysis by western-blot of protein lysates

showed a dramatic overexpression of both eIF4E and eIF2 in

liposarcomas arisen both in FUS-DDIT3 mice and human

liposarcomas cell lines FUS-DDIT3 positives (Figure 6A),

explaining the shift towards the truncated p30 isoform of C/

EBPa in liposarcomas. Similarly, the impaired expression of both

eIF4E and eIF2 in liposarcomas of CombitTA-FUS-DDIT3 mice

was normalized following administration of tetracycline (4 gr/L in

the drinking water for 2 weeks) (Figure 6A), indicating that the

fusion protein is directly responsible for the overexpression of both

eIF4E and eIF2 in liposarcoma. Moreover, eIF4E was also

strongly upregulated in normal WAT of FUS-DDIT3 transgenic

mice, suggesting that overexpression of eIF4E may be one of the

first events in the initiation of liposarcomas.

Next, we examined whether this upregulation of eIF4E was a

direct effect of FUS-DDIT3, or a consequence of the blockade in

adipocyte differentiation in liposarcomas, as it has been previously

shown that knock out mice for 4E-BP1, a protein that represses cap-

dependent translation initiation by sequestering eIF4E, evidenced

reduced WAT mass [39]. We examined whether FUS-DDIT3

might be directly involved in the control of the eIF4E expression. In

order to address this question, we used a vector containing a CAT

gene reporter under the control of ,2.5 kb proximal promoter

region of the murine eIF4E promoter (pm4ECAT) [40]. When

Figure 3. Retroviral-mediated expression of PPARc2 rescues the impaired adipogenesis of FUS-DDIT3 MEFs. A) FUS-DDIT3 MEFs were
infected with either control retroviral vector or one expressing PPARc2 (pQCXIP-PPARc2) and selected for 3 days with 2 mg/ml puromycin. Then, wild-
type MEF, FUS-DDIT3 MEF and PPARc2 expressing FUS-DDIT3-MEF were cultered up to confluence and grown in the presence of standard adipose
differentiation induction medium. At day 8 after induction of adipocyte differentiation, cells were fixed and stained for neutral lipids with Oil-Red-O
and the morphological differentiation is shown (the original magnification is 620). This experiment was repeated three times using cells prepared
from all lines and from different embryos and similar results were obtained. B) Analysis of the PPARc2 protein by western-blot in FUS-DDIT3 MEFs
infected with either a control retroviral vector (pQCXIP) or one expressing PPARc2 (pQCXIP- PPARc2) 4 days after infection.
doi:10.1371/journal.pone.0002569.g003

Function of FUS-DDIT3

PLoS ONE | www.plosone.org 7 July 2008 | Volume 3 | Issue 7 | e2569



U2OS cells were co-transfected with the reported vector along with

the FUS-DDIT3 expression vector, there was a specific increae of

the CAT activity compared to the activity with the empty vector

(Figure 6B), demonstrating that FUS-DDIT3 is involved in the

upregulation of eIF4E in liposarcomas.

We further investigated which FUS-DDIT3 domain was

responsible for the repression of the eIF4E promoter. Using the

same system, we proved that neither the co-expression of the

domain NH2-FUS nor the co-expression of the DDIT3 domain

produced any effect on the transactivation of the eIF4E promoter

(Figure 6C), indicating that both domains are required for

affecting eIF4E expression. These observations establish for the

first time the role of FUS-DDIT3 in preventing the development

of adipocytic precursors in liposarcoma development.

Discussion

Current studies support that FUS-DDIT3–associated liposar-

comas initiate in uncommitted progenitor cells and generate early

adipocytic precursors indicating an important role for FUS-DDIT3

in the control of early adipocytic development [reviewed in 24].

However, the molecular mechanisms used by FUS-DDIT3 to

prevent the development of the adipocytic precursors, leading to

the observed buildup of the early precursors in liposarcomas,

remain mainly unknown. Here, we have attempted to rigorously

unmask the molecular mechanisms associated with this blockade

in adipocyte differentiation program of mesenchymal progenitor

cells in myxoid liposarcomas harbouring the chromosomal

translocation t(12;16)(q13;p11).

The analysis of the components of the gene regulatory network

that controls adipocyte differentiation in liposarcomas developed

in FUS-DDIT3 transgenic mice showed a dramatic decreased in

the expression levels of the transcription factors involved in the

final stages of adipogenesis, such as PPARc1, PPARc2 and C/

EBPa (Figure 1A), while the expression levels of C/EBPd and C/

EBPb, involved in early stages of adipocyte differentiation, were

upregulated (Figure 1A). Moreover, we have shown that FUS-

DDIT3 interferes with the PPARc2 and C/EBPa activities at a

Figure 4. FUS-DDIT3 represses the PPARc2 promoter. A 1 kb proximal promoter region of human PPARc2 was previously shown to be
sufficient to drive the PPARc29s expression in reporter assays [34. 35] and it is active in U2OS cells when co-transfected with C/EBPb expression
vectors. To directly assess the ability of FUS-DDIT3 to modulate transcription from DNA sequences present in the PPARc2 promoter, an expression
vector containing either the human FUS-DDIT3 cDNA, the human DDIT3 domain or the human FUS domain were co-transfected into U2OS cells along
with the reporter vector containing the PPARc2 promoter (pGL3-hPPARc2p1000 vector) and C/EBPb expression vector (ratC/EBPb wtpSG5). Luciferase
reporter assays demonstrate that FUS-DDIT3 repressed the human PPARg2 reporter in a DDIT3?dependent manner. In all lines, 1 mg of pRL-SV40
(Renilla basal control (PROMEGA) was used for normalization of the results along with 5 mg of pGL3-hPPARc2p1000 (lines 2–10); 3 mg of ratC/EBPb
wtpSG5 (lines 3–10); 3, 5 and 7 mg of the hFUS-DDIT3 expression vector (lines 4–6, respectively); 3 and 7 mg of the hDDIT3 expression vector (lines 7–
8, respectively); 3 and 7 mg the NH2-hFUS expression vector (lines 9–10, respectively); 5 mg of the hFUS-DDIT3 expression vector (line 11). These data
are representative of three independent experiments.
doi:10.1371/journal.pone.0002569.g004
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transcriptional level by repressing their promoter sequences

(Figures 4 and 5A). In agreement with these findings, liposarcomas

developed in FUS-DDIT3 transgenic mice also express mature

adipocyte markers, such as ap2 or adiponectin, at low levels

(Figure 1C). These molecular findings corroborate the accumula-

tion of early precursors in liposarcomas developed in FUS-DDIT3

transgenic mice. Interestingly, LIS-3 and LIS-4, two human cells

lines derived from liposarcomas expressing FUS-DDIT3, showed an

Figure 5. C/EBPa does not bypass adipogenesis blockade in FUS-DDIT3 expressing-MEF. (A) FUS-DDIT3 represses the C/EBPa
transactivation induced by C/EBPb. U2OS cells were cotransfected with 1 mg of pRL-SV40 (Renilla basal control (PROMEGA), lines 1–6) along with:
5 mg of pCEBP1171 (luciferase reporter vector containing 1171 of the rat C/EBPa promoter, samples 2–6); 3 mg ratC/EBPbwtpSG5 (C/EBPb expressing
vector, lines 3–6); 3, 5 and 7 mg pcDNA3-hFUS-DDIT3 (hFUS-DDIT3 expression vector, lines 4–6); 5 mg of the hFUS-DDIT3 expression vector (line 7).
These data are representative of three independent experiments. (B) Retroviral expression of C/EBPa does not rescue the adipocyte differentiation
blockade in FUS-DDIT3 MEFs. FUS-DDIT3 MEFs were infected with a retroviral vector expressing C/EBPa (pQCXIP-C/EBPa) and selected for 3 days with
2 mg/ml puromycin. Then, wild-type MEF, FUS-DDIT3 MEF and C/EBPa expressing FUS-DDIT3-MEFS were cultered up to confluence and grown in the
presence of standard adipose differentiation induction medium. At day 8 after induction of adipocyte differentiation, cells were fixed and stained for
neutral lipids with Oil-Red-O and the morphological differentiation is shown (the original magnification is 620). This experiment was repeated three
times using cells prepared from all lines and from different embryos and similar results were obtained. (C) Analysis of C/EBPa (p42-C/EBPa and p30-C/
EBPa isoforms) protein expression by western-blot in FUS-DDIT3 MEFs infected with either a control retroviral vector (pQCXIP) or one expressing C/
EBPa (pQCXIP- C/EBPa) 4 days after infection.
doi:10.1371/journal.pone.0002569.g005
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almost identical pattern of expression of the components of the gene

regulatory network that controls adipocyte differentiation, indicating

further that the FUS-DDIT3 transgenic mouse model reproduces

accurately the human pathology. Taken together these results

strongly support that the expression of the FUS-DDIT3 oncogene is

able to block the adipocyte differentiation program of target

mesenchymal progenitor cells interacting with the PPARc and C/

EBPa pathways (Figure 7) and contributing to generate a

transformed phenotype, similarly to other fusion oncogenes

associated to hematopoietic malignances, such as BCR-ABLp190

[41] and PML-RARa [42].

C/EBPa and PPARc are key players in terminal adipocyte

differentiation [25–27], although both transcription factors have

different roles. Thus, while PPARc is able to induce terminal

differentiation in a C/EBPa null background, C/EBPa has no

ability to do it in a PPARc null fibroblast [37], suggesting that

PPARc is the most important transcription factor involved in

adipogenesis. Moreover, PPARc2, which contains an additional

31 amino acids at its amino terminal domain than PPARc1, has

been shown to be the only PPARc isoform that is able to induce

adipogenesis in 3T3-L1 preadipocytes in which PPARc1 and

PPARc2 were repressed by zinc finger repressor proteins [43].

Moreover, it has been reported that C/EBPa may be required to

maintain the expression on PPARc in adipocytes [38]. Here we

have shown that while ectopic expression of PPARc2 is able to

induce final adipogenesis of primary fibroblasts expressing FUS-

Figure 6. FUS-DDIT3 upregulates eIF2a and eIF4E. (A) Western blot analyses of eIF4E and eIF2a expression in wild-type white adipose tissue
(WT-WAT), liposarcoma arisen in FUS-DDIT3 mice (Tumor), normal WAT from FUS-DDIT3 mice (FD-WAT), human liposarcomas cell lines expressing
FUS-DDIT3 (LIS-3 and LIS-4), human adipose cells (Zen-bio), and in liposarcoma arisen in CombitTA-FUS-DDIT3 mice in the presence (+tet) or in the
absence (2tet) of doxycycline (doxycycline was given at 4 mg/mL for 4 weeks). Cell and tissue extract (10 mg) were resolved in SDS-PAGE gel (10%
acrylamide), followed by immunoblotting analysis with anti- eIF4E, anti- eIF2a and anti-actin antibodies. (B) Transactivation of the CAT reporter gene
linked to mouse eIF4E promoter by FUS-DDIT3. C3H10T1/2 cells were transiently cotransfected with 1 mg of pm4ECAT (CAT reporter vector
containing ,2.5 kb of the mouse eIF4E promoter) together with 5 mg of pcDNA (empty vector, panel 2) or with 5 mg of pcDNA3-hFUS-DDIT3 (hFUS-
DDIT3 expression vector, panel 3). The data represent the fold activation with respect to a sample where reporter alone was transfected (panel 1).
Data represent an average obtained from three separated experiments. A representative thin layer chromatograph is shown on the right. (C)
Transactivation of the CAT reporter gene linked to mouse eIF4E promoter by FUS and DDIT3 domains of FUS-DDIT3 fusion protein. C3H10T1/2 cells
were transiently cotransfected with 1 mg of pm4ECAT together with 5 mg of a vector expressing the FUS domain (panel 2) or with 5 mg of a vector
expressing the DDIT3 domain (panel 3). The data represent the fold activation with respect to a sample where reporter alone was transfected (panel
1). Data represent an average obtained from three separated experiments.
doi:10.1371/journal.pone.0002569.g006
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DDIT3, C/EBPa is unable to rescue the impaired adipogenesis of

adipocytic precursors expressing FUS-DDIT3, suggesting that the

down-regulation of PPARc2 by FUS-DDIT3 is one of the critical

steps in the blockade of adipocyte differentiation in liposarcomas.

In addition, we show that the carboxy terminal domain of the

fusion protein FUS-DDIT3 is the part of the protein involved in

the represion of the PPARc2 promoter, which is congruent with

the in vitro role of DDIT3 in adipocyte inhibition of 3T3-L1 cells

[15] and liposarcoma development in a model using the HT1080

fibrosarcoma cell line [19]. However, ectopic expression of

DDIT3 in a transgenic mouse model did not develop liposarcoma

[18] indicating that in vivo the cellular environment and the

cooperation of both domains of the chimeric protein FUS-DDIT3

play a critical role to induce frank malignancy [24].

The control of the translation initiation of C/EBPb and C/

EBPa mRNAs has been shown to be important in the activity of

both transcription factors, as truncated isoforms of them have

negative effect on adipogenesis [30]. We also analyzed the ratio of

C/EBPb and C/EBPa isoform expression in liposarcomas and

proved that only C/EBPa had a shift towards the truncated

isoforms, suggesting that while C/EBPa showed a reduced activity,

C/EBPb had apparently a potential normal activity in liposarco-

mas. This could be unexpected, but the C/EBPb activity has been

shown to be important in the FUS-DDIT3-mediated interleukin-6

expression [44]. These results suggest FUS-DDIT3 was also

interfering with C/EBPa, required to maintain the expression on

PPARc in adipocytes [38]. Interestingly, we found high levels of

eIF4E and eIF2a in liposarcomas, two translation initiation factors

involved in controlling the ratio of C/EBP isoforms [30].

Moreover, FUS-DDIT3 is able to transactivate the eIF4E

promoter suggesting that FUS-DDIT3 is able to interfere with

the translational initiation machinery and disrupt the normal

adipocyte differentiation program of adipocyte progenitor cells in

liposarcomas. The observation that both domains of FUS-DDIT3

are required to regulate eIF4E expression provides the first

molecular evidence that the FUS component of the fusion protein

is required not only for transformation but also influences the

phenotype of the tumor cells. The eIF4E is frequently overex-

pressed in human cancers in relation to disease progression and

drives cellular transformation [reviewed in 45]. In this sense, eIF4E

was also strongly upregulated in normal adipose tissue of FUS-

DDIT3 transgenic mice, suggesting that overexpression of eIF4E

may be one of the primary events in the initiation of liposarcomas.

In conclusion, we demonstrate that FUS-DDIT3 is able, itself,

to impede the normal adipogenesis in mesenchymal progenitor cell

contributing to achieve a transformed phenotype by blocking the

adipocyte differentiation program. In order to achieve this, FUS-

DDIT3 blocks the activity of the most vital adipogenic

transcription factors: C/EBPa and PPARc. In addition, we show

that this blockade is produced at two levels. First of all, FUS-

DDIT3 represses both C/EBPa and PPARc2 promoters, reducing

the expression of both transcription factors. Additionally, the

chimeric protein, obstructing the normal translational initiation

activity of at least eIF4E, is able to shift towards truncated isoform

the expression of C/EBPa, reducing its activity and contributing

to attenuate the positive feedback loop between C/EBPa and

PPARc that finally results in the expression of mature adipocyte

markers such us ap2 or adiponectin (Figure 7). These results will

help to develop a strategy that would form the basis for improved

therapy in human liposarcomas.

Figure 7. Model for the adipocyte differentiation arrest produced by FUS-DDIT3 in liposarcoma development. (A) Scheme of the
normal differentiation program in mesenchymal progenitor cells. (B) FUS-DDIT3 blocks the adipocyte differentiation program in mesenchymal cell
progenitors by interfering with the PPARc and C/EBPa activities at the transcriptional level. In addition, FUS-DDIT3 induces the expression of eIF4E,
that in turns, is able to inactivate the C/EBPa pathway by shifting the normal isoform ratio towards the truncated p30- C/EBPa isoform, which has a
negative effect on adipogenesis.
doi:10.1371/journal.pone.0002569.g007
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21. Riggi N, Cironi L, Provero P, Suvà ML, Stehle JC, et al. (2006) Expression of

the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives
rise to a model of myxoid liposarcoma. Cancer Res 66(14): 7016–7023.

22. Perez-Mancera PA, Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia MA,
Flores T, et al. (2002) Expression of the FUS domain restores liposarcoma

development in CHOP transgenic mice. Oncogene 21(11): 1679–1684.

23. Sánchez-Garcı́a I (1997) Consequences of chromosomal abnormalities in
tumour development. Annu. Rev. Genetics 31: 429–453.
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Flores T, Gutierrez-Adan A, Pintado B, Sanchez-Martin M, Sanchez-Garcia I

(2005) SLUG (SNAI2) in cancer development . Oncogene 24: 3073–3082.
32. Pérez-Mancera PA, Pérez-Caro M, González-Herrero I, Flores T, Orfao A, de

Herreros AG, Gutiérrez-Adán A, Pintado B, Sagrera A, Sánchez-Martı́n M,
Sánchez-Garcı́a I (2005) Cancer development induced by graded expression of

Snail in mice. Hum Mol Genet 14(22): 3449–3461.
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ABL(p190) fusion gene made by homologous recombination causes B-cell acute

lymphoblastic leukemias in chimeric mice with independence of the endogenous
bcr product. Blood 90(6): 2168–2174.

42. Altabef M, Garcia M, Lavau C, Bae SC, Dejean A, et al. (1996) A retrovirus

carrying the promyelocyte-retinoic acid receptor PML-RARalpha fusion gene
transforms haematopoietic progenitors in vitro and induces acute leukaemias.

EMBO J 15(11): 2707–2716.
43. Ren D, Collingwood TN, Rebar EJ, Wolffe AP, Camp HS (2002) PPARgamma

knockdown by engineered transcription factors: exogenous PPARgamma2 but

not PPARgamma1 reactivates adipogenesis. Genes Dev 16(1): 27–32.
44. Goransson M, Elias E, Stahlberg A, Olofsson A, Andersson C, et al. (2005)

Myxoid liposarcoma FUS-DDIT3 fusion oncogene induces C/EBP beta-
mediated interleukin 6 expression. Int J Cancer 115(4): 556–560.

45. Graff JR, Konicek BW, Carter JH, Marcusson EG (2008) Targeting the
eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68(3):

631–634.

Function of FUS-DDIT3

PLoS ONE | www.plosone.org 12 July 2008 | Volume 3 | Issue 7 | e2569


