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Abstract: Boundary formation is a crucial developmental process in plant organogenesis. Boundaries
separate cells with distinct identities and act as organizing centers to control the development of
adjacent organs. In flower development, initiation of floral primordia requires the formation of the
meristem-to-organ (M–O) boundaries and floral organ development depends on the establishment of
organ-to-organ (O–O) boundaries. Studies in this field have revealed a suite of genes and regulatory
pathways controlling floral boundary formation. Many of these genes are transcription factors that
interact with phytohormone pathways. This review will focus on the functions and interactions of
the genes that play important roles in the floral boundaries and discuss the molecular mechanisms
that integrate these regulatory pathways to control the floral boundary formation.
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1. Introduction

Organ boundaries are groups of specialized cells with restricted growth that are crucial for the
development of plants and animals. Boundaries delineate identities by separating distinct functional
domains, such as the meristem and organ primordia or adjacent organs, and also function as organizing
centers for the downstream signaling events to pattern the organs at later stages [1,2]. Recent studies
have uncovered a suite of important genes and pathways that establish and maintain organ boundaries
in plant development [2–4]. A number of these genes have conserved functions in defining the
boundaries of various organs, while others play more specialized roles in a certain patterning events,
suggesting a complex regulatory network controlling boundary formation in plants [5–9].

As a key structure of flowering plants, the development of floral organs has been extensively
studied [10,11]. Similar to other lateral organs, floral primordia initiate from the shoot apical
meristem (SAM) and undergo a complex organogenesis process that incorporates finely controlled
cell division, expansion and differentiation [12,13]. Establishment of boundaries is a critical step in
floral organogenesis; this includes the formation of boundaries between the meristem and floral organs
(the meristem-to-organ boundary; M–O boundary), as well as the boundaries between adjacent floral
organs (the organ-to-organ boundary; O–O boundary) [2,3,14]. These boundary regions express a suite
of genes with either general or floral-specific functions to define the boundary field and influence the
developmental programs of the adjacent floral tissues. Here, we will review the recent advances in
the regulation of the floral boundaries in the model species Arabidopsis thaliana, particularly the key
molecular mechanisms that play specific roles during flower development (as summarized in Figure 1).
We will also discuss how these central regulators interact with the internal phytohormone signals to
fine-tune the boundary formation in flowers.
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Figure 1. Gene network regulating floral boundaries. (A) Major regulatory pathways controlling floral 
M–O boundaries. Shoot apical meristem is demonstrated in green, M–O boundary is demonstrated 
in light blue and floral meristem (FM) is demonstrated in brown; (B) Key pathways regulating floral 
O–O boundaries shown in a stage 6 flower. Black arrows and bars represent the positive and negative 
genetic interactions. Color arrows and bars represent the promoting and repressing controls between 
genes and phytohormones. Pathways related to the action of phytohormones are indicated as red: 
auxin; green: Gibberellins (GA); blue: Cytokinins (CK); and orange: Brassinosteroids (BR). In the stage 
6 flower, regulatory pathways associated with two floral-specific zinc-finger transcription factors, 
RBE and SUP, are highlighted. Se: sepal; Pe: petal; St: stamen; Ca: carpel. 

2. Regulation of the Meristem–Organ (M–O) Boundary Formation in the Flower Development 

The Arabidopsis shoot apical meristem (SAM) consists of a central zone that stem cells reside in, 
a peripheral zone that gives rise to organ primordia and a rib zone that forms vascular and interior 
stem structures [15]. In the reproductive stages, the SAM is converted to an inflorescence meristem 
where floral meristems arise and further develop to mature flowers [11,16]. In this process, key 
transcription regulators LEAFY (LFY) and APETALA1 (AP1) play a crucial role. These floral identity 
genes are upregulated in response to floral inductive signals, such as the FLOWERING LOCUS T (FT) 
pathways, and in turn elicit flowering [11,17–19]. Initiation of flowers also requires the formation of the 
M–O boundary that separates the central zone and peripheral zone in the inflorescence meristem [20,21]. 
This process is closely related to the local depletion of phytohormone auxin that causes the lower 
division and growth rate of the M–O boundary cells [2,22]. Consistent with this model, mutants in 
the auxin efflux transporter gene PINFORMED1 (PIN1) or in the auxin-responsive transcription 
factor MONOPTEROS (MP) have naked, “flowerless” inflorescence that is associated with the 
misexpression of key meristem and organ boundary regulators in the peripheral zone, including 
SHOOT MERISTEMLESS (STM), LEAFY (LFY), and CUP-SHAPED COTYLEDON (CUC) genes 
[16,23–26]. STM is a member of the class I KNOTTED1-like (KNOX) genes in the three-amino acid 
loop extension (TALE) homeodomain protein family and CUC genes (CUC1, CUC2 and CUC3) are 
NAC family transcription factors [5–7,27]. STM and the CUC genes are key regulators of meristem 
and organ boundary development, and play a pivotal role at both vegetative and reproductive  
stages [28]. CUC1 and CUC2 are expressed in the organ boundaries and activate STM for meristem 
initiation [5,29]. STM in turn maintains the expression of CUC genes in the boundary domains for 
organ separation; this is likely through the direct regulation of CUC1 and indirect regulation of CUC2 
and CUC3 [28]. 

Other KNOX genes, such as BREVIPEDICELLUS (BP)/KNAT1 and KNAT6, are also involved in 
the initiation and maintenance of SAM and organ boundaries in collaboration with STM [30,31]. 
KNOX genes specify meristem and boundary domains in part by modulating the abundance of 
phytohormones including cytokinins (CK), gibberellins (GA) and brassinosteroids (BR). Maintenance 
of meristem identity is associated with a high CK to low GA ratio that sustains cell division and 

Figure 1. Gene network regulating floral boundaries. (A) Major regulatory pathways controlling floral
M–O boundaries. Shoot apical meristem is demonstrated in green, M–O boundary is demonstrated
in light blue and floral meristem (FM) is demonstrated in brown; (B) Key pathways regulating floral
O–O boundaries shown in a stage 6 flower. Black arrows and bars represent the positive and negative
genetic interactions. Color arrows and bars represent the promoting and repressing controls between
genes and phytohormones. Pathways related to the action of phytohormones are indicated as red:
auxin; green: Gibberellins (GA); blue: Cytokinins (CK); and orange: Brassinosteroids (BR). In the stage
6 flower, regulatory pathways associated with two floral-specific zinc-finger transcription factors, RBE
and SUP, are highlighted. Se: sepal; Pe: petal; St: stamen; Ca: carpel.

2. Regulation of the Meristem–Organ (M–O) Boundary Formation in the Flower Development

The Arabidopsis shoot apical meristem (SAM) consists of a central zone that stem cells reside
in, a peripheral zone that gives rise to organ primordia and a rib zone that forms vascular and
interior stem structures [15]. In the reproductive stages, the SAM is converted to an inflorescence
meristem where floral meristems arise and further develop to mature flowers [11,16]. In this process,
key transcription regulators LEAFY (LFY) and APETALA1 (AP1) play a crucial role. These floral
identity genes are upregulated in response to floral inductive signals, such as the FLOWERING
LOCUS T (FT) pathways, and in turn elicit flowering [11,17–19]. Initiation of flowers also requires the
formation of the M–O boundary that separates the central zone and peripheral zone in the inflorescence
meristem [20,21]. This process is closely related to the local depletion of phytohormone auxin that
causes the lower division and growth rate of the M–O boundary cells [2,22]. Consistent with this
model, mutants in the auxin efflux transporter gene PINFORMED1 (PIN1) or in the auxin-responsive
transcription factor MONOPTEROS (MP) have naked, “flowerless” inflorescence that is associated
with the misexpression of key meristem and organ boundary regulators in the peripheral zone,
including SHOOT MERISTEMLESS (STM), LEAFY (LFY), and CUP-SHAPED COTYLEDON (CUC)
genes [16,23–26]. STM is a member of the class I KNOTTED1-like (KNOX) genes in the three-amino
acid loop extension (TALE) homeodomain protein family and CUC genes (CUC1, CUC2 and CUC3) are
NAC family transcription factors [5–7,27]. STM and the CUC genes are key regulators of meristem and
organ boundary development, and play a pivotal role at both vegetative and reproductive stages [28].
CUC1 and CUC2 are expressed in the organ boundaries and activate STM for meristem initiation [5,29].
STM in turn maintains the expression of CUC genes in the boundary domains for organ separation;
this is likely through the direct regulation of CUC1 and indirect regulation of CUC2 and CUC3 [28].

Other KNOX genes, such as BREVIPEDICELLUS (BP)/KNAT1 and KNAT6, are also involved
in the initiation and maintenance of SAM and organ boundaries in collaboration with STM [30,31].
KNOX genes specify meristem and boundary domains in part by modulating the abundance of
phytohormones including cytokinins (CK), gibberellins (GA) and brassinosteroids (BR). Maintenance
of meristem identity is associated with a high CK to low GA ratio that sustains cell division and
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inhibits cell differentiation. KNOX genes promote CK levels by activating the CK biosynthetic
gene ISOPENTENYL TRANSFERASE7 (IPT7) [32,33], and reduce GA levels by positively regulating
GA catabolic GA2-oxidases [34] and negatively regulating GA biosynthetic GA20-oxidases [35].
Brassinosteroids (BR) also play a key role in the formation of organ boundaries. BR-activated
BRASSINAZOLE-RESISTANT1 (BZR1) directly represses the expression of CUC genes, and lower levels
of BZR1 were observed in the boundary cells [36]. Recent studies in rice showed that KNOX genes
down regulate BR signaling in the meristem by direct activation of BR catabolic genes to maintain the
SAM activity [37].

These regulatory pathways suggest that a complex interaction between phytohormones and
CUC/KNOX genes controls meristem and boundary formation. These pathways act recurrently
at both vegetative and reproductive stages, indicating their conserved roles in the plant life cycle.
Conversely, the flower-inducing gene LFY specifically regulates organ development in the reproductive
phase [19,38]. Auxin signal affects LFY through the direct activation of LFY by MP [39]. MP directly
activates LFY in response to auxin only in the reproductive phase, suggesting a specific molecular
function of auxin signaling in reproductive development [39]. LFY also directly regulates auxin
pathways, which forms a forward-loop to reinforce this relationship [39,40]. In addition to the
auxin-associated pathways, LFY also regulates flower initiation in response to PENNYWISE (PNY) and
POUND-FOOLISH (PNF), two BELL-like genes that belong to the same TALE homeodomain-protein
family as KNOX genes [41–43]. Double mutant pny pnf plants do not produce flowers, which is largely
due to the overexpression of lateral organ boundary genes BLADE-ON-PETIOLE1/2 (BOP1/2), as well
as their downstream genes KNAT6 and ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1) that
also encode TALE homeodomain proteins [44]. The BOP1/2-KNAT6/ATH1 module blocks flowering via
a series of pathways that involves phytohormones Jasmonic acid (JA) and Gibberellins (GA), as well as
the microRNA156-SPL and-miR172 regulation, to finally effect LFY and the other two flower-inducing
genes CAULIFLOWER (CAL) and FRUITFUL (FUL) [44,45]. Upon flowering, PNY and PNF negatively
regulate BOP1/2 and KNAT6/ATH1, which in turn activates LFY, CAL and FUL to induce the initiation
of flowers [44].

While LFY is controlled through boundary-related pathways, it also functions in collaboration
with other boundary-regulating genes, such as the F-box protein UNSUAL FLORAL ORGANS (UFO).
UFO is specifically expressed in the boundary domain surrounding the STM-expressing cells at
early floral stages [46,47]. Mutants of UFO display a variety of defects including delayed floral
meristem development; reduced growth or absence of petals and stamens; and fused floral organs,
suggesting a critical role of UFO in the regulation of meristem, lateral boundary and organ formation
at reproductive stages [48–50]. A physical interaction between UFO and LFY recruits the LFY–UFO
complex to the promoter of the B-function floral homeotic gene APETALA3 (AP3), and thus activates
AP3 to specify the identity of petals and stamens during flower development [51].

Another key regulator of the floral M–O boundary is the GATA-3 transcriptional factor HANABA
TARANU (HAN) [52,53]. HAN is specifically expressed at the floral M-O boundaries and interacts
with both the meristem-regulating gene ARGONAUTE 10/PINHEAD (PNH), a founding member
of the ARGONAUTE family that acts in small RNA pathways [54–56], and the genes required for
organ primordia development, including BOP2 and JAGGED (JAG), a C2H2 zinc finger transcriptional
factor that promotes cell division and growth of lateral organs [53,57,58]. These interactions promote
the functions of both meristem and organ primordia-specific genes to delineate these two distinct
domains in the shoot apex. In addition, HAN also directly activates CYTOKININ OXIDASE 3 (CKX3)
to reduce cytokinin levels, which in turn suppresses cell division activity and maintains the M–O
boundary [53]. These combined effects suggest that HAN plays a pivotal role in the M–O boundary to
facilitate communication with the meristem and organ primordia.

3. Controlling the Establishment of the Floral Organ–Organ (O–O) Boundary

The Arabidopsis flower contains sepals, petals, stamens and carpels arranged in four concentric
whorls [11]. Flower development requires the formation of correct O–O boundaries that function to
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separate adjacent whorls (interwhorl boundaries) and adjacent organs within a whorl (intrawhorl
boundaries) [14].

Many genes that establish M–O boundaries also set floral O–O boundaries, such as BOP1/2 [59,60],
HAN [52,53] and CUC genes [5–7]. Among these genes, CUCs are probably the earliest ones reported
to be implicated in the floral O–O boundary formation. CUC1, CUC2 and CUC3 are all expressed
in the floral organ primordia and boundaries, and the double mutant combinations of the three
CUC genes form fusions between adjacent floral organs [5,6,61]. More importantly, CUC genes are
key nodes of the genetic network that regulates floral organ boundaries. They act to control a suite
of boundary-regulating genes, including ORGAN BOUNDARY1 (OBO1, also LIGHT-DEPENDENT
SHORT HYPOCOTYLS3, LSH3) and LSH4 that are members of the ALOG family [62,63], and the
Myb-domain transcription factor LOF1 [36]. CUC genes also function downstream of important organ
boundary and growth regulators, such as the TEOSINTE BRANCHED1, CYCLOIDEA, and PCF (TCP)
transcription factors [64,65] and BZR1 involved in the brassinosteroids (BR) signaling [36].

CUC1 and CUC2 are post-transcriptionally regulated by microRNA 164 that is transcribed from
three loci: MIR164a, MIR164b and MIR164c [66–69]. One of the three miRNA164 primary genes,
MIR164c (also named EARLY EXTRA PETALS 1; EEP1) plays a floral specific role in petal organogenesis.
The mutant in MIR164c has extra petals in early-arising flowers that were proposed to be associated
with the additional boundary domains formed in the second whorl [67].

The petal-specific function of EEP1 is controlled in part by the C2H2 zinc finger transcription
factor RABITT EARS (RBE) [8]. RBE is specifically expressed in petal primordia and negatively
regulates the expression of MIR164c by directly interacting with its promoter region [8]. The rbe
mutants exhibit aberrant or absence of petals, and these phenotypes are partly or completely rescued
by eep1, supporting the model that MIR164c acts as a key downstream effector of RBE in petal
organogenesis [8]. RBE also functions non-autonomously in the regulation of sepal boundaries.
The fused sepal phenotype in the rbe mutant could also be inhibited by eep1 and enhanced by cuc1
and 2, indicating the miR164-CUC pathway might be involved in the RBE-mediated sepal boundary
formation as well [8]. In addition to its regulation of the intra-whorl O–O boundaries, RBE also sets
the boundary between the second and third whorl by restricting the spatial expression of AGAMOUS
(AG), a C-function floral homeotic gene that specifies the identity of stamens and carpels [70]. Another
floral organ boundary gene UFO seems to act upstream of RBE to promote this process, as in the ufo-11
mutant, RBE expression is dramatically down-regulated, while AG is ectopically expressed [70].

Besides UFO, the tri-helix transcripton factor PETAL LOSS (PTL) also regulates RBE. PTL is
specifically expressed in the inter-sepal zone and acts in concert with CUC1 and CUC2 in the formation
of sepal boundaries [9]. Interestingly, PTL also controls petal organogenesis in the same pathway
with RBE, even though PTL is not expressed in the petals [71,72]. The regulation of PTL on petal
organogenesis might be dependent on an interwhorl mobile signal that involves the phytohormone
auxin [72], which suggests that the inter-sepal boundary may influence the organ development in the
adjacent floral whorl.

Floral organ fusions were also observed in the mutant of F-box gene HAWAIIAN SKIRT (HWS) [73],
which was first reported as the fused floral organs 1 (ffo1) locus in the Landsberg background [73,74].
The loss-of-function hws-1 resulted in floral organ fusions within a specific whorl (fused sepals and
stamens) and also between adjacent whorls (fusion between the third and fourth whorl) [73]. HWS may
act with UFO to regulate organ initiation in the early stages of flower development, as no floral organs
were generated in the hws ufo double mutant plant [74]. The direct targets of HWS are still unknown,
but because it encodes an F-box protein, it was proposed that HWS might function to degrade growth
regulating genes such as those involved in auxin functions [73].

Another floral-specific O–O boundary-regulating gene is SUPERMAN (SUP), which encodes
a C2H2 zinc finger gene closely related to RBE [75,76]. SUP plays a key role in the establishment
of the boundary between the third and fourth floral whorl. Disruption of this boundary in the
sup mutant leads to the ectopic expression of AP3 that promotes the formation of extra stamens in



Int. J. Mol. Sci. 2016, 17, 317 5 of 10

the fourth whorl [75,76]. The boundary-specific function of SUP is controlled by important floral
regulators, including LFY, AP3, PISTILATA (PI) and AG [77], and SUP controls cell proliferations
of organ primordia in the third and fourth whorl, in part via regulating auxin and CK-signalling
pathways [78]. These interactions suggest that SUP is a central gene in the regulatory network of the
stamen–carpel boundary that integrates key transcription factors and hormonal regulators of floral
organ development.

4. Conclusions and Perspectives

The establishment of floral boundaries is critical for the maintenance of inflorescence meristems
and the formation of floral organs. Many genes and pathways regulate floral M–O and O–O boundaries;
some of them appear to have functions in both vegetative and reproductive development, while others
play a more floral-specific role. How these different types of regulators interact in floral boundary
formation is one of the important questions that remain to be well understood. Furthermore, many
of these boundary genes encode transcription factors or co-factors, suggesting that transcriptomic
approaches, such as high-throughput RNA-sequencing and chromatin Immunoprecipiation combined
with high-throughput sequencing (ChIP-seq), could unravel the genetic network regulated by these key
regulators [79]. In addition, many floral boundary genes function in post-transcriptional regulation,
such as the F-box family members. Proteomic studies including yeast-two hybrid screening and
co-immunoprecipitation followed by protein-sequencing would be more suitable for identifying
the substrates and interacting genes of these post-transcriptional regulators [80–82]. A recent
study combining boundary-specific gene expression analysis and a genome-wide protein-DNA
interaction assay generated an organ boundary-enriched transcriptional network in the Arabidopsis
leaf development [83]. A similar approach could also be applied in flowers to uncover the pathways
that function specifically in floral boundary formation. By comparing the results of these experiments,
we could generate a list of common regulators in the overlaps of these datasets. These common genes
or pathways likely play pivotal roles in the floral organ boundaries and the relationships of these
regulators can form a comprehensive network that explains the molecular mechanism of floral organ
boundary formation.

It is also worth noting that a number of the floral boundary regulators crosstalk with
phytohormone pathways [2,36,39,84,85]. Techniques for characterizing the biogenesis, transport
and response of phytohormones have been largely improved in the past years [86,87]. For instance,
the DR5-GUS and DII-VENUS systems applied a visualized auxin sensor in the investigation of the
response to auxin [88,89]. Florescent reporters were also employed in the analysis of GA and BR in
plants [90,91]. Application of these molecular tools in boundary-specific assays will help elucidate
the spatial and temporal regulation of phytohormone signaling in the boundary field and better
understand how hormonal pathways and other boundary regulators are coordinated in the formation
of floral boundaries. We expect that the integration of the information from all these approaches
will provide us with a complex regulatory map that not only shows the details of gene functions
and interactions in the floral boundaries, but also directs us to further explore the novel molecular
mechanisms underlining the boundary formation in flower development.
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