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Abstract 18 

Humans exhibit unique cognitive abilities within the animal kingdom, but the neural 19 
mechanisms driving these advanced capabilities remain poorly understood. Human 20 
cortical neurons differ from those of other species, such as rodents, in both their 21 
morphological and physiological characteristics. Could the distinct properties of 22 
human cortical neurons help explain the superior cognitive capabilities of humans? 23 
Understanding this relationship requires a metric to quantify how neuronal properties 24 
contribute to the functional complexity of single neurons, yet no such standardized 25 
measure currently exists. Here, we propose the Functional Complexity Index (FCI), a 26 
generalized, deep learning-based framework to assess the input-output complexity of 27 
neurons. By comparing the FCI of cortical pyramidal neurons from different layers in 28 
rats and humans, we identified key morpho-electrical factors that underlie functional 29 
complexity. Human cortical pyramidal neurons were found to be significantly more 30 
functionally complex than their rat counterparts, primarily due to differences in 31 
dendritic membrane area and branching pattern, as well as density and nonlinearity of 32 
NMDA-mediated synaptic receptors. These findings reveal the structural-biophysical 33 
basis for the enhanced functional properties of human neurons. 34 

 35 

Introduction 36 

It is generally accepted that the unique cognitive capabilities of humans arise from a 37 
combination of many attributes. At the macroscale, these attributes might include the 38 
large number of computational elements (neurons/glial cells), the intense region-to-39 
region connectivity and the human regional specialization (Gabi et al., 2016; Axer and 40 
Amunts, 2022, Rockland, 2023). At the microscale, it was suggested that human 41 
specific transcriptomic features contribute to these capabilities (Jostard et al., 2023). 42 
It was also argued that human cognition might be supported by the evolution of new 43 
cell types (Berg et al., 2021) and the unique morphological and biophysical properties 44 
of human cortical neurons (Galakhova et al., 2022). Indeed, studies have identified 45 
numerous distinctive properties in human cortical neurons (Spruston, 2008; DeFelipe, 46 
2011; Mohan et al., 2015; Deitcher et al., 2017; Eyal et al., 2018; Mihaljevic et al., 47 
2021; Galakhova et al., 2022; Han et al., 2023; Hunt et al., 2023). However, the impact 48 
of this cellular-level complexity on the computational capabilities of the neuron, and 49 
consequently on the entire neuronal system, remains unclear. 50 

Already Ramon y Cajal noticed that human cortical neurons are particularly large and 51 
morphologically complex (Ramón y Cajal et al., 1988). Over the past two decades, 52 
numerous studies have systematically compared the dendritic geometry of human 53 
cortical and hippocampal neurons with that of other species, particularly rodents. 54 
Human cortical neurons are generally characterized by large dendritic trees with 55 
elongated branches, especially the terminal branches of the basal dendrites (Deitcher 56 
et al., 2017), and extensive arborization (Spruston, 2008; DeFelipe, 2011; Mohan et 57 
al., 2015; Eyal et al., 2018; Mihaljevic et al., 2021; Galakhova et al., 2022; Han et al., 58 
2023; Hunt et al., 2023; Oláh et al., 2024). The large and extensive dendritic 59 
arborization provides a large surface area for receiving and processing synaptic 60 
inputs, and supports sampling from a diverse array of inputs. Furthermore, Large 61 
dendritic extensions lead to electrical decoupling between dendritic regions that give 62 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


rise to dendritic compartmentalization, which allows distinct regions of the dendritic 63 
tree to operate as semi-independent computational subunits (Polsky et al., 2004; 64 
Beualieu-Laroche et al., 2018; Eyal et al., 2018; Beualieu-Laroche et al., 2021; Otor 65 
et al., 2022). 66 

In addition to the morphological distinctions between cortical neurons in rats and 67 
humans, several biophysical and synaptic attributes differ across species. Specific 68 
membrane properties are one such attribute (Eyal et al., 2016; Eyal et al., 2018; 69 
Chameh et al., 2023); other attributes include the time-dependent dynamics of the 70 
synaptic connection (Mansvelder et al., 2019; Testa-Silva et al., 2010) and nonlinear 71 
dendritic properties (Gidon et al., 2020), particularly the density and steepness of the 72 
voltage-dependence of N-methyl-D-aspartate (NMDA) receptors - both were found to 73 
be larger in human cortical pyramidal neurons compared to rodents (Eyal et al., 2018; 74 
Hunt et al., 2023; but see Testa-Silva et al., 2022). These biophysical properties of 75 
human dendrites are likely to enhance their computational capabilities, e.g., by 76 
increasing the number of independent nonlinear dendritic functional subunits (Mel, 77 
1992; Schiller et al., 2000; Poirazi and Mel, 2001; Poirazi et al., 2003a; Poirazi et al., 78 
2003b; Polsky et al., 2004; London and Hausser, 2005; Branco et al., 2010; Eyal et 79 
al., 2018; Leleo and Segev, 2021; Tang et al., 2023).  80 

What is critically missing to advance the understanding of how various neuronal 81 
characteristics contribute to the functional capabilities of the neuron is a systematic 82 
measure that quantifies the functional complexity of neurons, particularly human 83 
neurons. Several approaches have been used to systematically assess the 84 
computational complexity of single neurons. Poirazi and Mel (2001) used simplified 85 
conceptual neuron models to show that both the increased nonlinearity of dendritic 86 
integration and the sheer number of bifurcation branches increase a neuron’s memory 87 
capacity. Eyal et al. (2018) showed, using detailed compartmental models, that human 88 
L2/3 cortical neurons indeed have a larger number of independent nonlinear dendritic 89 
subunits compared to rodents. Ujfalussy et al. (2018) captured dendritic computations 90 
under in vivo-like conditions using models of increasing complexity and used them to 91 
characterize input integration of several neuronal types, though only considering the 92 
subthreshold activity of the neuron. Recently, Beniaguev et al. (2021) used a deep 93 
neural network (DNN) model analogue of a rodent’s L5 cortical neuron to assess the 94 
I/O complexity of this neuron, demonstrating the critical role of NMDA-dependent 95 
synapses in determining how deep the analogue DNN is. However, a systematic and 96 
quantitative exploration of the influence of the full morphological and biophysical range 97 
of the neuron’s properties on its I/O computational complexity is not yet available. 98 

To address this gap, we employed a modern machine-learning approach based on 99 
Beniaguev et al. (2021). We introduce the functional complexity index (FCI), a novel 100 
metric for assessing the functional complexity of neurons. The FCI allows to extract 101 
the factors contributing to a neuron’s computational complexity and enables 102 
comparisons of I/O complexity across different neuronal types. This comparative 103 
analysis offers new insights into fundamental differences in the computational 104 
capabilities of cortical neurons between humans and rats, as well as among neurons 105 
in different cortical layers, shedding light on the relationship between neurons’ 106 
morpho-electrical features and their functional complexity.  107 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://pubmed.ncbi.nlm.nih.gov/16033324/
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=JDhMq3kAAAAJ&cstart=20&pagesize=80&sortby=pubdate&citation_for_view=JDhMq3kAAAAJ:_FM0Bhl9EiAC
https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 108 

Figure 1 summarizes the steps towards defining the complexity of a given 109 
biophysically detailed model of a neuron. First, we generated an I/O dataset for the 110 
respective biophysical neuron model by driving it with a large set of synaptic inputs 111 
over all of its dendritic tree (Figure 1A, B) and collecting both the subthreshold and 112 
suprathreshold voltage output at the soma (Figure 1C, black trace, and see 113 
(Beniaguev et al., 2021)). Next, we constructed a fixed, three-layer temporally 114 
convolutional neural network (TCN, Bai et al., 2018) with 128 neurons per hidden layer 115 
(Figure 1B, and see Methods) and trained it to approximate the output of the 116 
biophysical neuron model for the same synaptic inputs (Figure 1C, blue trace and see 117 
Methods). As apparent in Figure 1C, some of the spikes produced by the biophysical 118 
model were captured by the respective DNN, while others were missed. The overall 119 
quality of the performance of the TCN is assessed by the Area Under Curve (AUC) of 120 
the Receiver Operator Characteristic (ROC) curve of spike prediction, with 1 ms 121 
temporal resolution (see Methods). The more complex the neuron model is, the more 122 
spikes are missed by the respective DNN, and the smaller the AUC is. Namely, the 123 
more complex the I/O of the neuron, the less accurate the selected fixed DNN is in 124 
replicating its I/O properties.  125 

Figure 1D shows the result for two exemplar modeled cells: L2/3 cortical pyramidal 126 
neurons from human and rat brains (see Figure 1E, bottom, rat in orange and human 127 
in green). These two biophysical models had identical passive dendritic properties. 128 
The synaptic parameters for these two models respectively match experimental data 129 
from human and rat (see Methods). For each neuron model, we repeated the training 130 
and testing processes of the respective DNN three times, with three different random 131 
initial conditions (see Methods). 132 

The AUC is inversely related, in a nonlinear manner, to the complexity of the neurons’ 133 
I/O properties. The more complex the I/O is, the smaller the respective AUC (where 134 
AUC = 1 corresponds to a perfect fit and lowest complexity). To obtain a measure that 135 
monotonically increases with I/O complexity, we defined the Functional Complexity 136 
Index (FCI) as a monotonically decreasing function of the AUC: 137 

𝐹𝐹𝐹𝐹𝐹𝐹 =  log10(1000⋅(1−𝐴𝐴𝐴𝐴𝐴𝐴))
log10(1000−(1−0.9))

      (1) 138 

The FCI increases with complexity, and it is approximately linear in the relevant 139 
regime; it assumes values close to 0 when the AUC is close to 0.999 (an excellent 140 
prediction performance for biophysical neuron models), and values close to 1 when 141 
the AUC is close to 0.9 (which indicates poor prediction performance for biophysical 142 
neuron models (see Methods). For the two exemplar neurons shown in Figure 1D, 143 
the FCI is significantly larger for the human L2/3 pyramidal neuron in comparison with 144 
the rat L2/3 pyramidal neuron (0.4294 vs 0.1877, two-sided t-test p=2.221e-05). 145 
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 146 

Figure 1. Steps in quantifying the functional complexity of neurons. 147 
A. Raster plot of random input spikes activating excitatory (red) and inhibitory (blue) synapses 148 
distributed over the dendritic tree of the modeled neuron. B. Exemplar human layer 2/3 149 
pyramidal neuron (left) and schematics of a three-layer temporal convolutional network (TCN, 150 
right) that is trained to replicate as closely as possible both the subthreshold (V) and spiking 151 
activity (S) of the biophysical model of the cell shown on the left. C. Voltage output (black) of 152 
the biophysical model of human L2/3 neuron shown above, and the output of the respective 153 
TCN (blue). D. Receiver operator characteristic (ROC) curve of spike prediction by a fixed, 154 
three-layer TCN (see Methods) of the exemplar human layer 2/3 neuron shown in B (green) 155 
and of an exemplar rat layer 2/3 neuron shown in D (orange). The area under each of these 156 
(green and orange) curves (AUC) indicates the prediction accuracy of the TCN at 1 ms 157 
precision, the larger the AUC the better the prediction. E. Functional complexity index (FCI) of 158 
the exemplar L2/3 human (green) and rat (orange) cortical pyramidal neurons. The FCI ranges 159 
from 0 to 1, where 1 is the most complex neuron. **** p value smaller than 0.0001.  160 

We next computed the FCI for 24 neuron models: 12 rat pyramidal neurons and 12 161 
human pyramidal neurons spanning all six cortical layers (Figure 2). We used three 162 
exemplar cells for each cortical layer (layer 2/3, layer 4, layer 5 and layer 6). In these 163 
simulations, all biophysical models have identical passive dendritic properties, but the 164 
synaptic models were different for humans versus rats (see Methods). The modeled 165 
neurons are presented in Figure 2A, bottom, along with their respective FCI (top). 166 
Human pyramidal neurons attain much higher complexity levels than rat pyramidal 167 
neurons (Figure 2C). The average FCI of all 12 human and 12 rat neurons modeled is 168 
respectively 0.3803 and 0.2244. The difference in the FCI between the two species is 169 
highly significant (two-sided t-test p=9.796e-12). Within rat pyramidal neurons, layer 5 170 
pyramidal neurons are significantly more complex than layer 2/3 pyramidal neurons 171 
(Figure 2B, green, two-sided t-test p=0.048). Interestingly, this is not the case in 172 
humans, where layer 2/3 pyramidal neurons are significantly more complex both 173 
compared to layer 4 (two-sided t-test p=0.013) and layer 5 (two-sided t-test p=0.010) 174 
pyramidal neurons (Figure 2B, orange). It is interesting to note that in the human 175 
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cortex, layer 2/3 is expanded relative to layer 5 (Galakhova et al., 2022), and contains 176 
several novel cell types (Berg et al., 2021 and see Discussion). 177 

 178 

Figure 2. Human cortical pyramidal neurons are more functionally complex compared 179 
to rat cortical pyramidal neurons. A. Top: Functional complexity index (FCI) scores for all 180 
24 (12 rat in orange and 12 human in green) modeled neurons depicted alongside with their 181 
respective morphology (bottom). B. Comparison of FCI per cortical layer for rat neurons 182 
(orange) and human neurons (green). C. Overall comparison of the FCI between the two 183 
species, see Methods and Table S1 for morphological details. * p value smaller than 0.05, 184 
and **** p value smaller than 0.0001. 185 

In summary, Figure 2 demonstrates that our new index for assessing the functional 186 
complexity of neurons is sensitive enough to capture variation between cortical 187 
pyramidal neurons across cortical layers and across species. 188 

What are the specific factors that contribute to the greater functional complexity of 189 
human neurons? To answer this question, we first examined whether morphological 190 
properties per se are responsible for the greater complexity of human cortical 191 
pyramidal neurons. To that end, we repeat our FCI assessment process, only now 192 
assigning rat type synapses to all morphologies, both human and rat (see Methods). 193 
Compared to Figure 2 where we used rat synapses for rat models and human 194 
synapses for human models, here the difference between species is less pronounced, 195 
although human neurons still exhibit statistically significant higher FCI, on average 196 
(Figure S5, two-sided t-test p=0.022). This implies that some morphological features 197 
contribute to the extra-complexity of human neurons, in addition to the crucial role of 198 
synaptic properties that we examine later in Figure 4. 199 

We next extracted 58 different morphological features for the modeled neurons (see 200 
Methods). In particular, we characterized morphological features related to trunk 201 
branches (branches that emerge from the soma and end in a bifurcation) as well as 202 
features related to termination branches (branches starting from a bifurcation and 203 
ending at the dendritic tip), and bifurcation branches (all other branches – those that 204 
start and end in a bifurcation), see Figure 3A for a graphical demonstration. In order 205 
to study which morphological features best predict the FCI, we computed the 206 
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correlation between the FCI and each of the 58 features measured (Figure 3B-E, I). 207 
Figure 3I presents a histogram of the 𝑅𝑅2 correlation values between the FCI and 208 
individual features. It is evident that only a few specific features explain a substantial 209 
portion of the FCI’s variance. The single feature best predicting the FCI was the entire 210 
area of the dendritic tree (total dendritic area), with 𝑅𝑅2 = 0.74 (Figure 3B). The total 211 
length of bifurcating branches (orange branches in Figure 3A) achieved an 𝑅𝑅2 = 0.45 212 
(Figure 3C), whereas longest bifurcation branch, which is closely related to the 213 
maximal path distance of the tree from soma to tip, achieved an 𝑅𝑅2 = 0.44 (Figure 3D). 214 
Surprisingly, the feature reflecting the number of bifurcation branches, achieved a 215 
modest 𝑅𝑅2 of 0.29 (Figure 3E). 216 

Next, we asked what is the minimum number of combined features that most closely 217 
predict the FCI. Figure 3J displays a histogram of the 𝑅𝑅2 values showing how well 218 
pairs of features account for the complexity index. This analysis reveals that pairs of 219 
features, when considered together, generally provide a greater explanation of the 220 
complexity variance than individual features. Figure 3F illustrates the 𝑅𝑅2 values 221 
explained by different feature pairs. Notably, the most predictive pairs consistently 222 
included total dendritic area. The most predictive pair also included longest bifurcation 223 
branch, that together with total dendritic area achieved 𝑅𝑅2 of 0.81. In Figure 3G, we 224 
correlated the FCI with triplets of features, each including total dendritic area. Again, 225 
all triplets best predicting the FCI always included longest bifurcation branch, with the 226 
best triplet attaining a value of 𝑅𝑅2 = 0.85 (total dendritic area, longest bifurcation 227 
branch and longest trunk branch). Finally, in Figure 3H, we correlated the FCI with 228 
quadruples of features, containing both total dendritic area and longest bifurcation 229 
branch. The best predicting quadruple achieved a value of 𝑅𝑅2 = 0.88. Overall, the best 230 
third and fourth features were related to either apical or basal trunk branches and 231 
terminal branches. Importantly, the coefficients of the third and fourth features were 232 
negative, suggesting that the less dendritic length is invested in trunk branches and 233 
terminal branches, the more complex the neuron is. In other words, the greater the 234 
dendritic length allocated to bifurcation branches, the more complex the neuron 235 
becomes (see Discussion). Using additional features beyond this core group of four 236 
features marginally contributes to the variance explained (Figure 3K). Notably, the full 237 
complexity can be entirely explained using a total of 23 features (Figure 3K, top point 238 
at right). 239 
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 240 

Figure 3. Correspondence between morphological features and the functional 241 
complexity index. A. Human layer 2/3 dendritic tree colored by three dendritic subtrees 242 
(trunk, bifurcation and termination) as indicated at top left. B-E. Correlation between single 243 
morphological features and FCI; green circles for human neurons and orange circles for rat 244 
neurons. F. Correlations between FCI with pairs of morphological features (the diagonal refers 245 
to the correlation with the single feature). Yellow square highlights the largest correlation. G. 246 
Correlations between FCI and triplets of morphological features. Each pair depicted already 247 
incorporates the total dendritic area. H. FCI correlation with quadruplets of morphological 248 
features; each case includes the total dendritic area and the longest bifurcation branch. I. 249 
Distribution of FCI correlation with single morphological features. J. Distribution of FCI 250 
correlation with a pair of morphological features. K. Maximal correlation achieved using 251 
increasing numbers of morphological features; the cases corresponding to B, F, G and H are 252 
marked above the graph. 253 

In Figure 4, we explore the impact of synaptic properties that, as mentioned above, 254 
contribute to the increased complexity of human pyramidal cells compared to rat 255 
pyramidal cells. To that end, we repeated our FCI assessment process, only now 256 
assigning each morphology with either one of four different synaptic types: rat 257 
synapses, human synapses, and two hybrid variants that attempt to disentangle the 258 
specific contributions of synaptic conductance of AMPA + NMDA channels, and NMDA 259 
𝛾𝛾 factor values that are related to the steepness of the NMDA nonlinearity (see 260 
Equation (6) in Methods). The hybrid A synaptic type has the rat type synapse 261 
parameters (including rat conductance values) together with the human 𝛾𝛾 factor, 262 
whereas the hybrid B synaptic type has the human type synapse parameters 263 
(including human conductance values), together with the rat 𝛾𝛾 factor (see Methods 264 
and Table S2).  265 

In order to investigate the NMDA receptor nonlinearity across various synaptic types, 266 
we progressively activated an increasing number of synapses along a dendritic 267 
segment of a representative human layer 2/3 neuron model (Figure 4A), examining 268 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


the four distinct synaptic types. The resulting local dendritic responses are illustrated 269 
in Figure 4B-E, whereas the corresponding somatic voltage responses are depicted in 270 
Figure 4F-I. Figure 4J shows the peak somatic voltage as a function of the number of 271 
activated synapses on a single oblique branch of a human L2/3 model as shown in 272 
Figure 4A, for each of the 4 synapse types used. The rat and hybrid A type synapses 273 
exhibited linear responses with fewer than 50 simultaneous synaptic activations. The 274 
inset demonstrates that in these two cases, the NMDA response is saturated with this 275 
number of activated synapses. However, with the same number of 50  activated 276 
synapses, both human and hybrid B type synapses demonstrated a significant 277 
increase in somatic voltage response, which results from the generation of highly 278 
nonlinear NMDA spike in the activated oblique dendrite. Notably, the human synapse 279 
type exhibited a critical transition to steep nonlinearity around the activation of 35 280 
synapses, shifting from sublinear to supralinear summation of synaptic inputs. 281 

Indeed, we found that models with human type synapses were significantly more 282 
complex than models with rat type synapses, across rat morphologies (Figure 4L), 283 
across human morphologies (Figure 4M) and across all morphologies together (Figure 284 
4K). However, models with either hybrid A or hybrid B synaptic types were only slightly 285 
more complex than models with rat synaptic types. These findings are consistent with 286 
the results shown in Figure 4J, highlighting the impact of the more nonlinear NMDA 287 
receptors on the complexity of human neurons. 288 

We conclude that the contribution of synaptic properties to the increased complexity 289 
of human pyramidal cells, compared to rat, is primarily driven by the enhanced 290 
nonlinearity of the NMDA receptor dynamics. 291 

 292 

Figure 4. Correspondence between various synaptic features and the functional 293 
complexity index. A. Modeled human layer 2/3 pyramidal neuron; the oblique branch 294 
receiving excitatory synapses is depicted in red with yellow electrode at left. B-E Local 295 
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dendritic voltage responses in the activated oblique branch of the modeled cells shown in A 296 
for different synaptic types; when increasing the numbers of simultaneously activated 297 
synapses (from 5 synapses to 400 synapses) B. Rat synapses where used (orange). C. Rat 298 
synapses with the γ factor of human for the NMDA conductance (pink). D. Human synapses 299 
with γ factor of rat (blue). E. Human synapses were used (green). F-I as in B-E but the 300 
respective soma voltage response. J. Somatic EPSP amplitude as a function of the number 301 
of activated dendritic synapses, for the four cases shown in F-I. K. FCI distribution for all 302 
(human and rat) 24 morphologies, for the 4 different synapse types/cases (colours as in B-I). 303 
L. FCI distribution for rat morphologies, with the different synapse types. M FCI distribution for 304 
human morphologies, given different synapse types, see Methods). * p value smaller than 305 
0.05, and **** p value smaller than 0.0001. 306 

 307 

Discussion 308 

Human neurons exhibit distinct structural and biophysical properties compared to 309 
those of rats, yet it is unclear whether these differences translate into a greater 310 
functional complexity at the system level that could explain humans' elevated cognitive 311 
abilities. Utilizing a deep learning-based framework, we developed a novel generalized 312 
Functional Complexity Index (FCI) to systematically assess the input-output 313 
complexity of neurons. Using the FCI, we demonstrated that human cortical pyramidal 314 
neurons are significantly more functionally complex than their rat counterparts, 315 
suggesting a link between neuronal complexity and enhanced cognitive abilities in 316 
humans. This is due to differences in both morphological features and dynamics of 317 
excitatory synapses. In particular, we have shown that human neurons are functionally 318 
more complex thanks to their larger surface dendritic area and extensive bifurcation 319 
patterns. In addition, human NMDA-activated receptors exhibit steeper nonlinear 320 
voltage responses, enabling more complex I/O relationship.  321 

Since the seminal studies of W. Rall (1959, 1964, 1977), highly realistic fine-scale 322 
biophysical models of individual neurons were constructed across brain regions and 323 
across species (Hay et al., 2011; Markram et al., 2015; Allen Institute for Brain 324 
Science, 2015, Eyal et al., 2018, Hunt et al., 2023). These models reflected the 325 
remarkable variability in morphology and physiology of cortical neurons, both within 326 
and between species, human cortex included. Despite significant progress in 327 
“understanding neurons”, a crucial gap persisted: we lacked a systematic, quantitative 328 
tool to measure the functional complexity of neurons; namely the complexity of their 329 
I/O relationship. Such measure is key for comparing neurons’ complexity across 330 
different neuronal types, layers  and species, but most crucially, for connecting the 331 
computational complexity of single neurons to that of the neuronal network. 332 

Our proposed FCI measure addresses this issue by quantifying the functional 333 
complexity of the I/O function of neurons at the synapse(input)-to-spike(output) 334 
resolution, based directly on their morpho-electrical properties. Unlike previous 335 
methods, such as Poirazi and Mel (2001), that used abstract models to infer memory 336 
capacity, our approach directly evaluates the complexity of detailed biophysical 337 
models of neurons. Since these models more closely match real neurons, the FCI 338 
provides a biologically accurate representation of their computational capacity. 339 
Compared to compartmental modeling studies, like Eyal et al. (2018), that focused on 340 
the number of nonlinear dendritic subunits, the FCI provides greater scalability by 341 
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using deep learning techniques (Beniaguev et al., 2021) to generalize across various 342 
neuron types and species. Additionally, whereas previous work limited its scope to 343 
subthreshold dynamics (e.g., Ujfalussy et al. 2018), the FCI captures both 344 
suprathreshold and subthreshold behaviors. 345 

It is worth mentioning that rather than using the depth of the analogue DNN of the 346 
respective biophysical neuron model as a proxy for its complexity, the FCI is evaluated 347 
based on the accuracy of a fixed-size DNN (three layers in this study) in matching the 348 
I/O of the biophysical model. This provides a more precise and interpretable metric for 349 
assessing the functional complexity of neurons and understanding the underpinning 350 
of this complexity. A neuron that achieves a larger FCI score typically requires a 351 
deeper DNN to accurately replicate its I/O behavior, thus maintaining the connection 352 
between complexity and network depth. Consequently, the FCI can be viewed as a 353 
measure of how “deep” a neuron’s computational capabilities are, analogue to how 354 
deeper artificial neural networks capture more complex patterns. In this sense, a 355 
higher FCI value reflects the neuron’s capability of performing more complex, layered 356 
processing. 357 

The fixed DNN architecture used to assess neuron complexity makes the FCI a robust, 358 
interpretable measure. It enables a systematic comparison of neurons, revealing how 359 
their morphology and biophysics shape their functional complexity. However, this 360 
measure faces several challenges, notably the computational cost of generating large 361 
I/O datasets from the biophysical model and training the respective neural networks, 362 
especially when varying biophysical parameters and morphology of neurons. 363 
Additionally, the use of output normalization in the FCI (see Methods) focuses the 364 
sampling on a particular regime of the model's I/O space. Moreover, the method 365 
depends on specific hyperparameters and DNN architecture, which might influence 366 
accuracy and introduce variability in the value of the respective FCI. Overly expressive 367 
architectures may reduce complexity differences, whereas under-expressive ones 368 
may inflate them, misrepresenting simpler neurons. Careful architecture selection is 369 
crucial to avoid overfitting or oversimplification and to ensure a meaningful dynamic 370 
range. Notice that the numerical values of the FCI depend on the specific DNN 371 
architectural choices, making it a measure that is relative to the selected architecture.  372 

To address these issues, we used a three-layer temporally convolutional network 373 
(TCN), a DNN architecture that has been shown to successfully predict the I/O function 374 
of a biophysically detailed model of rat L5 pyramidal cell across multiple scenarios 375 
(Beniaguev et al., 2021). Furthermore, we validated the robustness of our approach 376 
by testing a subset of neurons with slightly different architectures, a two-layer TCN 377 
and a seven-layer TCN instead of a three-layer TCN. We found that the rankings of 378 
neuron complexities remained consistent with the ranking presented in our results (not 379 
shown). This demonstrates that the method reliably captures complexity differences 380 
across neuronal types and species. 381 

We found that the increase in FCI in humans is correlated with a larger surface area 382 
of the dendritic tree, larger dendritic tree height (soma-to-tip distance), and a greater 383 
proportion of the dendritic length allocated to bifurcation branches (Figure 3). The 384 
larger dendritic tree size combined with the increased allocation of dendritic length to 385 
bifurcation branches possibly enables greater compartmentalization, allowing distinct 386 
regions of the dendritic tree to process inputs semi-independently, enhancing 387 
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computational capacity (Polsky et al., 2004; Beualieu-Laroche et al., 2018; Eyal et al., 388 
2018; Beualieu-Laroche et al., 2021; Otor et al., 2022). It is worth noting that without 389 
considering the features related to tree size, the correlation of the number of branches 390 
per se is rather poor. While previous works (Poirazi and Mel, 2001) emphasized the 391 
number of independent subunits as a key factor for memory capacity, our results 392 
suggest an interaction between tree size and bifurcation pattern that determines the 393 
number and the level of independence of subunits. 394 

Human neurons have larger dendritic spine head area compared to rodents 395 
(Benavides-Piccione et al., 2002; Ofer et al., 2022) and correspondingly, more NMDA 396 
receptors per synapse (Eyal et al., 2018; Hunt et al., 2023) with stronger nonlinear 397 
voltage-dependent dynamics (Eyal et al., 2018; but see Testa-Silva et al., 2022). 398 
These synaptic properties enable stronger and larger combinatorial interactions 399 
between local excitatory synapses; this contributes to a more nonlinear and complex 400 
I/O relationship and thus to a larger FCI (Figure 4). These findings agree with previous 401 
research linking synaptic nonlinearity to functional complexity (Mel, 1992; Mel, 1994; 402 
Larkum et al., 1999; Schiller et al., 2000; Branco et al., 2010; Major et al., 2013; 403 
Larkum et al., 2020). 404 

These morpho-biophysical features contributing to neuronal complexity are also 405 
reflected in differences in FCI value across cortical layers. Human layer 2/3 pyramidal 406 
neurons exhibit greater complexity than neurons in other layers, including the large 407 
layer 5 neurons (Figure 2). This is an opposite pattern to that observed in rats, where 408 
layer 5 pyramidal neurons are the most complex. It was shown that human cortical 409 
layer 2/3 is expanded relative to other cortical layers, including layer 5 (Galakhova et 410 
al., 2022). Taken together, these findings suggest that humans have more layer 2/3 411 
neurons, each of which is individually more complex. This might relate to the 412 
increased, and potentially novel (Berg et al., 2021), role of layer 2/3 in human cortical 413 
computation. 414 

Future research could expand this study to explore the impact of active dendritic 415 
properties, such as those of voltage-dependent Na+ and Ca+2 ion channels on the FCI, 416 
as these channels have unique properties in human dendrites (Gidon et al., 2020; 417 
Gooch et al., 2022). Unfortunately, accurate models with dendritic nonlinear 418 
conductance validated against experimental data remain quite rare, highlighting the 419 
need for further advancements in this area. Also warrants further investigation is the 420 
impact of the abundant dendritic spines on the I/O transformation of human cortical 421 
neurons (Yuste et al., 1995; Benavides-Piccione et al., 2002; Elston et al., 2003), their 422 
unique axonal excitability (Wilbers et al., 2023) and local connectivity patterns 423 
(DeFelipe, 2011; Oh et al., 2014; Loomba et al., 2022; Shapson-Coe et al., 2024). 424 
Another worthy direction is to extend this study onto additional neuronal types such as 425 
hippocampal CA1 and CA3 pyramidal neurons and cerebellar Purkinje cells. Studying 426 
the FCI in neurons of other species (e.g., non-human primates) and exploring how the 427 
functional complexity of neurons (the FCI) impact network-level computations would 428 
deepen our understanding of how neuronal diversity impact cognitive capabilities. 429 

  430 
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Methods 431 

Neuron morphologies 432 

Morphologies of 24 3D-reconstructed cortical pyramidal neurons were used in this 433 
study, 12 rat pyramidal cells and 12  human pyramidal cells. 3 neurons were modeled 434 
from each of the following layers: layer 2/3, layer 4, layer 5, layer 6. Rat neurons were 435 
taken from (Hay et al., 2011; Markram et al., 2015; Reimann et al., 2024) and human 436 
neurons from (Mohan et al., 2015; Allen Institute for Brain Science, 2015). To consider 437 
the variability in the reconstruction quality, the diameters of all morphologies were 438 
edited such that no diameter would be smaller than 0.3 𝜇𝜇𝜇𝜇. A complete description of 439 
the morphologies used is provided in Supplementary Table 1. 440 

Neuron models 441 

We constructed a detailed biophysical model (Rall, 1964) for each morphology. All 442 
models have specific membrane capacitance Cm = 1µF/cm2, specific axial resistance 443 
𝑅𝑅𝑎𝑎 = 150 Ω 𝑐𝑐𝑐𝑐 and specific membrane resistance 𝑅𝑅𝑚𝑚 = 20,000 Ω cm2. All models 444 
were equipped with spike-generating voltage-dependent Na+ and K+ ion channels in 445 
the soma and axon. Channel kinetic is as in Hay et at. (2011). The maximal 446 
conductance of the active channels of all models was fit to match the experimental F-447 
I curve as in Hay et al. (2011). The maximal conductance of the active channels in the 448 
soma and axon of all morphologies were normalized by the electrical load that the 449 
dendritic tree imposes on the soma (𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) and on the axon (𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎), using the rho 450 
scaling method (Hay et al., 2013). By this, the conductance of each somatic or axonal 451 
active channel for each morphology was set as follows: 452 

𝑔̅𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑔̅𝑔ℎ𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜌𝜌ℎ𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 , 𝑔̅𝑔𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑔̅𝑔ℎ𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ⋅

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜌𝜌ℎ𝑎𝑎𝑎𝑎,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
  (2) 453 

Where 𝜌𝜌 is the dendrite-to-soma or dendrite-to-axon conductance ratio defined as: 454 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑔𝑔𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑔𝑔𝑖𝑖𝑖𝑖,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 ,𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑔𝑔𝑖𝑖𝑖𝑖,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑔𝑔𝑖𝑖𝑖𝑖,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

           (3) 455 

Synapse models  456 

For each neuron model, one excitatory AMPA + NMDA-based synapse and one 457 
inhibitory GABAA-based synapse were placed on every 1𝜇𝜇𝜇𝜇 dendritic length. The 458 
synaptic current was modeled as:  459 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡,𝑉𝑉) ⋅ (𝑉𝑉 − 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠)           (4) 460 

Where 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 is the reversal potential for the synaptic current and 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 is the synaptic 461 
conductance modeled using two-state kinetic scheme: 462 

𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡,𝑉𝑉) = 𝐵𝐵 ⋅ 𝑔̅𝑔 ⋅ 𝑁𝑁 ⋅ (exp(−𝑡𝑡/𝜏𝜏𝑑𝑑) − exp(−𝑡𝑡/𝜏𝜏𝑟𝑟))           (5) 463 

Here 𝑔̅𝑔 is the peak conductance and 𝑁𝑁 is a normalization factor given by: 464 

𝑁𝑁 = 1
exp(−𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝜏𝜏𝑑𝑑)−exp(−𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝜏𝜏𝑟𝑟))

           (6) 465 
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where 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, time to peak of the conductance, is: 466 

𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟⋅𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

⋅ log(𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

)           (7) 467 

Where τrise and τdecay are the rise time and decay time constants. For AMPA and 468 
GABAA conductances, 𝐵𝐵 = 1 (voltage-independent conductance). 469 

For the voltage-dependent NMDA conductance B was defined as in Jahr and 470 
Stevens (1990): 471 

𝐵𝐵 = 1
1+exp(−𝛾𝛾⋅𝑉𝑉)⋅[𝑀𝑀𝑔𝑔2+]⋅𝑛𝑛

           (8) 472 

[𝑀𝑀𝑔𝑔2+] was set to 1 𝑚𝑚𝑚𝑚, n was 1/3.57mM. The kinetics (synaptic rise and decay 473 
time constants, etc.) and conductances of rat synapses were taken from Markram et 474 
al. (2015), while those of human synapses were taken from Eyal et al. (2018). The 475 
“hybrid A” and “hybrid B” type synapses included a mix of rat and human synaptic 476 
properties. A full description of the synaptic properties is provided in Supplementary 477 
Table 2. 478 

Normalizing for the input firing rates 479 

In order to avoid the possible confounding effect of the different firing rates of different 480 
models on the FCI, we carefully selected the rate of the input excitatory (E) as well as 481 
inhibitory (I) synapses such that the average output firing rate of all models will be 1 482 
sp/s. For each model, we chose 10 valid input E/I firing rate combinations that resulted 483 
in an average output firing rate that is within 0.01 sp/s around the chosen 1 sp/s mark. 484 
Every valid input firing rate combination spans a range of 0.1 sp/s difference in firing 485 
rate both in excitation and in inhibition (for example, a valid input firing rate combination 486 
of a specific model might be 1-1.1 sp/s in excitation and 2-2.1 sp/s in inhibition, which  487 
amounts for an average output firing rate of 1.005 sp/s). To find valid input firing rate 488 
combinations, we exhaustively searched the input firing rate space between 0 sp/s to 489 
20 sp/s in both excitation and inhibition (Figure S3). 490 

Simulations and resulting datasets 491 

In order to fit DNN models per simulated neuron, we followed the study of Beniaguev 492 
et al. (2021). First, we generated a simulation dataset for each modeled neuron. In 493 
each simulation, the modeled neuron was stimulated by random excitatory and 494 
inhibitory synaptic input (one synapse per 1𝜇𝜇𝜇𝜇 dendritic length) distributed randomly 495 
over the dendritic surface of the modeled neuron for a duration of 10 s. As explained 496 
above, in each simulation we used an input regime that results in an output firing rate 497 
of ~1 sp/s. Each presynaptic spike train was sampled from a Poisson process with a 498 
smoothed piecewise constant instantaneous firing rate. The Gaussian smoothing 499 
sigma, as well as the time window of constant rate before smoothing, were 500 
independently resampled for each 10 s simulation from the range of 10 ms to 1000 501 
ms. This was the case, as opposed to choosing a constant firing rate, to create 502 
additional temporal variations in the data, in order to increase the applicability of the 503 
results to a wide range of potential input regimes. For each neuron model, we created 504 
a dataset consisting of 12,000 train simulations of 10 s each, equivalent to ~1.4 days 505 
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of neural data (see below). Simulations were performed using NEURON software 506 
(Carnevale and Hines, 2006) and were run in parallel on a CPU cluster. 507 

Fitting I/O of neuron models to respective DNNs 508 

We followed Beniaguev et al. (2021) to train DNNs based on the neuron model 509 
simulation datasets. The DNN was fed as an input with the same presynaptic spike as 510 
the biophysical model did. The respective DNN was expected to produce voltage 511 
output that matches as closely as possible both the subthreshold and the spiking 512 
activity at the soma. In this study, we predefined a fixed-size temporally convolutional 513 
network (TCN) with 3 layers and a width of 128 units per layer for all neuron models 514 
(Beniaguev et al., 2021; Bai et al., 2018) with 3 different random initializations per 515 
modeled neuron. For a subset of the neuron models, we also fit two-layer TCNs, and 516 
repeated our measurements as explained above. We found that selecting different 517 
TCNs as a benchmark, did not affect the results qualitatively. Namely, the ranking of 518 
the neuron’s complexity remained almost the same when changing the depth of the 519 
respective TCN. Each network was trained for approximately 4 days of neural data, 520 
corresponding to roughly 3 full epochs over the entire training dataset. The total 521 
number of single GPU years needed to fit all DNNs throughout the entire study was 522 
∼2.3 years. 523 

DNN performance 524 

We divided our 12,000 simulations to a training set of 10,000 simulations, a validation 525 
set of 1,000 simulations and a test set of 1,000 simulations. We fitted all DNN models 526 
on the training set and calculated the DNN performance on the unseen test set. The 527 
validation set was used for modeling decisions, hyperparameter tuning and snapshot 528 
selection during the training process (early stopping). The DNN’s task was the binary 529 
classification task of predicting whether the neuron emitted a spike in all 1 ms time 530 
points. This was evaluated using the receiver operator characteristic (ROC) of binary 531 
spike prediction. The performance was finally quantified using the area under the 532 
curve (AUC) of the ROC. Additional details are found in Beniaguev et al. (2021). 533 

Functional Complexity Index 534 

We defined the Functional Complexity Index (FCI) of a neuron model as inversely 535 
proportional to the performance of its respective DNN (Figure 1 and Equation (1)). 536 
Specifically, the performance of the DNN model was quantified using the Area Under 537 
Curve (AUC) measure. We found that typical values of AUC of such models ranged 538 
between 0.9 to 0.999 (Beniaguev et al., 2021). In other words, an  𝐴𝐴𝐴𝐴𝐴𝐴 = 0.9 indicates 539 
a very poor performance of the DNN. Therefore, the 𝐹𝐹𝐹𝐹𝐹𝐹 of such cases was set to 1 540 
(Equation (1)). For a great performance where the 𝐴𝐴𝐴𝐴𝐴𝐴 = 0.999, the FCI was set to 0 541 
(see Figure S4 for the full relationship between the FCI and the AUC) 542 

Morphological features 543 

We used NeuroM (Arnaudon et al., 2024) to calculate the values of various 544 
morphological features for each of our modeled morphologies. The following features 545 
were considered: total dendritic length, total dendritic area, number of forking points, 546 
number of bifurcation points (a forking point of exactly two branches), number of 547 
leaves, max Radial distance, max branch order, mean sibling ratio, sum/mean/longest 548 
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bifurcation branches, sum/mean/longest terminal branches and sum/mean/longest 549 
trunk branches. Each of these features was calculated separately for the basal and 550 
the apical trees of each morphology. Additionally, we used three features related to 551 
the entropy of the topological representation of the dendritic tree (Kanari et al., 2018), 552 
namely, the sum/mean/max entropy of the morphology. In total, we had 58 553 
morphological features. 554 

Correlation between morphological features and complexity 555 

To predict the value of the FCI from the neuron’s morphological features, we used 556 
linear regression to fit the following equation:  557 

𝐹𝐹𝐹𝐹𝐹𝐹(𝑚𝑚) = ∑ 𝛼𝛼𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑓𝑓𝑖𝑖(𝑚𝑚) + 𝛽𝛽    (9) 558 

where 𝑓𝑓𝑖𝑖(𝑚𝑚) is the 𝑖𝑖-th feature computed for a given morphology, 𝑚𝑚. 𝛼𝛼𝑖𝑖 is the fitted 559 
coefficient for the 𝑖𝑖-th feature; 𝛽𝛽 is a fitting bias and 𝑛𝑛 is the number of features used 560 
for fitting. In this study, we computed Equation (7) with 𝑛𝑛 ranging from 1 to 4. 561 

Given a linear regression curve, we calculate the 𝑅𝑅2 to quantify how well this curve fits 562 
the data. The results for different numbers of features (𝑛𝑛) are provided in Figure 3. In 563 
Figure 3F-H, yellow square indicates the highest correlation. 564 
  565 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 566 

Allen Institute for Brain Science (2015). Allen Cell Types Database -- Human 567 
Morphology-Electrophysiology [Dataset]. Available from celltypes.brain-568 
map.org/data. RRID:SCR_014806 569 

Arnaudon, A., Berchet, A., Courcol, J.-D., Coste, B., Gevaert, M., Kanari, L., Sanin, 570 
A., Palacios, J., Vanherpe, L., & Zisis, E. (2024). NeuroM (Version v3.2.8) [Computer 571 
software]. Zenodo.  572 

Axer, M., & Amunts, K. (2022). Scale matters: The nested human connectome. 573 
Science, 378(6619), 500–504.  574 

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An Empirical Evaluation of Generic 575 
Convolutional and Recurrent Networks for Sequence Modeling (arXiv:1803.01271). 576 
arXiv. 577 

Beaulieu-Laroche, L., Toloza, E. H. S., Goes, M.-S. van der, Lafourcade, M., 578 
Barnagian, D., Williams, Z. M., Eskandar, E. N., Frosch, M. P., Cash, S. S., & 579 
Harnett, M. T. (2018). Enhanced Dendritic Compartmentalization in Human Cortical 580 
Neurons. Cell, 175(3), 643-651.e14. 581 

Beaulieu-Laroche, L., Brown, N. J., Hansen, M., Toloza, E. H. S., Sharma, J., 582 
Williams, Z. M., Frosch, M. P., Cosgrove, G. R., Cash, S. S., & Harnett, M. T. (2021). 583 
Allometric rules for mammalian cortical layer 5 neuron biophysics. Nature, 584 
600(7888), 274–278. 585 

Behabadi, B. F., & Mel, B. W. (2014). Mechanisms underlying subunit independence 586 
in pyramidal neuron dendrites. Proceedings of the National Academy of Sciences, 587 
111(1), 498–503. 588 

Benavides-Piccione, R., Ballesteros-Yáñez, I., DeFelipe, J., & Yuste, R. (2002). 589 
Cortical area and species differences in dendritic spine morphology. Journal of 590 
Neurocytology, 31(3), 337–346.  591 

Beniaguev, D., Segev, I., & London, M. (2021). Single cortical neurons as deep 592 
artificial neural networks. Neuron, 109(17), 2727-2739.e3. 593 

Berg, J., Sorensen, S. A., Ting, J. T., Miller, J. A., Chartrand, T., Buchin, A., Bakken, 594 
T. E., Budzillo, A., Dee, N., Ding, S.-L., Gouwens, N. W., Hodge, R. D., Kalmbach, 595 
B., Lee, C., Lee, B. R., Alfiler, L., Baker, K., Barkan, E., Beller, A., … Lein, E. S. 596 
(2021). Human neocortical expansion involves glutamatergic neuron diversification. 597 
Nature, 598(7879), 151–158. 598 

Branco, T., Clark, B. A., & Häusser, M. (2010). Dendritic Discrimination of Temporal 599 
Input Sequences in Cortical Neurons. Science, 329(5999), 1671–1675. 600 

Carnevale, N. T., & Hines, M. L. (2006). The NEURON Book. Cambridge University 601 
Press.  602 

Chameh, H. M., Falby, M., Movahed, M., Arbabi, K., Rich, S., Zhang, L., Lefebvre, J., 603 
Tripathy, S. J., De Pittà, M., & Valiante, T. A. (2023). Distinctive biophysical features 604 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


of human cell-types: Insights from studies of neurosurgically resected brain tissue. 605 
Frontiers in Synaptic Neuroscience, 15, 1250834. 606 

DeFelipe, J. (2011). The evolution of the brain, the human nature of cortical circuits, 607 
and intellectual creativity. Frontiers in Neuroanatomy, 5, 29. 608 

Deitcher, Y., Eyal, G., Kanari, L., Verhoog, M. B., Atenekeng Kahou, G. A., 609 
Mansvelder, H. D., de Kock, C. P. J., & Segev, I. (2017). Comprehensive Morpho-610 
Electrotonic Analysis Shows 2 Distinct Classes of L2 and L3 Pyramidal Neurons in 611 
Human Temporal Cortex. Cerebral Cortex, 27(11), 5398–5414. 612 

Elston, G. N. (2003). Cortex, cognition and the cell: new insights into the pyramidal 613 
neuron and prefrontal function. Cerebral Cortex, 13(11), 1124-1138. 614 

Eyal, G., Verhoog, M. B., Testa-Silva, G., Deitcher, Y., Lodder, J. C., Benavides-615 
Piccione, R., Morales, J., DeFelipe, J., de Kock, C. P., Mansvelder, H. D., & Segev, 616 
I. (2016). Unique membrane properties and enhanced signal processing in human 617 
neocortical neurons. eLife, 5. 618 

Eyal, G., Verhoog, M. B., Testa-Silva, G., Deitcher, Y., Benavides-Piccione, R., 619 
DeFelipe, J., de Kock, C. P. J., Mansvelder, H. D., & Segev, I. (2018). Human 620 
Cortical Pyramidal Neurons: From Spines to Spikes via Models. Frontiers in Cellular 621 
Neuroscience, 12.  622 

Gabi, M., Neves, K., Masseron, C., Ribeiro, P. F. M., Ventura-Antunes, L., Torres, L., 623 
Mota, B., Kaas, J. H., & Herculano-Houzel, S. (2016). No relative expansion of the 624 
number of prefrontal neurons in primate and human evolution. Proceedings of the 625 
National Academy of Sciences, 113(34), 9617–9622. 626 

Galakhova, A. A., Hunt, S., Wilbers, R., Heyer, D. B., de Kock, C. P. J., Mansvelder, 627 
H. D., & Goriounova, N. A. (2022). Evolution of cortical neurons supporting human 628 
cognition. Trends in Cognitive Sciences, 26(11), 909–922.  629 

Gidon, A., Zolnik, T. A., Fidzinski, P., Bolduan, F., Papoutsi, A., Poirazi, P., 630 
Holtkamp, M., Vida, I., & Larkum, M. E. (2020). Dendritic action potentials and 631 
computation in human layer 2/3 cortical neurons. Science, 367(6473), 83–87. 632 

Gooch, H. M., Bluett, T., Perumal, M. B., Vo, H. D., Fletcher, L. N., Papacostas, J., ... 633 
& Williams, S. R. (2022). High-fidelity dendritic sodium spike generation in human 634 
layer 2/3 neocortical pyramidal neurons. Cell reports, 41(3).  635 

Han, X., Guo, S., Ji, N., Li, T., Liu, J., Ye, X., Wang, Y., Yun, Z., Xiong, F., Rong, J., 636 
Liu, D., Ma, H., Wang, Y., Huang, Y., Zhang, P., Wu, W., Ding, L., Hawrylycz, M., 637 
Lein, E., … Peng, H. (2023). Whole human-brain mapping of single cortical neurons 638 
for profiling morphological diversity and stereotypy. Science Advances, 9(41), 639 
eadf3771. 640 

Häusser, M., & Mel, B. (2003). Dendrites: Bug or feature? Current Opinion in 641 
Neurobiology, 13(3), 372–383 642 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Hay, E., Hill, S., Schürmann, F., Markram, H., & Segev, I. (2011). Models of 643 
Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of Dendritic and 644 
Perisomatic Active Properties. PLOS Computational Biology, 7(7), e1002107.  645 

Hay, E., Schürmann, F., Markram, H., & Segev, I. (2013). Preserving axosomatic 646 
spiking features despite diverse dendritic morphology. Journal of Neurophysiology, 647 
109(12), 2972–2981.  648 

Hunt, S., Leibner, Y., Mertens, E. J., Barros-Zulaica, N., Kanari, L., Heistek, T. S., 649 
Karnani, M. M., Aardse, R., Wilbers, R., Heyer, D. B., Goriounova, N. A., Verhoog, 650 
M. B., Testa-Silva, G., Obermayer, J., Versluis, T., Benavides-Piccione, R., de Witt-651 
Hamer, P., Idema, S., Noske, D. P., … de Kock, C. P. J. (2023). Strong and reliable 652 
synaptic communication between pyramidal neurons in adult human cerebral cortex. 653 
Cerebral Cortex, 33(6), 2857–2878. 654 

Isbister, J. B., Ecker, A., Pokorny, C., Bolaños-Puchet, S., Santander, D. E., 655 
Arnaudon, A., Awile, O., Natali, B.-Z., Alonso, J. B., Boci, E., Chindemi, G., Courcol, 656 
J.-D., Damart, T., Delemontex, T., Dietz, A., Ficarelli, G., Gevaert, M., Herttuainen, 657 
J., Ivaska, G., … Reimann, M. W. (2023). Modeling and Simulation of Neocortical 658 
Micro- and Mesocircuitry. Part II: Physiology and Experimentation (p. 659 
2023.05.17.541168). bioRxiv.  660 

Jahr, C. E., & Stevens, C. F. (1990). Voltage dependence of NMDA-activated 661 
macroscopic conductances predicted by single-channel kinetics. Journal of 662 
Neuroscience, 10(9), 3178–3182.  663 

Jorstad, N. L., Song, J. H. T., Exposito-Alonso, D., Suresh, H., Castro-Pacheco, N., 664 
Krienen, F. M., Yanny, A. M., Close, J., Gelfand, E., Long, B., Seeman, S. C., 665 
Travaglini, K. J., Basu, S., Beaudin, M., Bertagnolli, D., Crow, M., Ding, S.-L., 666 
Eggermont, J., Glandon, A., … Bakken, T. E. (2023). Comparative transcriptomics 667 
reveals human-specific cortical features. Science, 382(6667), eade9516. 668 

Kanari, L., Dłotko, P., Scolamiero, M., Levi, R., Shillcock, J., Hess, K., & Markram, H. 669 
(2018). A Topological Representation of Branching Neuronal Morphologies. 670 
Neuroinformatics, 16(1), 3–13. 671 

Kastellakis, G., Cai, D. J., Mednick, S. C., Silva, A. J., & Poirazi, P. (2015). Synaptic 672 
clustering within dendrites: An emerging theory of memory formation. Progress in 673 
Neurobiology, 126, 19–35 674 

Klee, M., & Rall, W. (1977). Computed potentials of cortically arranged populations 675 
of neurons. Journal of Neurophysiology, 40(3), 647–666.  676 

Koch, C., & Laurent, G. (1999). Complexity and the Nervous System. Science, 677 
284(5411), 96–98.  678 

Koch, C., & Segev, I. (2000). The role of single neurons in information processing. 679 
Nature Neuroscience, 3(11), Article 11 680 

Larkum, M. E., Zhu, J. J., & Sakmann, B. (1999). A new cellular mechanism for 681 
coupling inputs arriving at different cortical layers. Nature, 398(6725), 338–341. 682 
Scopus. 683 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Leleo, E. G., & Segev, I. (2021). Burst control: Synaptic conditions for burst 684 
generation in cortical layer 5 pyramidal neurons. PLOS Computational Biology, 685 
17(11), e1009558.  686 

London, M., & Häusser, M. (2005). Dendritic Computation. Annual Review of 687 
Neuroscience, 28, 503–532. 688 

Loomba, S., Straehle, J., Gangadharan, V., Heike, N., Khalifa, A., Motta, A., Ju, N., 689 
Sievers, M., Gempt, J., Meyer, H. S., & Helmstaedter, M. (2022). Connectomic 690 
comparison of mouse and human cortex. Science, 377(6602), eabo0924. 691 

Magee, J. C. (2000). Dendritic integration of excitatory synaptic input. Nature 692 
Reviews Neuroscience, 1(3), 181-190. 693 

Major, G., Larkum, M. E., & Schiller, J. (2013). Active properties of neocortical 694 
pyramidal neuron dendrites. Annual Review of Neuroscience, 36, 1-24. 695 

Mansvelder, H. D., Verhoog, M. B., & Goriounova, N. A. (2019). Synaptic plasticity in 696 
human cortical circuits: Cellular mechanisms of learning and memory in the human 697 
brain? Current Opinion in Neurobiology, 54, 186–193. 698 

Markram, H., Muller, E., Ramaswamy, S., Reimann, M. W., Abdellah, M., Sanchez, 699 
C. A., Ailamaki, A., Alonso-Nanclares, L., Antille, N., Arsever, S., Kahou, G. A. A., 700 
Berger, T. K., Bilgili, A., Buncic, N., Chalimourda, A., Chindemi, G., Courcol, J.-D., 701 
Delalondre, F., Delattre, V., … Schürmann, F. (2015). Reconstruction and Simulation 702 
of Neocortical Microcircuitry. Cell, 163(2), 456–492. 703 

Mihaljević, B., Larrañaga, P., & Bielza, C. (2021). Comparing the Electrophysiology 704 
and Morphology of Human and Mouse Layer 2/3 Pyramidal Neurons With Bayesian 705 
Networks. Frontiers in Neuroinformatics, 15.  706 

Mohan, H., Verhoog, M. B., Doreswamy, K. K., Eyal, G., Aardse, R., Lodder, B. N., 707 
Goriounova, N. A., Asamoah, B., B. Brakspear, A. B. C., Groot, C., van der Sluis, S., 708 
Testa-Silva, G., Obermayer, J., Boudewijns, Z. S. R. M., Narayanan, R. T., Baayen, 709 
J. C., Segev, I., Mansvelder, H. D., & de Kock, C. P. J. (2015). Dendritic and Axonal 710 
Architecture of Individual Pyramidal Neurons across Layers of Adult Human 711 
Neocortex. Cerebral Cortex, 25(12), 4839–4853. 712 

Ofer, N., Benavides-Piccione, R., DeFelipe, J., & Yuste, R. (2022). Structural 713 
analysis of human and mouse dendritic spines reveals a morphological continuum 714 
and differences across ages and species. Eneuro, 9(3). 715 

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, 716 
C., Kuan, L., Henry, A. M., Mortrud, M. T., Ouellette, B., Nguyen, T. N., Sorensen, S. 717 
A., Slaughterbeck, C. R., Wakeman, W., Li, Y., Feng, D., Ho, A., … Zeng, H. (2014). 718 
A mesoscale connectome of the mouse brain. Nature, 508(7495), 207–214. 719 

Oláh, G., Lákovics, R., Shapira, S., Leibner, Y., Szűcs, A., Csajbók, É. A., Barzó, P., 720 
Molnár, G., Segev, I., & Tamás, G. (2024). Accelerated signal propagation speed in 721 
human neocortical microcircuits. eLife, 13.  722 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Otor, Y., Achvat, S., Cermak, N., Benisty, H., Abboud, M., Barak, O., Schiller, Y., 723 
Poleg-Polsky, A., & Schiller, J. (2022). Dynamic compartmental computations in tuft 724 
dendrites of layer 5 neurons during motor behavior. Science, 376(6590), 267–275. 725 

Poirazi, P., & Mel, B. W. (2001). Impact of Active Dendrites and Structural Plasticity 726 
on the Memory Capacity of Neural Tissue. Neuron, 29(3), 779–796.  727 

Poirazi, P., Brannon, T., & Mel, B. W. (2003a). Arithmetic of Subthreshold Synaptic 728 
Summation in a Model CA1 Pyramidal Cell. Neuron, 37(6), 977–987.  729 

Poirazi, P., Brannon, T., & Mel, B. W. (2003b). Pyramidal Neuron as Two-Layer 730 
Neural Network. Neuron, 37(6), 989–999.  731 

Polsky, A., Mel, B. W., & Schiller, J. (2004). Computational subunits in thin dendrites 732 
of pyramidal cells. Nature Neuroscience, 7(6), 621–627. Scopus. 733 

Poleg-Polsky, A. (2015). Effects of Neural Morphology and Input Distribution on 734 
Synaptic Processing by Global and Focal NMDA-Spikes. PLOS ONE, 10(10), 735 
e0140254. 736 

Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. 737 
Experimental Neurology, 1(5), 491–527.  738 

Rall, W. (1994). Theoretical significance of dendritic trees for neuronal input-output 739 
relations (1964). 740 

Ramaswamy, S., Courcol, J.-D., Abdellah, M., Adaszewski, S. R., Antille, N., 741 
Arsever, S., Atenekeng, G., Bilgili, A., Brukau, Y., Chalimourda, A., Chindemi, G., 742 
Delalondre, F., Dumusc, R., Eilemann, S., Gevaert, M. E., Gleeson, P., Graham, J. 743 
W., Hernando, J. B., Kanari, L., … Markram, H. (2015). The neocortical microcircuit 744 
collaboration portal: A resource for rat somatosensory cortex. Frontiers in Neural 745 
Circuits, 9, 44. 746 

Ramón y Cajal, S., DeFelipe, J., & Jones, E. G. (1988). Cajal on the cerebral cortex : 747 
an annotated translation of the complete writings. Oxford University Press.  748 

Reimann, M. W., Bolanõs-Puchet, S., Courcol, J. D., Santander, D. E., Arnaudon, A., 749 
Coste, B., ... & Ramaswamy, S. (2024). Modeling and simulation of neocortical 750 
micro-and mesocircuitry. Part I: Anatomy. eLife, 13. 751 

Reva, M., Rössert, C., Arnaudon, A., Damart, T., Mandge, D., Tuncel, A., 752 
Ramaswamy, S., Markram, H., & Van Geit, W. (2023). A universal workflow for 753 
creation, validation, and generalization of detailed neuronal models. Patterns, 4(11), 754 
100855. 755 

Rockland, K. S. (2023). A brief sketch across multiscale and comparative 756 
neuroanatomical features. Frontiers in Neuroanatomy, 17.  757 

Schiller, J., Major, G., Koester, H. J., & Schiller, Y. (2000). NMDA spikes in basal 758 
dendrites of cortical pyramidal neurons. Nature, 404(6775), 285–289. Scopus. 759 

 760 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Shapson-Coe, A., Januszewski, M., Berger, D. R., Pope, A., Wu, Y., Blakely, T., 761 
Schalek, R. L., Li, P. H., Wang, S., Maitin-Shepard, J., Karlupia, N., Dorkenwald, S., 762 
Sjostedt, E., Leavitt, L., Lee, D., Troidl, J., Collman, F., Bailey, L., Fitzmaurice, A., … 763 
Lichtman, J. W. (2024). A petavoxel fragment of human cerebral cortex 764 
reconstructed at nanoscale resolution. Science, 384(6696), eadk4858.  765 

Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J., & Rall, W. (1985). 766 
Signal enhancement in distal cortical dendrites by means of interactions between 767 
active dendritic spines. Proceedings of the National Academy of Sciences, 82(7), 768 
2192–2195. 769 

Spruston, N. (2008). Pyramidal neurons: dendritic structure and synaptic integration. 770 
Nature Reviews Neuroscience, 9(3), 206-221. 771 

Stuart, G., Spruston, N., Häusser, M., Stuart, G., Spruston, N., & Häusser, M. (Eds.). 772 
(2016). Dendrites (Third Edition, Third Edition). Oxford University Press. 773 

Tang, Y., Zhang, X., An, L., Yu, Z., & Liu, J. K. (2023). Diverse role of NMDA 774 
receptors for dendritic integration of neural dynamics. PLoS computational 775 
biology, 19(4), e1011019.  776 

Test-Silva, G., Verhoog, M. B., Goriounova, N. B., Loebel, A., Hjorth, J., Baayen, J. 777 
C., De Kock, C. P., & Mansvelder, H. D. (2010). Human Synapses Show a Wide 778 
Temporal Window for Spike-Timing-Dependent Plasticity. Frontiers in Synaptic 779 
Neuroscience, 2.  780 

Testa-Silva, G., Rosier, M., Honnuraiah, S., Guzulaitis, R., Megias, A. M., French, 781 
C., King, J., Drummond, K., Palmer, L. M., & Stuart, G. J. (2022). High synaptic 782 
threshold for dendritic NMDA spike generation in human layer 2/3 pyramidal 783 
neurons. Cell Reports, 41(11). 784 

Ujfalussy, B. B., Makara, J. K., Lengyel, M., & Branco, T. (2018). Global and 785 
Multiplexed Dendritic Computations under In Vivo-like Conditions. Neuron, 100(3), 786 
579-592.e5. 787 

Wilbers, R., Metodieva, V. D., Duverdin, S., Heyer, D. B., Galakhova, A. A., Mertens, 788 
E. J., ... & Goriounova, N. A. (2023). Human voltage-gated Na+ and K+ channel 789 
properties underlie sustained fast AP signaling. Science advances, 9(41), eade3300. 790 

Yuste, R., & Denk, W. (1995). Dendritic spines as basic functional units of neuronal 791 
integration. Nature, 375(6533), 682-684. 792 
  793 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments 794 

We thank Oren Amsalem for his early work on the functional complexity index. We 795 
thank all lab members of the Segev and London Labs for many fruitful discussions 796 
and valuable feedback regarding this work. This work was supported by 797 
the ONR grant award number N00014-24-1-2055 and grant award number N00014-798 
23-1-2051. M.L. was supported by the ISF grant 1331/23, the NIPI grant 206-22-23, 799 
and the BSF grant 2023104. I.S. was supported by the Drahi Family Foundation, the 800 
ETH domain for the Blue Brain Project, the Gatsby Charitable Foundation and the 801 
NIH grant agreement 1RM1NS132981-01. 802 

 803 

Author contributions 804 

I.A., conceptualization, methodology, investigation, visualization, software, validation, 805 
data curation, writing – original draft; D.Y., investigation, visualization, software, 806 
writing – original draft; D.B., conceptualization, methodology, writing – review & 807 
editing; C.P.J.K., methodology, investigation, validation, data curation, writing; I.S. 808 
and M.L., conceptualization, methodology, writing – review & editing, supervision, 809 
resources, funding acquisition. 810 

 811 

Competing Interests statement 812 

The authors declare no competing interests. 813 

 814 

Code availability 815 

The simulation, fitting, and FCI calculation code are publicly available on GitHub 816 
(http://github.com/ido4848/fci). 817 

 818 

Data availability 819 

The neuron morphologies and neuron models appearing in Figure 1 (Rat L2/3 and 820 
Human L2/3), as well as two additional morphologies and models (Rat L5 and 821 
Human L5) are publicly available on GitHub (http://github.com/ido4848/fci). All other 822 
neuron morphologies and neuron models are available upon request. All spike times 823 
and somatic membrane potentials presented in the article are available upon 824 
request. All FCI values and correlation values presented in the article are available 825 
upon request.  826 

  827 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

http://github.com/ido4848/fci
http://github.com/ido4848/fci
https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Information   828 

Supplementary Table 1 – morphologies 829 
# order in 
Figure 2 

Species Cortical 
layer 

Morphology 
identifier 

Citation 

1 Rat L2/3 L2 TPC Reimann et al., 2024 
2 Rat L6 L6 IPC Reimann et al., 2024 
3 Rat L4 L4 TPC Reimann et al., 2024 
4 Rat L6 L6 TPC Reimann et al., 2024 
5 Rat L2/3 229_5 Markram et al., 2015 
6 Rat L2/3 229_1 Markram et al., 2015 
7 Rat L5 cell1 Hay et al., 2011 
8 Rat L4 230_1 Markram et al., 2015 
9 Rat L6 L6 UPC Reimann et al., 2024 
10 Rat L4 230_2 Markram et al., 2015 
11 Rat L5 TTPC_1 232_1 Markram et al., 2015 
12 Rat L5 L5 TPC Reimann et al., 2024 
13 Human L6 548494556 Allen Institute for Brain Science, 2015 
14 Human L6 528614014 Allen Institute for Brain Science, 2015 
15 Human L5 1833 Mohan et al., 2015 
16 Human L4 539661667 Allen Institute for Brain Science, 2015 
17 Human L5 2057 Mohan et al., 2015 
18 Human L4 569818704 Allen Institute for Brain Science, 2015 
19 Human L5 790872626 Allen Institute for Brain Science, 2015 
20 Human L4 1496 Mohan et al., 2015 
21 Human L6 558211203 Allen Institute for Brain Science, 2015 
22 Human L2/3 1204 Mohan et al., 2015 
23 Human L2/3 1148 Mohan et al., 2015 
24 Human L2/3 1125 Mohan et al., 2015 

Supplementary Table 2 – synaptic parameters 830 

synapse type AMPA   NMDA    GABA A   

parameter tau_r tau_d g_max tau_r tau_d gamma g_max tau_r tau_d g_max 

units ms ms nS ms ms 1/mV nS ms ms nS 

rat 0.2 1.7 0.4 0.29 43 0.062 0.3 0.2 8 0.7 

human 0.3 1.8 0.88 5 43 0.078 1.31 0.2 8 0.7 

hybrid A 0.2 1.7 0.4 0.29 43 0.078 0.3 0.2 8 0.7 

hybrid B 0.3 1.8 0.88 5 43 0.062 1.31 0.2 8 0.7 
  831 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 17, 2024. ; https://doi.org/10.1101/2024.12.17.628883doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.17.628883
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 3 – io matrix 832 
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Supplementary Figure 4 – relation between FCI and AUC 834 
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Supplementary Figure 5 – FCI of all morphologies with rat synapses 836 
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