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Abstract

The interferon-induced dynamin-like MxA GTPase restricts the replication of influenza A viruses. We identified adaptive
mutations in the nucleoprotein (NP) of pandemic strains A/Brevig Mission/1/1918 (1918) and A/Hamburg/4/2009 (pH1N1)
that confer MxA resistance. These resistance-associated amino acids in NP differ between the two strains but form a similar
discrete surface-exposed cluster in the body domain of NP, indicating that MxA resistance evolved independently. The 1918
cluster was conserved in all descendent strains of seasonal influenza viruses. Introduction of this cluster into the NP of the
MxA-sensitive influenza virus A/Thailand/1(KAN-1)/04 (H5N1) resulted in a gain of MxA resistance coupled with a decrease in
viral replication fitness. Conversely, introduction of MxA-sensitive amino acids into pH1N1 NP enhanced viral growth in Mx-
negative cells. We conclude that human MxA represents a barrier against zoonotic introduction of avian influenza viruses
and that adaptive mutations in the viral NP should be carefully monitored.
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Introduction

Avian influenza A viruses sporadically transmit from waterfowl,

their natural reservoir, into the human population [1–5]. These

zoonotic viruses usually cannot propagate in the new human host,

nor do they readily transmit between humans [6–8]. In rare cases,

however, influenza A viruses of avian origin break the species

barrier and establish new virus lineages in humans. In the last 100

years, the introduction of an influenza A virus with a novel

nucleoprotein (NP) gene segment occurred only on two occasions,

both of which led to pandemics: in 1918 (‘‘Spanish’’ H1N1) an

avian virus and in 2009 (pH1N1) a reassortant virus (comprising

gene segments of two swine influenza viruses) established a stable

lineage in humans [9,10]. In contrast, the 1957 (‘‘Asian’’ H2N2)

and the 1968 (‘‘Hong-Kong’’ H3N2) pandemics were caused by

genetic reassortment events, whereby the circulating human

strains acquired some gene segments from avian sources but kept,

among others, their 1918-derived NP [11].

To overcome the species barrier, multiple adaptations to the

new host are required [6]. Theoretically, two categories of

adaptive mechanisms can be envisaged. One comprises adapta-

tions to cellular factors which promote viral infection yet differ

between hosts. These include, for example, changes in the viral

hemagglutinin during the adaptation of avian influenza A viruses

to humans [12], or altered binding of viral proteins to different

cellular importins [11,13]. The second category comprises

adaptations to counteract cellular restriction factors that inhibit

virus replication. These factors are part of the intrinsic and innate

host defense mechanisms and may exert a strong selective pressure

against newly invading viruses. Surprisingly little is known about

adaptive mutations that overcome such host restriction factors and

facilitate trans-species transmission of influenza viruses.

The human interferon (IFN) system represents a major innate

defense against zoonotic viruses. Among the many antiviral factors

induced by IFNs, the MxA protein is one of the most potent

characterized to date [14]. It is a key effector molecule inhibiting

influenza A virus as well as several other human RNA viruses

[15,16]. MxA is a dynamin-like large GTPase which consists of an

N-terminal globular GTPase domain, a bundle signaling element,

and a C-terminal helical stalk. The recent atomic resolution of the

MxA structure revealed that it forms stable tetramers and

oligomers which assemble in a criss-cross manner via the stalk

[17,18]. A current model proposes that, upon viral infection, MxA

recognizes the incoming vRNPs and starts to self-assemble into

rings, resulting in a higher-order oligomeric complex that blocks

vRNP function [18,19].

In accordance with this model, recent findings suggest that NP

determines the relative sensitivity of influenza A viruses toward the

antiviral action of MxA. Avian influenza viruses were found to be

generally more sensitive to MxA than human strains [20], which
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was subsequently shown through reassortant viruses to be

dependent on the origin of NP [21]. These findings suggest that

human strains acquire adaptive mutations in NP to evade MxA

restriction.

Here, we identified the amino acids critical for MxA resistance

in the two NP proteins introduced into the human population in

1918 (by the ‘‘Spanish’’ H1N1 influenza A virus) and in 2009 (by

the pH1N1 strain). These residues clustered into two distinct but

overlapping ‘‘patches’’ in the body domain of the protein.

Introduction of these amino acids into an MxA-sensitive H5N1

NP was sufficient to render the avian polymerase resistant to MxA.

Surprisingly, the resistance-associated substitutions resulted in

impaired viral growth in both mammalian and avian cells when

introduced into recombinant H5N1 virus A/Thailand/1(KAN-1)/

04. The amino acid clusters identified here are highly conserved in

circulating human isolates and virtually absent in NPs of avian

influenza A viruses. Several of the amino acids that confer

increased resistance to human MxA are also conserved in

influenza A viruses of the classical swine lineage, correlating with

resistance of these viruses to swine Mx1. These findings suggest

that multiple adaptive amino acid changes would be required for

H5N1 viruses to both escape from MxA restriction and maintain

viral fitness. Partial adaptation in an intermediate host, such as the

pig, might facilitate this demanding process.

Results

Identification of residues in NP of the pandemic 1918
influenza A virus responsible for resistance to murine
Mx1

We have previously shown that the polymerase activity of A/

Thailand/1(KAN-1)/04 (H5N1) is highly sensitive to inhibition by

murine Mx1, a close homolog of human MxA, in a polymerase

reconstitution assay, and that this sensitivity is determined by the

NP gene [21]. The H5N1 NP is of typical avian origin and

resembles the avian H5N1 amino acid consensus sequence [21].

We therefore used this assay to identify the amino acids in NP of

either the 1918 (A/Brevig Mission/1/1918) or the 2009 (A/

Hamburg/4/2009) pandemic H1N1 strain (Figure 1A) critical for

Mx1 resistance. In this assay, the polymerase activity was

measured in the presence of overexpressed Mx1. In addition, we

determined the polymerase activity in the presence of the inactive

mutant Mx1-K49A [22]. Mx1 resistance was defined as the

relative activity of the viral polymerase in the presence of Mx1

divided by the activity obtained with Mx1-K49A. Substitution of

the H5N1 NP with the NP of the pandemic 1918 strain [23]

rendered the H5N1 polymerase largely Mx1-resistant (Figure 1B).

An alignment of the amino acid sequences of the 1918 NP with the

NP of the Mx1-sensitive H5N1 strain revealed differences at 14

positions, including 4 positions in the C-terminal domain, namely

amino acids 373, 377, 473 and 482 (Figure 1A). An artificial

chimera (1918*-NP), consisting of the N-terminal 365 amino acids

of the 1918 NP and the C-terminal domain (amino acids 366 to

498) of the H5N1 NP, behaved like the full-length 1918 NP,

indicating that the 4 C-terminal differences in the 1918 protein do

not contribute to the Mx1 resistance phenotype (Figure 1B). To

investigate which of the 10 remaining 1918-specific amino acids in

the chimeric protein contributed to Mx1 resistance, 1918*-NP

mutants harboring single H5N1-derived substitutions were tested.

A major decrease in Mx1 resistance was observed for the

mutations P283L and Y313F, while a less pronounced phenotype

was observed for I100R and several other mutants (Figure 1C).

Various combinations of these putative adaptive mutations

revealed that the triple mutant I100R, P283L, and Y313F led to

a similar degree of Mx1 sensitivity as observed using the H5N1 NP

(Figure 1D), whereas combinations of the remaining seven

mutations failed to reduce Mx1 resistance (Figure 1D). Consis-

tently, the 1918*-NP, carrying the mutations I100R, P283L and

Y313F reduced Mx1 resistance by 50% (as compared to 1918*-

NP) also in the context of the 1918 polymerase (Figure S1A–B).

To test whether the amino acids apparently responsible for Mx1

resistance of 1918 NP could also confer Mx1 resistance to an Mx1-

sensitive NP, we introduced the mutations R100I, L283P, and

F313Y into H5N1 NP. We also tested the exchange R100V in NP,

since screening of the NCBI influenza database revealed that

valine rather than isoleucine is commonly found at this position in

seasonal strains [24]. Single amino acid exchanges slightly

increased Mx1 resistance, while the combination of all three

substitutions resulted in resistance comparable to the 1918 NP,

irrespective of I or V at position 100 (Figure 1E). Importantly, this

enhanced Mx1 resistance was not simply achieved by a higher

polymerase activity, as it did not strictly correlate with increased

activity in the presence of the antivirally inactive mutant Mx1-

K49A. Nevertheless, some Mx1 resistance-enhancing amino acids

appeared to improve the polymerase activity for unknown reasons

in the absence of Mx1 or presence of Mx1-K49A protein (Figure

S1C).

The cluster of adaptive mutations conferring Mx1
resistance differs between pH1N1 and 1918 NP

Next, we evaluated the capacity of NP from the 2009 pandemic

H1N1 influenza A virus (pH1N1) to confer Mx1 resistance in the

context of the H5N1 polymerase. Figure 2A shows that pH1N1

NP rendered the H5N1 polymerase activity relatively resistant to

Mx1 inhibition, as previously reported [21]. Sequence compari-

sons between the NP of pH1N1 and H5N1 origin revealed that

pH1N1 NP carried only one (V100) out of the three Mx1

resistance determinants identified in 1918 NP (Figure 1A). We

therefore assumed that different amino acids contribute to Mx1

resistance in pH1N1 NP than in 1918 NP. Since the pH1N1 NP

Author Summary

Influenza A viruses of avian or swine origin sporadically
enter into the human population but do not transmit
between individuals. In rare cases, however, they establish
a new virus lineage in humans. The mechanisms by which
invading viruses overcome the species barrier are not well
understood, but multiple adaptations to the new host are
required. Surprisingly little is known about adaptive
mutations that overcome restriction factors of the intrinsic
and innate host defense system. In this study, we have
identified adaptive mutations in pandemic strains A/Brevig
Mission/1/1918 and A/Hamburg/4/2009 that confer resis-
tance to the interferon-induced antiviral factor MxA which
is a dynamin-like large GTPase that recognizes the
incoming viral nucleocapsids and blocks their function.
The resistance-enhancing mutations changed several
amino acids in the viral nucleoprotein which is the main
nucleocapsid component. These mutations were sufficient
to increase the pathogenicity of an avian influenza virus
strain in a Mx-positive mouse model. Interestingly, the
resistance-associated amino acids are counter-selected in
circulating avian influenza strains, because they compro-
mise general viral replication fitness. The present data
indicate that the innate immunity factor MxA provides a
barrier against zoonotic introduction of influenza A viruses
and that adaptive mutations in the nucleoprotein must be
carefully monitored.

Molecular Determinants of MxA Resistance
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Figure 1. Identification of residues in the NP of the pandemic 1918 influenza A virus responsible for resistance to murine Mx1. (A)
Amino acid differences between NP of H5N1, 1918 and pH1N1. Deviant amino acids of pH1N1 or 1918 NP are highlighted in red and blue,
respectively. The 1918/H5N1 chimera (1918*-NP) comprises the N-terminal 365 amino acids of 1918 NP and the C-terminal 133 amino acids of the
H5N1 NP and thus lacks 4 1918 NP-specific amino acids. (B) Viral polymerase activity in the presence of increasing concentrations of Mx1. HEK293T

Molecular Determinants of MxA Resistance
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differs by 32 amino acids from the H5N1 sequence (Figure 1A), we

did not assay all individual amino acid positions, but rather

focused on discordant and surface exposed amino acids in close

proximity (27 Å) to the resistance cluster identified in the 1918 NP,

utilizing the published NP crystal structures [25,26]. Five of the

resulting 10 pH1N1-specific amino acids, which were closest to the

1918 resistance cluster, were analyzed in the H5N1 polymerase

reconstitution assay using pH1N1 NP mutants harboring single

H5N1-derived substitutions (Figure 2B). A significant decrease in

Mx1 resistance was observed for the mutations D53E, H289Y and

V313F, while a less pronounced phenotype was observed for

V100R and K305R (Figure 2B). Next, pH1N1-specific amino

acids were introduced into H5N1 NP and tested for their

contributions to Mx1 resistance in the H5N1 polymerase

reconstitution assay (Figure 2C). While no individual amino acid

substitution had a major effect, the combination of mutations at 4

positions (E53D, R100V, Y289H, and F313V) enhanced Mx1

resistance to a similar extent as 1918 NP. The additional

mutations R305K, I316M, T350K, R351K, V353I, and Q357K

together further increased Mx1 resistance to the degree of pH1N1

NP (Figure 2C). Although we observed variations in NP expression

levels (Figure 2C), these differences did not correlate with Mx

sensitivity. Together, these results demonstrate that the cluster of

amino acids conferring Mx1 resistance differs between the NP of

the 2009 and 1918 pandemic strains, although the crucial residues

in both cases are located in the surface-exposed body domain.

Adaptive mutations in NP confer resistance to both
murine Mx1 and human MxA

Next, we investigated whether the identified amino acid clusters

in NP of the 1918 and the pH1N1 strains also confer resistance to

human MxA. Consistent with the findings observed with Mx1,

both 1918 and pH1N1 NP increased resistance in the H5N1

polymerase reconstitution assay (Figure 3A), however, the 1918

NP confers greater resistance to human MxA than to murine Mx1,

whereas the opposite is true for the pH1N1 NP (Figure 2C and

3A). Importantly, the mutant H5N1 NP containing the 1918-

derived Mx1 resistance determinants R100V, L283P, and F313Y

exhibited an MxA resistance approximately 85% of that by 1918

NP itself (Figure 3A). To identify additional amino acid residues

that contribute to the increased MxA resistance of the 1918 NP,

we changed single amino acid positions in the 1918*-NP to avian

residues. This revealed that D16, in addition to V100, P283, and

Y313, contributed to MxA resistance (Figure S2). To confirm the

relevance of this finding, we tested H5N1 NP harboring all four

mutations (G16D, R100V, L283P and F313Y). This mutant NP

displayed an MxA resistance comparable to 1918 NP (Figure 3A).

Next, the pH1N1-specific adaptive mutations were tested in the

context of H5N1 NP. In particular E53D, R100V and F313V

increased resistance to MxA, while introduction of the additional

mutations Y289H, R305K, I316M, T350K, R351K V353I and

Q357K was required to achieve a resistance comparable to

pH1N1-NP (Figure 3A). These results indicate that the adaptive

mutations in 1918 or pH1N1 NP lead to increased resistance for

both murine Mx1 and human MxA. Again, the observed

resistance towards MxA did not strictly correlate with polymerase

activity (Figure S3).

The atomic crystal structure of the H5N1 NP [26] revealed that

the 1918-specific amino acids 100, 283 and 313 form a surface

exposed cluster in the body domain of the viral NP (Figure 3B).

Amino acid 16 is located in the N-terminal region of NP that is

predicted to form a flexible loop adjacent to the 1918 cluster

(Figure S4). The amino acids forming the pH1N1 cluster are

located in the same area of the NP body domain as the 1918

cluster (Figure 3C).

Positive selection of MxA resistance-enhancing NP
mutations in the human host

To estimate the evolutionary conservation of the amino acids

D16, D53, I/V100, P283, and V/Y313 mainly responsible for

Mx1 or MxA resistance (Figure 3B and C), we analyzed the NP

sequences of various isolates deposited in the NCBI Influenza

Virus Sequence Database [24]. In avian isolates, each resistance-

conferring amino acid could be identified in only #1% of the

sequences (n = 5350) investigated (Table 1). In contrast, in

classical seasonal human isolates representing H1N1, H1N2,

H2N2, and H3N2 subtypes (n = 4969), the resistance-associated

amino acids D16, I/V100, P283, and Y313 were each found at

very high frequencies (.98%). Similarly, analyses of the human-

derived pH1N1 NP sequences (n = 4104) revealed a high

conservation of amino acids D53, I/V100 and V313 (.99%).

Intriguingly, a chronological sequence comparison revealed that

additional Mx resistance-enhancing mutations occurred in the

NP of strains which are classified as descendents of the 1918

virus, namely R305K and R351K (Figure 4, Figure S5). These

mutations emerged in early seasonal H1N1 viruses and were

maintained in subsequent H2N2 and H3N2 strains (Figure 4).

Taken together, these findings suggest a continuous selection

pressure for increased Mx resistance in seasonal influenza

viruses.

NPs of the classical swine lineage confer partial resistance
to MxA

Since pH1N1 NP is derived from an influenza A virus of the

classical swine lineage [10,27], we analyzed the NP sequences of a

number (n = 393) of corresponding swine isolates obtained

between 1930 and 2012. Amino acids I/V100 were highly

conserved (.99%), but D53 and V313 were not present in any of

the NP sequences, which instead harbored the avian consensus

amino acids at these positions (Table 1). We therefore anticipated

that NPs of the classical swine influenza strains would confer less

MxA resistance than pH1N1 NP. Indeed, NP of one of the first

swine isolates such as A/swine/Iowa/1976/1931 displayed

comparatively poor MxA resistance in the H5N1 polymerase

reconstitution assay (Figure 5A). Importantly, NP of the classical

swine influenza A virus lineage acquired the additional mutations

305K, 351K, 353I and 357K over time (Figure 4), resulting in a

cells were transfected with expression plasmids coding for the PB2, PB1 and PA of H5N1, the indicated NP proteins, the firefly luciferase encoding
minigenome, increasing amounts of Mx1-coding plasmid and a Renilla-expressing plasmid to normalize variation in transfection efficiency.
Polymerase activity (relative activity) in the presence of antivirally inactive Mx1-K49A was used to normalize the data obtained with Mx1. Error bars
indicate the standard error of the mean of three independent experiments. Western blot analysis was performed to determine the expression levels
of Mx1 and H5N1 NP. (C–E) H5N1 polymerase activity was determined as in (B) after co-transfection of the expression plasmids coding for Mx1
(200 ng) and the indicated NP mutants (100 ng). The polymerase activity (relative activity) observed in the presence of Mx1 was normalized to Mx1-
K49A. The resulting relative activity in the presence of either 1918*NP (C–D) or 1918 NP (E) was set to 100%. Western blot analysis shown in panel (E)
was performed to determine the expression levels of NP. Error bars indicate the standard error of the mean of three independent experiments.
Student’s t-test was performed to determine the P value. *P,0.05, **P,0.01, ***P,0.001; NS, not significant.
doi:10.1371/journal.ppat.1003279.g001
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Figure 2. Identification of residues in the NP of the pandemic 2009 influenza A virus responsible for resistance to murine Mx1. (A)
Reporter activity of H5N1 polymerase in HEK293T cells after co-transfection of expression plasmids coding for the indicated NP proteins (100 ng) and
increasing amounts of Mx1. Polymerase activity in the presence of Mx1-K49A was used to normalize the data obtained with Mx1. Error bars indicate
the standard error of the mean of three independent experiments. (B) H5N1 polymerase activity (relative activity) was determined as in (A) after co-
transfection with expression plasmids coding for Mx1 (200 ng) and the indicated pH1N1 NP mutants (100 ng) harboring single H5N1-derived
substitutions. The activity in the presence of Mx1 was normalized to the activity observed with the inactive Mx1 mutant Mx1-K49A. The activity
observed in the presence of pH1N1 NP was set to 100%. Error bars indicate the standard error of the mean of three independent experiments.
Student’s t-test was performed to determine the P value. *P,0.05, **P,0.01, ***P,0.001; NS, not significant. (C) H5N1 polymerase activity was
determined as in (B) after co-transfection with expression plasmids coding for Mx1 (200 ng) and the indicated H5N1-NP mutant proteins (100 ng)
harboring single or multiple pH1N1-derived substitutions. The activity in the presence of Mx1 was normalized to the activity observed with the
inactive Mx1 mutant Mx1-K49A. The activity observed in the presence of 1918 NP was set to 100%. Western blot analysis shown in the lower panel
was performed to determine the expression levels of NP and Mx1. Error bars indicate the standard error of the mean of three independent
experiments. Student’s t-test was performed to determine the P value. *P,0.05, **P,0.01, ***P,0.001; NS, not significant.
doi:10.1371/journal.ppat.1003279.g002

Figure 3. Amino acid clusters in NP of both the 1918 and pH1N1 strain mediate MxA resistance. (A) H5N1 polymerase activity in HEK293T cells
after co-tranfection of the indicated expression plasmids coding for the NP mutants (100 ng) and MxA (200 ng). The activity in the presence of MxA was
normalized to the activity observed with the inactive mutant MxA-T103A [66]. The activity observed in the presence of pH1N1 NP was set to 100%. Error bars
indicate the standard error of the mean of three independent experiments. Student’s t-test was performed to determine the P value. *P,0.05, ***P,0.001,
NS, not significant. Western blot analysis was performed to determine the expression levels of MxA and the indicated NPs. (B–C) Amino acid positions of NP
mediating Mx resistance. The program PyMOL was used to assign the indicated positions based on the structural model of A/HK/483/97(H5N1) NP (PDB
code:2Q06). Positions of adaptive mutations required for Mx resistance of the 1918 NP are marked in blue (B). Amino acids of pH1N1 NP that exhibit only
minor contribution to Mx resistance are highlighted in light red, whereas amino acids that strongly increased Mx resistance are indicated in red (C).
doi:10.1371/journal.ppat.1003279.g003
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gradual increase in MxA resistance (Figure 5A, pH1N1-NP-D53E,

V313F, M316I, third column from the left and Figure S6A).

These changes, however, were not sufficient to confer MxA

resistance comparable to that of pH1N1 NP. Interestingly, NP of

the recent triple reassortant swine isolate A/swine/Ohio/02026/

2008 (H1N1) and a hypothetical NP precursor of pH1N1

(pH1N1-NP-D53E, V313F, M316I) share the adaptive mutations

100I/V, 289H, 305K, 350K, 351K, 353I and 357K. The

hypothetical NP precursor of pH1N1 was created by altering the

human pH1N1 specific positions D53, V313 and M316 to the

consensus found in classical swine H1N1 strains (D53E, V313F,

M316I). These mutations are found at the branching point of

classical swine influenza viruses and pH1N1 viruses (Figure 4).

The hypothetical NP precursor conferred only partial MxA

resistance in the H5N1 (Figure 5A and Figure S6A) as well as in

the pH1N1 background (Figure S6C). These findings suggested

that further adaptive mutations are needed which may affect

MxA recognition or otherwise improve NP functions such as

binding to viral (e.g PB2 [28] or cellular components (importins

[13], helicases [29,30]). Indeed, acquisition of E53D, F313V, and

I316M was required to gain the full resistance of pH1N1 NP

(Figure 5A and Figure S6C).

The antiviral potency of Mx proteins of pigs is still insufficiently

characterized [31–33]. In the present reconstitution assay using

HEK293T cells, porcine Mx1 (Sus scrofa domestica) decreased the

H5N1 polymerase activity to 50% (Figure 5B), whereas human

MxA reduced the activity to approximately 10% (Figure 5A),

despite similar expression levels of both Mx proteins (Figure 5C).

Likewise, the H5N1 polymerase activity in the presence of

different NPs from several distinct swine isolates was not

significantly affected by porcine Mx1 (Figure 5B, Figure S6B).

To further test the antiviral strength of porcine Mx, we used

porcine cells for the polymerase reconstitution assay. We found

essentially the same extent of inhibition by the porcine Mx1 as in

human 293T cells. As shown in Figure S7A, porcine Mx1 reduced

the H5N1 polymerase activity to ca. 50% in swine NPTr or NSK

cells [34]. In contrast, human MxA reduced the activity to 10% in

porcine cells (Figure S7A). We conclude that the antiviral effect of

porcine Mx1 is weak both in porcine and human cells. Together,

these data suggest that while there is a clear selection pressure for

swine influenza A viruses to acquire Mx resistance, the selection

pressure in the porcine host is comparatively weak. Clearly,

additional adaptive mutations are required to escape MxA

restriction in humans.

MxA resistance-enhancing mutations impair virus growth
Re-transmission of pH1N1 [35] from human to swine resulted

in 17% of the documented cases in a substitution of aspartic acid

at position 53 to the avian consensus glutamic acid (D53E) (swine

pH1N1 in Table 1 and Figure 4), a mutation that confers loss of

resistance to human MxA (Figure 5A), but not to porcine Mx1

(Figure 5B). This might suggest that MxA resistance-enhancing

mutations are not necessarily favorable for NP function and might

therefore cause impaired viral fitness.

To compare the replication fitness of viruses containing MxA-

sensitive or MxA-resistant NPs, we infected MDCKII cells (which

do not express antivirally active Mx proteins [36]) with pH1N1 or

mutant viruses with enhanced MxA sensitivity. A recombinant

pH1N1 virus with the single D53E reversion (pH1N1-NP-D53E)

grew equally well as the parental pH1N1 virus (Figure 5D). In

contrast, the pH1N1 precursor virus lacking three MxA resistance-

enhancing mutations (pH1N1-NP-D53E,V313F,M316I) grew to

approximately one log10 higher infectious titers throughout the

course of infection (Figure 5D). These results demonstrate that

reversions to the original amino acids of the putative swine

precursor virus (Figure 4) provided a strong growth advantage in

the absence of an antivirally active Mx. Thus, the acquisition of

MxA resistance appears to cause some growth disadvantage.

To confirm this hypothesis, we tested the human H5N1 strain

KAN-1 containing MxA resistance-enhancing mutations in

MDCKII cells. Consistent with previous observations [36], the

polymerase activity of H5N1 was not affected in the presence of

canine Mx1 or Mx2 (Figure S7B). The triple mutant H5N1-NP-

R100V,L283P,F313Y achieved reduced viral titers in the order of

1–2 log10 (Figure 5E). The recombinant H5N1 virus with the

single MxA resistance mutation L283P (H5N1-NP-L283P) grew

slightly less well than the parental H5N1 strain, while the double

mutant virus H5N1-NP-R100I,F313Y showed comparable growth

(Figure 5E). Intriguingly, the latter virus showed severely impaired

replication efficiency in avian LMH cells which lack antiviral Mx

proteins [37–39] (Figure S8). We conclude that MxA resistance is

linked to impaired viral growth and may be easily lost in the

absence of selective pressure.

Mx resistance-enhancing mutations in NP increase the
virulence of the H5N1 strain KAN-1 in Mx1-positive mice

We argued that the acquisition of Mx resistance should also

increase the pathogenicity of H5N1 in Mx1-positive mice. To test

Table 1. Conservation of amino acid positions in NP that are responsible for MxA resistance.

Host Subtypes 16D 53D 100I/V 283P 313V 313Y n =

Avian All 0.1 0.0 0.4 0.1 0.0 0.0 5350

Avian H5N1 0.0 0.0 0.0 0.1 0.0 0.0 1130

Human H5N1 0.0 0.0 0.5 0.5 0.0 0.0 187

Human H1N1 seasonal 98.2 0.1 99.7 98.2 0.0 98.4 1383

Human H1N2/H2N2/H3N2 99.5 0.0 99.8 99.5 0.0 99.4 3586

Swine Classical H1N1 0.0 0.0 99.5 0.0 0.0 0.0 393

Human pH1N1 0.3 100.0 99.9 0.0 99.8 0.0 4104

Swine pH1N1 0.0 83.2 97.5 0.0 98.3 0.0 119

Full-length NP protein sequences of the indicated subtype and host were downloaded at 19th of October 2012 from [24]. Sequences depicted as H1N1 seasonal exclude
H1N1 viruses of the pH1N1 lineage. Human pH1N1 refer to sequences of isolates found in humans. In avian sequences all available subtypes (H1-16, N1-9) were
included. Sequences depicted as swine classical comprise sequences of the North American classical swine influenza viruses and exclude viruses of the pH1N1 lineage.
The frequency of conserved residues is indicated in %. n = number of strains analyzed.
doi:10.1371/journal.ppat.1003279.t001
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this hypothesis we selected the double mutant virus H5N1-NP-

R100I,F313Y which had almost wild-type growth characteristics

in tissue culture (Figure 5E) and exhibited comparable polymerase

activity (Figure S8A), in spite of its Mx resistance-enhancing

mutations (Figure 1E). We could not include the triple mutant

virus H5N1-NP-R100V,L283P,F313Y in our studies due to the

emergence of escape mutants (data not shown) and its strong

attenuation. First, we compared the growth of wild-type and

mutant H5N1 viruses in Mx1-negative BALB/c mice. Infection

with 10 PFU of wild-type H5N1 virus lead to pronounced weight

loss and death of all animals, as expected [40]. In contrast,

infection with the same challenge dose (10 PFU) of mutant H5N1-

NP-R100I,F313Y virus resulted in survival of all BALB/c mice

without significant weight loss (Figure 6A and B), indicating that

the two amino acid substitutions associated with Mx resistance

caused impaired viral growth. Indeed, challenge of BALB/c mice

with 1000 PFU of the mutant virus resulted in viral lung titers that

were 15-fold reduced as compared to wild-type virus at 48 h after

infection (Figure 6C). Next, the growth properties of the two

viruses were studied in congenic Mx1-positive mice. In these

animals, infection with wild-type H5N1 virus produced no

pronounced pathological effects, even at high doses of 106 PFU

(Figure 6D and E). In contrast, Mx1-positive mice showed

significant weight loss and mortality when challenged with

106 PFU of mutant H5N1-NP-R100I,F313Y virus (Figure 6D

and E). To assess viral growth in Mx1-positive mice, viral lung

titers were determined at various time points after intranasal

infection with 104 PFU (Figure 6F). Two days after infection, the

titers in mice infected with the mutant virus were approximately

28-fold lower than those in mice infected with the wild-type virus,

demonstrating the attenuating effect of the Mx resistance-

enhancing mutations in NP. Four days after infection, a 5-fold

difference was observed, and 6 days after infection the mutant

virus was still present in 5 out of 9 Mx1-positive mice with titers up

to 26105 PFU. In contrast, only low titers of wild-type virus were

detected at the same time in 2 out of 9 animals. We conclude from

these experiments that H5N1 viruses harboring MxA resistance-

enhancing mutations partially overcome the antiviral effect

mediated by Mx1.

Discussion

Influenza A viruses sporadically transmit from the avian

reservoir into the human population. Here we describe specific

mutations found in the NP of the 1918 and 2009 pandemic viruses

that confer resistance to the IFN-induced human MxA GTPase, a

major restriction factor for influenza and other orthomyxoviruses.

As MxA strongly inhibits transcription and replication of the viral

genome early in infection, its antiviral activity can be readily

analyzed in polymerase reconstitution (minireplicon) assays

[20,21]. Using this assay, we identified a cluster of surface-exposed

amino acids in the body domain of NP crucial for Mx resistance.

Interestingly, different amino acid positions were identified in 1918

and pH1N1 NP, yet all were located in the same domain. All

resistance-associated amino acids are conserved in previous and

current human influenza A viruses (Table 1), and the continuing

acquisition of resistance-enhancing mutations (Figure 7) suggests

strong positive selection pressure by MxA. Of note, mutations

conferring MxA resistance are absent in avian influenza A viruses,

although we did observe the emergence of adaptive NP mutations

in avian-derived viruses circulating in swine (Figure 4 and

Figure 7). These substitutions in NP not only increased resistance

to swine Mx1 but also to human MxA, supporting the theory that

swine are an excellent intermediate host for the generation of

viruses with pandemic potential.

Influenza A viruses carrying a novel NP gene were introduced

into the human population in 1918 and 2009 [10,27], but the

distinct MxA resistance clusters in the NP genes of these pandemic

viruses suggest independent evolution (Figure 7). In case of the

2009 pH1N1 virus, the NP gene originated from the classical

swine lineage, which itself is of avian origin [41]. Our data suggest

that the swine precursor virus of pH1N1 acquired additional

amino acid changes, which together increased the ability to

counteract human MxA. The evolution of the 1918 NP is

comparatively less clear. Recent data suggest that both the 1918

and the classical swine virus lineage share a common avian

ancestor [9]. It is unresolved whether the avian precursor virus was

first transmitted to humans and then onto swine or vice versa [9].

In the latter case, the precursor virus may have first adapted to

swine Mx1 through the mutation R100I in NP which is found in

early swine isolates [24]. In the first case, mutations at position 283

and 313 might have been lost after transmission from humans to

swine, as observed with the pH1N1 virus. However, analyses of

host specificity markers which discriminate human from avian

influenza viruses indicate that four adaptive mutations in NP (16D,

283P, 313Y and 357K) were likely required for transmission of the

1918 precursor virus to humans [42]. Remarkably, all of these

mutations contribute to MxA resistance (Figure 3) and may have

evolved in a pre-pandemic phase in the human population. Since

circulating human influenza A virus strains maintain these

adaptive mutations (Table 1), it is conceivable that viruses are

under constant selection pressure mediated by MxA.

We observed that the acquisition of Mx resistance had a

negative effect on viral growth in the absence of MxA. When MxA

resistance-enhancing mutations were introduced into highly

pathogenic avian H5N1 viruses, the recombinant viruses grew

less well than the wild-type H5N1 virus in MxA-negative

MDCKII cells (Figure 5E), in BALB/c mice (Figure 6C) and

even in avian cells (Figure S8). These mutations have no major

effect in the viral polymerase reconstitution assay (Figure S1C and

S3), and it is unclear which step of the viral replication cycle is

attenuated in infected cells. If MxA resistance-associated amino

acids are also counter-selected in circulating avian influenza

strains, then the emergence of MxA resistance in the avian

reservoir is expected to be an extremely rare event (Table 1). Of

note, human H5N1 isolates have developed few if any of the

identified MxA resistance-enhancing mutations (Table 1), most

likely due to the associated strong attenuation [43] (Figure 5E, 6A–

C). Perhaps for this reason, the 1957 and 1968 pandemic viruses

retained the well-adapted 1918-origin NP, despite acquiring other

Figure 4. Phylogenetic analysis of representative NP sequences and the presence or loss of Mx-resistance enhancing mutations. The
maximum likelihood tree of 147 aligned representative NP sequences shows four genotypes, i.e., (i) the human seasonal H1N1, H2N2 and H3N2
viruses, (ii) the classical swine H1N1 viruses and pandemic (2009) H1N1 viruses, (iii) the European lineages of swine influenza viruses, and (iv) the
North American avian influenza viruses. Strain designations and GenBank acc. nos. are presented. Numbers at nodes indicate bootstrap values
obtained after 1,000 replications. Only bootstrap values greater 50% were presented. The bar indicates substitutions per site. Three branches (H2N2/
H3N2, recent human H1N1 strains, European lineages of swine influenza viruses) were condensed for clarity. The complete phylogenetic tree is
shown in Figure S5. No relevant amino acid substitutions were observed in the condensed branches. Alterations of amino acid positions shown to
influence Mx resistance (Figure 3, Figure S9) are highlighted in bold.
doi:10.1371/journal.ppat.1003279.g004
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Figure 5. Mx resistance is accompanied by impaired viral growth in cell culture. (A–B) H5N1 polymerase activity in HEK293T cells after co-
transfection of the indicated expression plasmids coding for NP (100 ng) and MxA (200 ng) (A) or porcine Mx1 (poMx1) (200 ng) (B). The activity in
the presence of human MxA or poMx1 was normalized to the activity observed with the inactive mutant MxA-T103A. The activity observed with
pH1N1 NP was set to 100%. Error bars indicate the standard error of the mean of three independent experiments. Student’s t-test was performed to
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avian genome segments by reassortment. Thus, more than 90

years passed before a new NP lineage was established 2009 in

humans, a process aided by gradual adaptation of the new NP in

swine.

Correspondingly, we observed an increase in viral growth of

pH1N1 lacking the MxA resistance-enhancing mutations D53,

V313 and M316 in MDCKII cells (Figure 5D) which do not

express antivirally active Mx proteins [36]. We therefore propose

that passage of viruses in hosts with weak or inactive Mx proteins

(such as swine or laboratory mouse strains, respectively) would

result in a loss of MxA resistance. In fact, experimental adaptation

of the pandemic 2009 virus to Mx1-negative mice led to the

acquisition of mutations in NP which strongly diminished Mx

resistance, such as D101G [44] (Figure S9). Similarly, mutations

conferring MxA resistance were lost (D53E, D101G, H289L)

following re-transmission of pH1N1 from human to swine

(Figure 4).

The mechanism by which MxA exerts its antiviral function

during infection or in the polymerase reconstitution assays is

presently not known. MxA may block the viral life cycle at

several early steps by interfering with the processes of vRNP

entry and intracellular transport [45], as well as primary [45]

and secondary transcription [46]. We proposed a model in which

MxA recognizes vRNPs and begins to self-assemble into rings,

thereby sterically inhibiting vRNP function [15,18,19]. This

model has recently been suggested also for mouse Mx1, but in a

modified version involving in addition also the polymerase

subunit PB2 [28], in agreement with previous functional work

implicating PB2 as putative target of mouse Mx1 [47,48].

Modeling the present MxA resistance clusters into the available

vRNP structure [49] revealed that the sites on NP are most likely

solvent-exposed, and thus accessible to cellular factors. Initial

contact of MxA to single binding sites on NP might be weak but

reinforced by oligomerization, involving multiple repetitive

contacts exposed on the many NP molecules that form the

vRNP. Weak but extensive contacts to repetitive viral target

motifs have been demonstrated for other intracellular restriction

factors. For example, TRIM5a specifically binds to several

surface-exposed amino acids of the capsid protein of HIV-1,

thereby forming an array or lattice on top of the viral capsid

[50,51]. To date, physical interaction between influenza A virus

NP and MxA could be demonstrated after covalent protein

crosslinking [52] and thus MxA might also bind to free NP in the

cytoplasm thereby blocking polymerase activity indirectly.

However, it is also likely that further cellular proteins modulate

MxA activity and its interaction with viral proteins. Previous

work identified a number of potential MxA co-factors, but their

contribution is still unclear [53–56]. One promising candidate is

the helicase UAP56, a DEAD box RNA helicase which was

shown to prevent double-strand RNA formation and subsequent

innate immune activation in influenza virus-infected cells.

UAP56 binds both MxA and NP [29,57], in the latter case via

the N-terminal domain of NP which contains the MxA

resistance-enhancing mutation G16D [58]. Nonetheless, the

significance of this observation and the role of UAP56 for

antiviral activity remain to be demonstrated.

In summary, we have found functional and evolutionary

evidence that the human MxA GTPase provides an efficient

barrier against zoonotic introduction of influenza A viruses into

the human population. Thus, the human MxA is a significant

driving force in influenza A virus nucleoprotein evolution. We

therefore propose that amino acids known to contribute to MxA

resistance should be monitored as a strong indicator for the

pandemic potential of newly emerging influenza A viruses.

Materials and Methods

Ethics statement
All animal experiments were performed in compliance with the

German animal protection law (TierSchG). The mice were housed

and handled in accordance with good animal practice as defined

by FELASA (www.felasa.eu/guidelines.php) and the national

animal welfare body GV-SOLAS (www.gv-solas.de/index.html).

The animal welfare committees of the university of Freiburg, as

well as the local authorities (Regierungspräsidium Freiburg)

approved all animal experiments.

Cells
Canine MDCKII, porcine NSK and NPTr cells [34], and

human HEK 293T cells were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10%

fetal calf serum, 2 mM L-glutamine and 1% penicillin-strepto-

mycin. Chicken hepatocellular epithelial cell line (LMH) [59]

was grown in DMEM supplemented with 8% fetal calf serum

2% chicken serum, 2 mM L-glutamine and 1% penicillin/

streptomycin.

Plasmid constructions
The pHW2000 rescue plasmids [60] and pCAGGS expression

plasmids [61] coding for NP were used for site directed

mutagenesis. The coding region of MxA was cloned into

pCAGGS, whereas murine Mx1 was expressed using pcDNA

3.1 [21]. The cDNA of porcine Mx1 (poMx1) corresponding to

the full length 1992 nt long open reading frame as described in

[62], encoding a Flag tag at its 59-end was cloned into pCAGGS

using KpnI and XhoI. poMx1 cDNA was generated from mRNA

isolated from IFNa-2a-treated cell cultures from domestic pig (Sus

scrofa domestica).

Generation of recombinant influenza A viruses
The recombinant viruses A/Hamburg/4/09 (pH1N1) and A/

Thailand/1(KAN-1)/04 (H5N1), and the NP-mutant viruses

were generated by the eight-plasmid reverse-genetics system as

described previously [21]. All recombinant viruses were plaque

purified on MDCKII cells. Virus stocks were prepared on

MDCKII cells and titers were determined by plaque assay.

Reconstitution of the influenza virus polymerase
(minireplicon)

HEK 293T cells seeded in 12-well plates were transfected using

the Nanofectin transfection reagent (PAA Laboratories) according

to the manufacturer’s protocol. 10 ng of pCAGGS plasmids

encoding PB2, PB1, and PA and 100 ng of NP-encoding plasmid

were cotransfected with 100 ng of the firefly luciferase- encoding

viral minigenome construct pPolI-FFLuc-RT, which is flanked by

the noncoding regions of segment 8 of influenza A virus. The

determine the P value. **P,0.01, ***P,0.001; NS, not significant. (C) Expression levels of human MxA and poMx1 in HEK293T cells after reconstitution
of the H5N1 polymerase complex using an Mx-specific antibody. (D–E) MDCKII cells were infected with an MOI of 0.001 of wild-type or the indicated
pH1N1 (D) or H5N1 mutant viruses (E) and incubated at 37uC. At the indicated time points post infection (p.i.), virus titers were determined by plaque
assay. Error bars indicate the standard error of the mean of three independent experiments.
doi:10.1371/journal.ppat.1003279.g005
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Figure 6. Mx resistance-enhancing mutations in NP increase the virulence of the H5N1 isolate KAN-1 in Mx1-positive mice. (A–C)
BALB/c mice were inoculated intranasally with the indicated amount of viruses. Changes in body weight (A) or survival (B) (n = 6/group) were
monitored daily for 14 days. Lungs from infected mice were collected 2 days p.i., homogenized and virus titers were determined by plaque assay (C).
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transfection mixture also contained 30 ng of pRL-SV40, a plasmid

constitutively expressing Renilla luciferase under the control of the

simian virus 40 promoter to normalize variations in transfection

efficiency. To evaluate the antiviral potential of Mx1 and MxA, we

cotransfected Mx1- or MxA- encoding plasmid. A simultaneous

experiment with cotransfection of the antivirally inactive mutants

Mx1-K49A or MxA-T103A, respectively, was used as a control.

To achieve equal amounts of transfected DNA, an empty vector

plasmid was added. Twenty-four hours post transfection, cells

were lysed and firefly and Renilla luciferase activities were

measured using the dual luciferase reporter assay (Promega)

according to the manufacturer’s protocol. Reconstitution of the

viral polymerase complex in avian and porcine cells was

performed as above with the exception that the minigenome

RNA was expressed under the control of a chicken [63] or porcine

Pol I promoter (pSPOM2) [34].

Virus growth curves
MDCKII cells seeded in 6-well plates were incubated with virus

at a multiplicity of infection (MOI) of 0.001 in PBS+/+ containing

0.2% BSA for 1 h at 37uC. The inoculum was removed and 3 ml

infection medium (DMEM supplemented with 0.2% BSA),

additionally containing 1 mg/ml TPCK-treated trypsin for

pH1N1 viruses, was added. Virus titers in cell culture supernatants

were determined at the indicated time points by plaque assay and

are expressed as PFU per ml.

Primer extension analysis
For determination of viral transcript levels in virus-infected

MDCKII cells, cells were seeded in 6-well plates and infection was

carried out with infection media. After the indicated time point

post infection, cells were harvested in TrizolTM and RNA was

purified according to the manufacturer’s protocol (Invitrogen).

(D–F) Mx1-positive BALB/c mice were inoculated intranasally with the indicated amount of viruses. Changes in body weight (D) or survival (E) (n = 6/
group) were monitored daily for 14 days. Lungs from infected mice were collected 2, 4, and 6 days p.i., homogenized and virus titers were determined
by plaque assay (F). Student’s t-test was performed to determine the P value. *P,0.05, **P,0.01, ***P,0.001; NS, not significant.
doi:10.1371/journal.ppat.1003279.g006

Figure 7. Temporal appearance of MxA resistance enhancing amino acids in NP of human and swine influenza A viruses. Bold letters
indicate amino acids in NP shown to increase significantly MxA resistance, whereas amino acids highlighted in grey are minor contributors. Adaptive
mutations that newly emerged with the appearance of the 2009 pandemic pH1N1 strain are depicted in red. 53D got partially lost after re-
introduction of pH1N1 into the swine host.
doi:10.1371/journal.ppat.1003279.g007
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Primer extension analysis was performed as described [63] using

specific primers for the NA segment (mRNA, cRNA and vRNA)

and cellular 5sRNA.

Animal experiments
BALB/c mice were obtained from Janvier (Straßburg) and

congenic BALB.A2G-Mx1 mice (designated BALB-Mx1) carrying

the functional Mx1 allele [64] were bred locally. Six- to eight-

week-old mice were anesthetized with a mixture of ketamine

(100 mg per gram body weight) and xylazine (5 mg per gram)

administered intraperitoneally (i.p.) and inoculated intranasally

(i.n.) with the indicated doses of viruses in 50 ml phosphate-

buffered saline (PBS) containing 0.2% bovine serum albumin

(BSA). Mice were monitored daily for weight loss until 14 days

postinfection (p.i.). Animals with severe symptoms or more than

25% weight loss were euthanized. Lung homogenates were

prepared using the FastPrep24 system (MP Biomedicals). Briefly,

after addition of 800 ml of PBS containing 0.2% BSA, lungs were

subjected to two rounds of mechanical treatment for 10 s each at

6.5 m/s. Tissue debris was removed by low-speed centrifugation.

The LD50 values were calculated based on the infectious dose

(PFU). All animal work was conducted under BSL 3 conditions in

accordance with the guidelines of the local animal care committee.

Molecular modeling
The program PyMOL (www.pymol.org) was used to assign the

indicated positions in the structural model of the NP of A/HK/

483/97(H5N1) (PDB code:2Q06). The program I-TASSER

(zhanglab.ccmb.med.umich.edu/I-TASSER) was used to generate

a full length NP model of A/Thailand/1(KAN-1)/04 (H5N1),

including amino acids 1–20.

Alignments and phylogenetic analyses
Alignments and phylogenetic analyses were conducted with

MEGA5 [65]. For maximum likelihood (ML) tree inference, the

GTR substitution model assuming gamma distribution (four

gamma categories) and invariant sites was selected, and the initial

tree was made automatically. Bootstrap analysis was performed

with 1,000 replications. The optimal substitution model was

selected on the basis of the Bayesian information criterion (BIC)

and the corrected Akaike information criterion (AICc) using a

model test implemented in MEGA5.

Supporting Information

Figure S1 Polymerase activities in the presence of Mx1
or the antivirally inactive mutant Mx1-K49A. (A) Reporter

activity of 1918 polymerase. HEK293T cells were transfected with

expression plasmids coding for PB2, PB1 and PA of the pandemic

1918 strain, the indicated NP proteins, the firefly luciferase

encoding minigenome, 200 ng Mx1-encoding plasmid and a

Renilla-expressing plasmid to normalize variation in transfection

efficiency. Polymerase activity in the presence of antivirally

inactive Mx1-K49A was used to normalize the data obtained

with Mx1. Activity in the presence of the 1918*-NP was set to

100%. Error bars indicate the standard error of the mean of three

independent experiments. Student’s t-test was performed to

determine the P value. **P,0.01. (B) 1918 polymerase activity

in the presence of the antivirally inactive mutant Mx1-K49A.

HEK293T cells were transiently transfected with expression

plasmids coding for the vRNP components as described in (A)

including 200 ng of Mx1-K49A-encoding plasmid. Renilla activity

was used to normalize variation in transfection efficiency. The

polymerase activity in the presence of the 1918*-NP was set to

100%. Error bars indicate the standard error of the mean of three

independent experiments. Student’s t-test was performed to

determine the P value. NS, not significant. (C) H5N1 polymerase

activity in the presence of either Mx1, the antivirally inactive

mutant Mx1-K49A or empty vector. HEK293T cells were

transiently transfected with expression plasmids coding for the

vRNP components of H5N1 including 200 ng of Mx1, Mx1-

K49A-encoding plasmid or empty vector and the indicated NP

mutants. Renilla activity was used to normalize variation in

transfection efficiency. The polymerase activity in the presence of

the 1918-NP was set to 100%. Error bars indicate the standard

error of the mean of three independent experiments. Student’s t-

test was performed to determine the P value. *P,0.05, **P,0.01,

***P,0.001; NS, not significant.

(PDF)

Figure S2 Identification of amino acids in 1918 NP
responsible for MxA resistance. Reporter activity of the

H5N1 polymerase in HEK293T cells after co-transfection of the

expression plasmids coding for MxA (200 ng) and the indicated

NP proteins (100 ng). The activity in the presence of MxA was

normalized to the activity observed with the antivirally inactive

mutant MxA-T103A. The activity observed with the 1918*-NP

was set to 100%.

(PDF)

Figure S3 Polymerase activities in the presence of the
antivirally inactive mutant MxA-T103A. H5N1 polymerase

reporter activity was determined after co-transfection of expression

plasmids coding for the indicated NP mutants (100 ng) and the

antivirally inactive mutant MxA-T103A (200 ng). The reporter

activity observed with the 1918-NP was set to 100%. Error bars

indicate the standard error of the mean of three independent

experiments. Student’s t-test was performed to determine the P

value. *P,0.05, **P,0.01; NS, not significant.

(PDF)

Figure S4 Localization of the adaptive mutation 16D in
NP. The model for the full-length structure of H5N1 NP (A/

Thailand/1(KAN-1)/04) harboring the mutations G16D, R100I,

L283P and F313Y was generated utilizing I-TASSER. The N-

terminus that was not resolved in the crystal structure (aa 1–20) is

highlighted in light orange, whereas 1918-specific amino acids that

confer Mx resistance are shown in blue (16D, 100I/V, 283P and

313Y).

(PDF)

Figure S5 Phylogenetic analysis of representative NP
sequences and the presence or loss of Mx-resistance
enhancing mutations. The maximum likelihood tree of 147

aligned sequences shows four genotypes, i.e., (i) the human H1N1,

H2N2 and H3N2 viruses, (ii) the classical swine H1N1 viruses and

pandemic (2009) H1N1 viruses, (iii) the European lineages of swine

influenza viruses, and (iv) the North American avian influenza

viruses. Strain designations and GenBank acc. nos. are presented.

Numbers at nodes indicate bootstrap values obtained after 1,000

replications. Only bootstrap values greater than 50% are

presented. The bar indicates substitutions per site. Alterations of

amino acid positions shown to influence Mx resistance (Figure 3,

Figure S9) are highlighted in bold.

(PDF)

Figure S6 Mx resistance of NP variants of swine origin.
(A–B) H5N1 or (C) pH1N1 polymerase activity in the presence of

human MxA (A and C) or porcine Mx1 (poMx1) (B). The activity

in the presence of human MxA or poMx1 was normalized to the

activity observed after co-expression of the antivirally inactive
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MxA mutant MxA-T103A. The activity observed with the

pH1N1-NP was set to 100%, respectively. Error bars indicate

the standard error of the mean of three independent experiments.

Student’s t-test was performed to determine the P value.

**P,0.01, ***P,0.001; NS, not significant.

(PDF)

Figure S7 Inhibition of polymerase activities by porcine
and canine Mx proteins. (A) Swine NPTr or NSK cells were

transfected with expression plasmids coding for NP, PB2, PB1 and

PA of H5N1, the porcine Pol1-driven firefly luciferase encoding

minigenome, 200 ng of either porcine Mx1 (poMx1), MxA, or the

GTPase-inactive MxA mutant MxA-T103A and a Renilla-

expressing plasmid to normalize variation in transfection efficien-

cy. The activity in the presence of MxA-T103A was set to 100%.

Error bars indicate the standard error of the mean of three

independent experiments. Student’s t-test was performed to

determine the P value. **P,0.01; ***P,0.001. (B) HEK293T

cells were transfected with expression plasmids coding for NP,

PB2, PB1 and PA of H5N1, the firefly luciferase encoding

minigenome, 200 ng of either canine Mx1 (cMx1), canine Mx2

(cMx2), MxA or the GTPase-inactive MxA mutant MxA-T103A

and a Renilla-expressing plasmid to normalize variation in

transfection efficiency. The activity in the presence of MxA-

T103A was set to 100%. Error bars indicate the standard error of

the mean of three independent experiments. Student’s t-test was

performed to determine the P value. ***P,0.001; NS, not

significant.

(PDF)

Figure S8 Mx resistance-enhancing mutations influence
transcription and viral growth in avian cells. (A)

Comparison of viral transcription in MDCKII or avian LMH

cells infected with an MOI of 5 of either H5N1 (KAN-1) or H5N1-

NP-R100I,F313Y after the indicated hours post infection (h.p.i.).

mRNA, cRNA, and vRNA levels were determined using primer

extension analysis with primers specific for segment 6. Levels of

cellular 5sRNA served as internal control. (B) Avian LMH cells

were infected with an MOI of 0.001 of either H5N1 or H5N1-NP-

R100I,F313Y and incubated at 37uC. At the indicated time points

post infection (p.i.), virus titers were determined by plaque assay.

Error bars indicate the standard error of the mean of three

independent experiments.

(PDF)

Figure S9 Mutation D101G in NP of pH1N1 strongly
reduces resistance to MxA. H5N1 polymerase activity after

co-transfection of MxA (200 ng) and the indicated NP (100 ng)

expression plasmids. The activity in the presence of MxA was

normalized to the activity observed with the antivirally inactive

mutant MxA-T103A. The reporter activity observed with the

pH1N1-NP in the presence of MxA was set to 100%. Error bars

indicate the standard error of the mean of two-three independent

experiments.

(PDF)
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