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Resveratrol: Why Is It a Promising Therapy for Chronic Kidney
Disease Patients?
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Resveratrol, a phenolic compound found in various plants, including grapes, berries, and peanuts, shows promise for the treatment
of cancer, aging, type 2 diabetes, and cardiovascular diseases. Resveratrol can promote transcription factor nuclear factor-erythroid 2-
related factor 2 (Nrf2) activation, increase the expression level of SIRT-1, which is a sirtuin family protein, and reducemTORpathway
signaling.This compound has anti-inflammatory properties in that it inhibits or antagonizes the nuclear factor-𝜅B (NF-𝜅B) activity,
which is a redox-sensitive transcription factor that coordinates the inflammatory response. Inflammation and oxidative stress,
which are common features in patients with chronic kidney disease (CKD), are interrelated and associated with cardiovascular
disease and the progression of CKD itself. Because of the modulation of the mechanisms involved in the inflammatory-oxidative
stress cycle, resveratrol could play an important role in controlling CKD-related metabolic derangements. Although resveratrol
supplementation in theory is a promising therapy in this patient group, there are no studies evaluating its effects. Thus, the present
review aims to describe the role of resveratrol in inflammation and oxidative stress modulation and its possible benefits to patients
with CKD.

1. Introduction

Systemic inflammation and oxidative stress are nontradi-
tional risk factors that are associated with premature car-
diovascular disease commonly observed in patients with
chronic kidney disease (CKD) [1, 2].Oxidative stress, which is
characterized by an imbalance between oxidative free radical
production and antioxidant capacity, appears to be the link
between inflammation and cardiovascular disease in dialysis
patients [3]. Moreover, in nondialysis CKD stage, oxidative
mechanisms can be involved in renal tissue injury, in which
the oxidative stress is associated with the progression of CKD
itself [4, 5].

Resveratrol, a phenolic compound that is found in various
plants, especially including red grapes and their derivatives
[6], has demonstrated many beneficial effects, including

anti-inflammatory and antioxidant roles by enhancing the
production of antioxidant enzymes [7] and modulating
nuclear factors involved in the inflammation-oxidative stress
cycle [8, 9]. However, no study has investigated the effects
of resveratrol on patients with CKD. This review presents
exciting evidence of the positive role of resveratrol in inflam-
mation and oxidative stress control, and the study argues how
resveratrol may represent an important link in the puzzle of
CKD disorders.

2. Inflammation and Oxidative Stress in CKD

Inflammation and oxidative stress are interrelated conditions
[10]. Oxidative free radicals are generated by phagocytic
immune cells in response to inflammatory stimuli and
released with proinflammatory cytokines, which in turn
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Figure 1: Oxidative stress: imbalance between antioxidant (AOX) capacity and reactive oxygen species (ROS) production.

amplify the generation of oxidants [11, 12]. To prevent
the harmful effects of the oxidative status, enzymatic and
nonenzymatic antioxidant systems counteract oxidative free
radicals [11].

In CKD, several features might contribute to a persistent
state of inflammation and its prooxidant effects, such as
proteinuria, reduced cytokine clearance, infections, comor-
bidities, underlying influences of clinical events, and dialysis-
related factors, including membrane bioincompatibility,
dialysate backflow, and endotoxemia [13, 14]. Patients with
CKD demonstrate antioxidant defense deficiency because
of the reduced consumption of vitamins and minerals
containing antioxidants, such as vitamin C and selenium
[15].

Oxidative stress results from this imbalance between
oxidant generation and antioxidant defense mechanisms
(Figure 1), leading to cell and tissue injury [16] and promoting
the perpetuation of the inflammation-oxidative stress cycle
by activating nuclear factor 𝜅B (NF-𝜅B), which is a redox-
sensitive transcription factor that mediates the transcription
of a large number of inflammatory genes coding for cytokines
and adhesion molecules. Thus, when NF-𝜅B is activated,
several cytokines are excessively produced, which leads to the
formation of oxidative free radicals that establish a vicious
cycle between inflammation and oxidative stress [17].

The chronic activation of NF-𝜅B could predispose to
atherosclerosis [18] because of its important role in inflamma-
tory phenotypic changes in endothelial and smooth muscle
cells [19]. In a recent study, Tilstra et al. [20] showed that NF-
𝜅B inhibition delays DNA damage-induced senescence and
aging in mice. This transcription factor could be speculated
to play a role in the human aging process [20]. Inflammation
is a critical mechanism that promotes interlinked fibrosis and
cellular injury in the renal interstitium [21], and, additionally,
the decrease in renal function is accompanied by increased
oxidative stress [22]. In this sense, chronic inflammation
and oxidative stress features that are closely associated with
NF-𝜅B activation play a key role in the development and
progression of CKD and its related disorders [23].

In contrast to NF-𝜅B, transcription factor nuclear factor-
erythroid 2-related factor 2 (Nrf2) is responsible for the
constitutive and inducible expression of antioxidant response
element-regulated genes [24] and is recognized to be a major
cellular defense mechanism against oxidative stress [17].

When Nrf2 is released from its repressive cytosolic protein
Keap 1, after it is translocated to the nucleus, Nrf2 activates
genes that encode phase II detoxifying enzymes and antiox-
idant enzymes, such as glutathione peroxidase and heme
oxygenase-1 [17, 25, 26]. In addition to reducing the expres-
sion of proinflammatory mediators, including cytokines and
adhesionmolecules, Nrf2 appears to inhibit NF-𝜅B activation
[27] by regulating anti-inflammatory enzymes [17]. Thus,
Nrf2 regulates cellular antioxidant responses and inhibits or
antagonizes NF-𝜅B actions [17, 24].

Different pharmacological and dietetic compounds are
associated with Nrf2 activation. Among food compounds,
rutin, quercetin [28], blackcurrant anthocyanins [29], and
resveratrol [9] are demonstrated to promote Nrf2 activa-
tion.

3. Resveratrol

Resveratrol is a metabolite produced in more than 70 plant
species in response to environmental stress [6], such as
mechanical injury, microbial infection, and UV irradiation.
Found in high concentrations in red grapes and their deriva-
tives, resveratrol exists in nature in two isomeric forms
(Figure 2): trans-resveratrol and cis-resveratrol [30]. Two
phenol rings are linked by a styrene double bond to generate
3,5,4󸀠-trihydroxystilbene, whichwas first isolated in 1940 [31].
Although both isomers are biologically active, a majority of
biological functions of resveratrol are attributable to trans-
resveratrol, which is the more stable form. Initially, this
compound attracted intense interest in 1992 when several
cardioprotective effects were postulated to be associated
with red wine [32] which implied that this benefit was an
important factor in the French Paradox [33], that is, the
observation that the French population has a low incidence of
cardiovascular disease, despite having high saturated fat diet
[34].

From that time, many biological effects have been
assigned to resveratrol; the cardioprotective effects from
resveratrol are the most known [35]. Resveratrol seems to
improve vascular function by increasing nitric oxide synthe-
sis and inhibiting its degradation [36], in addition to being
able to increase the expression of antioxidant enzymes such
as superoxide dismutase, catalase, and glutathione peroxidase
[7]. Regarding the role of resveratrol in Nrf2 activation,
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Figure 2: Chemical structure of resveratrol isoforms.

Ghanim et al. [9] evaluated in humans the effects of supple-
mentation with a combination of resveratrol and grape skin
polyphenols after a meal rich in carbohydrates and lipids.
They observed an increase in Nrf2 and antioxidant enzyme
expression, such as glutathione S-transferase [9]. In 2011,
Palsamy and Subramanian [8] evaluated the renoprotective
nature of resveratrol and observed that resveratrol admin-
istered orally to diabetic rats was capable of normalizing
Nrf2 renal expression and related antioxidant factors, such as
heme oxygenase-1 (HO-1) [8]. In this study, the resveratrol
treatment was associated with the normalization of renal
function and various inflammatory biomarkers, such as TNF
and IL-6, in addition to being related to increased antioxidant
activity.

In a randomized clinical trial, Timmers et al. [37]
observed that resveratrol supplementation in obese subjects
improved glucose tolerance and decreased hepatic steato-
sis and plasma inflammatory biomarkers [37]. In diabetic
patients, resveratrol supplementation contributed to improv-
ing insulin sensibility, most likely by reducing oxidative stress
[38].

Resveratrol seems to play a role in oxidative stress
modulation by reducing NF-𝜅B expression by sirtuins, which
are proteins involved in the transcription, apoptosis, and
energetic cell regulation [39–43]. The discovery of a homol-
ogous sirtuin (SIRT) family of proteins in the mammalian
systems led to the realization that these molecules have
beneficial effects in metabolism- and aging-related diseases.
Sirtuins, NAD+-dependent deacetylases, are considered to be
central modulators of longevity by playing an antioxidant
role in preventing cardiovascular diseases. Until recently,
researchers have identified seven homologous genes of the
sirtuin family, SIRT-1 to SIRT-7; SIRT-1, with cellular nucleus
localization, is the most studied [44, 45]. SIRT-1 expression
increases with caloric restriction, during fasting or food
deprivation, or when cells are exposed to oxidative stress
conditions and DNA damage [46, 47]; SIRT-1 expression
seems to decrease under several inflammatory conditions
by unknown mechanisms [48]. In humans, Cohen et al.
[46] observed that SIRT-1 activation improves the apoptosis
resistance of renal embryonic cells [46]; in vitro studies
suggested that SIRT-1 has an important role in protecting
renal medullar cells [44].

In an elegant study, Chen et al. [49] demonstrated that, in
rats, resveratrol treatment ameliorated diabetic ketoacidosis

and muscle protein degradation by the attenuation of ele-
vated urinary methyl-histidine and plasma branched-chain
amino acid levels [49]. In this study, the beneficial effects
of resveratrol in diabetic rats were correlated with the acti-
vation of hepatic AMP-activated protein kinase and SIRT-1
expression, increases in hepatic and muscular mitochondrial
biogenesis, and the inhibition of muscle NF-𝜅B activities.
The authors concluded that resveratrol possesses multiple
beneficial metabolic effects in insulin-deficient diabetic rats,
particularly including effects involved in improving energy
metabolism and reducing protein waste [49].

The mechanisms underlying the protective effects of
resveratrol on various cardiovascular andmetabolic disorders
have not been established; however, evidence suggests that
the inhibition of themammalian target of rapamycin (mTOR)
signaling pathway could play a role [50, 51]. mTOR is a
member of the PI 3-kinase-related protein kinase (PIKK)
family that plays a critical role in the regulation of cell
homeostasis in response to various upstream stimuli, such as
growth factors, nutrients, and stress [52, 53].

Although several studies have suggested that activation
of the SIRT-1 signaling pathway is essential for resveratrol
action, Liu et al. [51] demonstrated that resveratrol inhibits
insulin- and leucine-stimulated mTOR signaling in a SIRT-
1-independent manner [51]. The mTOR kinase nucleates two
distinct protein complexes, termed mTORC1 and mTORC2.
As presented in Figure 3, mTORC1 is stimulated by stress,
oxygen, amino acids, energy, and growth factors that are
acutely sensitive to rapamycin. mTORC1 promotes cell
growth by inducing and inhibiting anabolic and catabolic
processes, respectively, and drives cell-cycle progression and
metabolism. mTORC2 is stimulated by growth factors and
regulates cell survival, metabolism, and the cytoskeleton
[54].

Several findings have indicated that resveratrol can
negatively regulate mTOR activity via distinct mechanisms
in response to different upstream stimulus [50]. Because
mTOR activity is related to inflammatory and oxidative
stress processes, its downregulation could attenuate these
conditions.

4. Resveratrol and CKD

Given that inflammation and oxidative stress are implicated
in the pathogenesis of cardiovascular disease in CKD and
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Figure 3: mTORC1 and mTORC2 complexes. AAs: amino acids.
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Figure 4: Scheme of resveratrol action mechanism to reduce inflammation and oxidative stress. AOX: antioxidant; CKD: chronic kidney
disease.

other complications, compounds capable of attenuating these
conditions, such as resveratrol, should attract particular
interest in CKD treatment.

In mice, Liang et al. (2013) suggested that resveratrol
treatment inhibits oxidative stress and renal interstitial fibro-
sis [55]. Additionally, clinical studies based on polyphenol-
containing food supplementation showed improvements in
antioxidant activity and lipid profiles in hemodialysis patients
[56, 57]. However, until recently, no study has been developed
to evaluate resveratrol effects in patients with CKD, although
it is plausible that resveratrol could provide several benefits to
these patients by reducing inflammation and oxidative stress
through SIRT-1 action,mTORpathway inactivation, andNrf2
and NF-𝜅B factor modulation (Figure 4).

Although there are no reports of adverse effects related to
the use of resveratrol in humans, even at high doses, clinical
trialsmust be developed to explore resveratrol effects in CKD,
considering its potential positive effects on systemic inflam-
mation and oxidative stress control. Undeniably, resveratrol
supplementation could represent a promising therapy to
attenuate the progression of CKD, affect azotemia, and reduce
morbidity andmortality by preventing orminimizing the risk
of cardiovascular disease in patients with CKD.
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