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Abstract

The bromodomain and extra-terminal (BET) family of proteins, comprised of four members 

including BRD2, BRD3, BRD4 and the testis-specific isoform BRDT, largely function as 

transcriptional co-activators 1–3 and play critical roles in various cellular processes, including cell 

cycle, apoptosis, migration and invasion 4,5. As such, BET proteins enhance the oncogenic 

functions of major cancer drivers by either elevating their expression such as c-Myc in 

leukemia 6,7 or by promoting transcriptional activities of oncogenic factors such as AR and ERG 

in the prostate cancer setting 8. Pathologically, BET proteins are frequently overexpressed and 

clinically linked to various types of human cancers 5,9,10, therefore pursued as attractive 

therapeutic targets for selective inhibition in patients. To this end, a number of bromodomain 

inhibitors, including JQ1 and I-BET, have been developed 11,12 and shown promising outcomes in 

early clinical trials. Despite resistance to BET inhibitor has been documented in pre-clinical 

models 13–15 the molecular mechanisms underlying acquired resistance are largely unknown. 

Here, we report that Cullin 3SPOP earmarks BET proteins including BRD2, BRD3 and BRD4 for 

ubiquitination-mediated degradation. Pathologically, prostate cancer-associated SPOP mutants fail 

to interact with and promote the destruction of BET proteins, leading to their elevated abundance 

in SPOP-deficient prostate cancer. As a result, prostate cancer cells and prostate cancer patient-

derived organoids harboring SPOP mutations are more resistant to BET inhibitor-induced cell 

growth arrest and apoptosis. Therefore, our results elucidate the tumor suppressor role of SPOP in 

prostate cancer by negatively controlling BET protein stability, and also provide a molecular 

mechanism for BET inhibitor resistance in prostate cancer patients bearing SPOP mutations.

Given that resistance to targeted therapies is frequently associated with accumulation of the 

targeted protein 16–18, it is crucial to understand how BET protein stability is regulated and 

whether deregulation of BET protein abundance contributes to cellular resistance to BET 

inhibitors. To this end, we observed that in 22Rv1 prostate cancer cells, treatment with the 

proteasome inhibitor, MG132, and the Cullin-RING ubiquitin ligases inhibitor, MLN4924, 

led to a significant increase in endogenous BRD4 abundance, indicating the involvement of 

the Cullin-based ligase(s) in regulating BRD4 protein stability (Fig. 1a). In support of this 

notion, we found that BRD4 primarily interacted with Cullin 3 (Cul 3), and to a much lesser 

extent, Cullin 1 (Cul 1), but not other members of the Cullin family (Fig. 1b). Consistently, 

ectopic expression of Cul 3 decreased the protein abundance of BRD4 in a dose-dependent 

manner (Supplementary Fig. 1a). On the other hand, depletion of endogenous Cul 3, but not 

Cul 1, Cul 4A or Cul 4B, led to a marked elevation of endogenous BRD2, BRD3 and BRD4 

protein levels (Fig. 1c and Supplementary Fig. 1b, c), largely by extending protein half-life 

(Supplementary Fig. 1d, e). These data suggest that Cul 3-based ligase(s) might be 

responsible for governing BET protein stability.

Previous studies demonstrated that Cul 3 recruits downstream ubiquitin substrates through 

interaction with BTB-domain-containing proteins as substrate-specific adaptors, including 

KLHL20, Keap1 and SPOP 19. Interestingly, we found that only SPOP, but not other Cul 3-

based BTB-domain-containing adaptor proteins we examined, specifically interacts with 

BET proteins (Fig. 1d and Supplementary Fig. 1f–i). Notably, SPOP, but not Keap1 nor 

hCOP1, a Cullin 4-based E3 ligase substrate adaptor protein 20, promoted BET protein 

degradation in a dose-dependent manner (Fig. 1e and Supplementary Fig. 1j–l). More 
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importantly, SPOP-mediated degradation of BRD4 could be efficiently blocked by MG132 

(Supplementary Fig. 1m), indicating that SPOP regulates BRD4 abundance through the 

ubiquitin-proteasome pathway. In keeping with these findings, depletion of endogenous 

SPOP by shRNAs or CRISPR-mediated knockout in multiple prostate cancer cell lines or 

MEFs led to a marked increase in the protein abundance of BET proteins as well as other 

identified SPOP substrates, including DEK, AR and ERG (Fig. 1f–h and Supplementary Fig. 

1n, o). Moreover, we found that SPOP, but not other Cul 3-based adaptor proteins we 

examined or hCOP1, specifically promotes BET protein ubiquitination in cells (Fig. 1i and 

Supplementary Fig. 1p, q). Importantly, BRD4 mRNA levels were minimally changed 

(Supplementary Fig. 1r), while the half-life of BRD4 was significantly extended in SPOP-

depleted cells (Fig. 1j, k and Supplementary Fig. 1s, t). These results collectively suggest 

that the BET family of proteins, including BRD2, BRD3 and BRD4, are potential 

downstream substrates of the Cul 3SPOP E3 ubiquitin ligase.

Next, we sought to understand the biological effects of SPOP in governing BRD4 stability. 

BRD4 has previously shown to play a critical role in cell proliferation, migration and 

invasion by directly associating with positive transcription elongation factor b (P-

TEFb) 21,22 or interacting with DNA-specific transcription factors, including p53, c-Myc, 

AR and ERG 8,23. Consistent with a critical role for BRD4 to serve as transcriptional co-

activator for AR and ERG 8,23, we first confirmed that BET proteins bind both endogenous 

and ectopically expressed AR and ERG in cells (Supplementary Fig. 2a–c). Moreover, 

depletion of SPOP significantly up-regulated the mRNA levels of AR and ERG target genes 

largely in a BRD4-dependent manner in prostate cancer cells (Supplementary Fig. 2d–g). 

Consistently, the mRNA levels of AR and ERG target genes were significantly decreased in 

BRD4 knockout or JQ1 treated C4-2 cells (Supplementary Fig. 2h–l). Importantly, stable 

expression of AR or ERG in BRD4 knockout cells failed to restore the expression of their 

downstream target genes (Supplementary Fig. 2m–p), indicating that BRD4 plays a critical 

role as a co-activator in controlling AR and ERG transcriptional activity. As a result, we 

observed that compared with control (shScr), depletion of BRD4 led to significant inhibition 

of cell proliferation (Fig. 1l), colony formation (Fig. 1m), anchorage independent growth 

(Fig. 1n) and migration (Fig. 1o–q). In contrast, depletion of endogenous SPOP led to a 

significant elevation of BRD4 protein abundance (Fig. 1o and Supplementary Fig. 2g), and a 

BRD4-dependent increase in cell proliferation (Fig. 1l and Supplementary Fig. 2q, r), colony 

formation (Fig. 1m), anchorage independent growth (Fig. 1n) and migration (Fig. 1o–q). 

Moreover, simultaneous depletion of endogenous BRD4 with AR or ERG displayed similar 

proliferation rate or cellular migration ability compared to individual depletion of either 

gene (Fig. 1o–q and Supplementary Fig. 2s–v). Altogether, these data suggest that SPOP 

suppresses prostate cancer progression largely by targeting BRD4 for ubiquitination and 

subsequent destruction, which results in an attenuation of BRD4-dependent AR/ERG 

signaling in prostate cancer (Supplementary Fig. 2w).

SPOP is a member of the MATH-BTB protein family containing an N-terminal MATH 

domain and a C-terminal BTB domain 24. The MATH domain is responsible for substrate 

recognition and interaction, while the BTB domain binds Cul 3 forming the functional E3 

ubiquitin ligase complex. Recent genome-wide sequencing studies have revealed that SPOP 
is the most frequently mutated gene (up to 10%) in prostate cancers 25,26. Interestingly, all 
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SPOP somatic mutations identified in prostate cancers including Y87C, F102C, W131G and 

F133V, occur in the MATH domain (Fig. 2a) and play a dominant-negative role in substrate 

binding and degradation 27. In keeping with previous reports 24,28, we found that deletion of 

the MATH domain abolishes SPOP interaction with BRD4 (Fig. 2b) and both the MATH 

domain and BTB domain are required for SPOP-mediated BRD4 ubiquitination and 

degradation (Fig. 2c and Supplementary Fig. 3a). Next, we sought to explore whether 

prostate cancer-associated SPOP mutations affect BRD4 stability. Notably, all mutants we 

examined failed to interact with BRD2, BRD3 and BRD4 in HEK293 and prostate cancer 

cells (Fig. 2d and Supplementary Fig. 3b–d), and were thereby deficient in promoting the 

degradation of BET proteins (Fig. 2e and Supplementary Fig. 3e–h). Moreover, ectopic 

expression of SPOP-WT, but not the SPOP mutants, significantly shortened the half-life of 

BRD4 (Fig. 2f and Supplementary Fig. 3i) and promoted BET proteins ubiquitination in 

cells (Fig. 2g and Supplementary Fig. 3j, k).

In keeping with these findings, induced expression of SPOP-F133V in the prostate of mice 

also exhibited elevation in protein abundance of BRD2, BRD3 and BRD4 (Supplementary 

Fig. 3l). Consistently, compared to ectopic expression of SPOP-WT, stable expression of 

SPOP mutants in prostate cancer cells increased mRNA levels of ERG downstream target 

genes (Supplementary Fig. 3m). As a result, cells expressing prostate cancer-derived SPOP 

mutants displayed enhanced colony formation ability in monolayer culture and increased 

growth on three-dimensional extracellular matrix compared with cells expressing SPOP-WT 

(Fig. 2h and Supplementary Fig. 4a), a process that can be largely abolished by depleting 

endogenous BRD4 (Fig. 2i and Supplementary Fig. 4b). Consistently, depletion of BRD4 by 

CRISPR-mediated knockout or shRNA in cells expressing SPOP mutations significantly 

retarded tumor growth in xenograft mouse models (Fig. 2j–l and Supplementary Fig. 4c–k). 

Taken together, these results suggest a physiological role for BRD4 in promoting cell 

proliferation and in vivo prostate tumorigenesis downstream prostate cancer-specific SPOP 
mutations.

To further evaluate the clinical significance of SPOP-mediated BRD4 degradation, we 

performed BRD4 immunohistochemistry (IHC) staining in 66 SPOP-WT and 12 SPOP-

mutation prostate cancer patient samples 28 and observed an inverse correlation between 

SPOP mutation status and BRD4 expression (Fig. 2m, n). Moreover, BRD4 expression was 

gradually increased from samples 29 of benign prostatic hyperplasia (BPH) to castration-

resistant prostate cancer (CRPC) and significantly associated with shorter overall, disease-

specific and PSA recurrence-free survival after radical prostatectomy in primary prostate 

cancer (Supplementary Fig. 5a–c). Furthermore, using two class paired significance analysis 

of microarrays in normal-tumor pairs to compute transcriptome-wide differential test 

statistics (d-statistics), we found a strong correlation (Rho=0.83, p<2.2e-16) between the two 

sets of d-statistics, suggesting that expression changes associated with SPOP-mutation are 

largely shared with expression changes associated with high expression of BRD4 

(Supplementary Fig. 5d). Collectively, these data suggest that SPOP mutations result in 

elevated BRD4 protein abundance that associates to prostate cancer progression.

To gain further insights into how SPOP governs BRD4 stability, we next examined the 

specific region(s) of BRD4 that interact(s) with SPOP (Fig. 3a). Interestingly, SPOP 

Dai et al. Page 4

Nat Med. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specifically interacted with and promoted the degradation of the bromodomain region (1–

470aa), but not other regions of BRD4 (Fig. 3b, c). A previous study has reported that well-

characterized substrates of SPOP contain the Φ-Π-S-S/T-S/T consensus motif (where Φ is a 

nonpolar residue; Π is a polar residue; S is Serine; T is Threonine) 24. Upon examination of 

the 1–470 amino acid sequence, we identified one evolutionally conserved putative SPOP 

binding motif or “degron” in all of BET family members (Fig. 3d). Strikingly, deletion of the 

identified degron (ΔD) led to an abolishment of BET proteins interaction with SPOP in cells 

and in vitro (Fig. 3e and Supplementary Fig. 6a–e). Moreover, the ΔD mutant of BET 

proteins was resistant to SPOP-mediated degradation (Fig. 3f and Supplementary Fig. 6f–h). 

As a result, the half-life of the ΔD-BRD4 mutant was significantly extended compared with 

WT-BRD4 (Fig. 3g, h and Supplementary Fig. 6i, j). Consistent with these findings, 

compared with WT-BRD4, the ΔD-BRD4 mutant was largely deficient in undergoing SPOP-

mediated ubiquitination in cells and in vitro (Fig. 3i, j and Supplementary Fig. 6k). These 

results together indicate that the identified degron is the major motif that is responsible for 

SPOP-dependent regulation of BRD4 stability.

Interestingly, analysis of the COSMIC cancer database (http://cancer.sanger.ac.uk/cosmic) 

reveals a cancer patient-derived T295P (P is Proline) somatic mutation in the degron motif 

of BRD4, which may disrupt the canonical SPOP binding motif (Supplementary Fig. 6l). 

Indeed, we observed that the T295P-BRD4 mutant failed to interact with SPOP in cells 

(Supplementary Fig. 6m). As such, compared with WT-BRD4, the T295P-BRD4 mutant 

was resistant to SPOP-mediated ubiquitination and subsequent degradation (Supplementary 

Fig. 6n–q). These results indicate that the T295P mutation may stabilize and subsequently 

enhance the oncogenic role of BRD4 to promote tumorigenesis in part by evading SPOP-

mediated degradation.

Next, we sought to explore the physiological roles of degron-mediated BRD4 degradation by 

SPOP in the prostate cancer setting. To this end, we found that ectopic expression of WT-

BRD4, and to a greater extent, the non-degradable ΔD-BRD4 mutant, promoted cell 

proliferation and cell migration (Fig. 3l–n), supporting a possible oncogenic role for BRD4. 

More importantly, co-expression of SPOP suppressed WT-BRD4, but not ΔD-BRD4-

mediated cell proliferation and cell migration (Fig. 3l–n), which is in large part due to the 

observation that ectopically expressed SPOP could efficiently promote the degradation of 

ectopically expressed WT-BRD4, but not ΔD-BRD4 (Fig. 3k) that is deficient in interacting 

with SPOP (Fig. 3e).

Notably, several BET inhibitors have been developed that mechanically disrupt the 

interaction of bromodomain proteins such as BRD4 with acetylated histones, leading to 

subsequent inhibition of transcription, cell growth and tumorigenesis 11,12. Consistently, 

early clinical trials have shown that the BET inhibitors display promising therapeutic 

outcomes in patients 4. However, more recent studies have identified mechanisms of 

resistance to BET inhibitors in leukemia and triple-negative breast cancer through elevation 

of Wnt/β-catenin signaling or hyper-phosphorylation of BRD4, respectively 13–15. 

Therefore, it is crucial to investigate whether deficiencies in BRD4 degradation resulting 

from SPOP mutations may confer resistance to the BET inhibitors in prostate cancer. 

Interestingly, we observed that depletion of BRD4 by shRNA or CRISPR-mediated 
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knockout could sensitize prostate cancer cells to BET inhibitors, JQ1 and I-BET (Fig. 4a, b 

and Supplementary Fig. 7a–e). In contrast, depletion of endogenous SPOP by shRNA or 

CRISPR-mediated knockout, which stabilizes BRD4 (Supplementary Fig. 7a), reduced JQ1 

and I-BET sensitivity (Fig. 4a, b and Supplementary Fig. 7c–f) and inhibited JQ1-induced 

suppression of cellular migration (Supplementary Fig. 7g, h). Furthermore, additional 

depletion of BRD4 re-sensitized SPOP-depleted cells to JQ1 (Fig. 4b), suggesting that 

SPOP-deficient cells acquired resistance to BET inhibitors largely due to elevation of BRD4 

protein abundance.

In keeping with the notion that BET proteins are the primary drug targets of JQ1 11, cells 

simultaneously depleted of endogenous BRD2/3/4 proteins displayed decreased proliferation 

rate and were less responsive to JQ1 treatment (Supplementary Fig. 7i–l). By contrast, stably 

expressing other SPOP substrates in BRD4 knockout cells, such as AR and ERG, failed to 

restore JQ1 resistance (Supplementary Fig. 7m–o), indicating that all BET proteins, BRD4, 

BRD2 and BRD3, are likely JQ1 drug targets and their levels functionally contribute to JQ1 

resistance in prostate cancer. Consistently, stable expression of SPOP-WT, but not the BRD4 

interaction-deficient SPOP mutants in C4-2 or LNCaP cells conferred sensitivity to JQ1 and 

I-BET (Fig. 4c and Supplementary Fig. 8a–g), presumably due to their distinct behavior in 

dictating endogenous BET protein abundance in prostate cancer cells (Fig. 2e and 

Supplementary Fig. 3h). Moreover, compared with tumors expressing SPOP-WT, tumors 

expressing SPOP-mutant were resistant to JQ1 treatment in a xenograft mouse model (Fig. 

4d–f and Supplementary Fig. 8h–j). Importantly, depletion of BRD4, but not other SPOP 

substrates such as DEK, TRIM24 and ERG, could largely re-sensitize SPOP-deficient cells 

to JQ1 in C4-2 and 22Rv1 prostate cancer cells (Fig. 4g, h and Supplementary Fig. 8k–x).

Furthermore, in keeping with the notion that BRD4 protein levels dictate cellular sensitivity 

to BET inhibitors, we found that ectopic expression of WT-BRD4, or the non-degradable 

ΔD-BRD4 mutant at comparable levels, allowed cells to acquire resistance to JQ1 treatment 

(Supplementary Fig. 9a–b). More importantly, co-expression of SPOP could suppress WT-

BRD4, but not ΔD-BRD4-mediated JQ1 resistance (Supplementary Fig. 9c–e). Consistently, 

in BRD4 knockout C4-2 prostate cancer cells, reconstituted the non-degradable T295P-

BRD4 mutant was relatively more stable than reconstituted WT-BRD4 (Supplementary Fig. 

9f, g) in part due to its deficiency to interact with SPOP (Supplementary Fig. 6m), and 

depletion of SPOP in these cell lines elevated protein abundance of stably expressed WT-

BRD4, but not T295P-BRD4 (Supplementary Fig. 9h). As a result, compared with cells 

reconstituted with T295P-BRD4, cells overexpressing WT-BRD4 were relatively more 

sensitive to JQ1 largely in a SPOP-dependent manner (Supplementary Fig. 9i). In keeping 

with these results, depletion of SPOP inhibited JQ1-induced cellular apoptosis largely in a 

BRD4-dependent manner (Fig. 4i and Supplementary Fig. 9j–l). On the other hand, ectopic 

expression of SPOP-WT, but not the prostate cancer-derived SPOP-W131G mutant, 

promoted cellular apoptosis upon JQ1 treatment, in part through destabilizing BRD4 (Fig. 4j 

and Supplementary Fig. 3h). Taken together, these data suggest that elevated protein levels 

of BRD4 might contribute to the observed resistance to BET inhibitors in prostate cancer 

cells.
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To further investigate whether SPOP deficiency-induced accumulation of BRD4 contributes 

to JQ1 resistance in clinical models, we identified one prostate cancer patient-derived 

organoid harboring the W131R mutation in SPOP. Similar to other known prostate cancer-

derived SPOP mutants, SPOP-W131R mutant also failed to promote ubiquitination and 

subsequent degradation of BET proteins largely due to impaired binding to BET proteins 

(Supplementary Fig. 9m–q). As a result, prostate cancer cells stably expressing SPOP-

W131R mutant were resistant to JQ1 treatment (Supplementary Fig. 9r–t). Consistent with 

the results derived from cell culture model, compared with the SPOP-WT organoids, the 

SPOP-W131R organoid exhibited increased protein abundance of many SPOP substrates 

including BET proteins, SRC3 and TRIM24 (Fig. 4k), subsequently became more resistant 

to JQ1 treatment in both 2-D and 3-D culture conditions (Fig. 4l, m). More importantly, 

depletion of BRD4 re-sensitized the SPOP-W131R organoids to JQ1 treatment (Fig. 4n, o), 

arguing that BRD4 protein abundance, but not the genetic background differences among 

WT and SPOP mutant organoids, accounts for the observed JQ1 resistance.

Having demonstrated a critical role for the SPOP/BRD4 signaling axis in mediating BET 

inhibitor resistance, we next explored how to target BRD4 in SPOP mutation prostate cancer 

cells to achieve better clinical outcomes. Recently, ligand-induced target protein degradation 

has emerged as a promising therapeutic strategy for cancer, such as phthalimides/Cereblon-

mediated degradation of transcription factors, IKZF1 and IKZF3 30,31. To this end, dBET1, 

which is a hybrid compound of JQ1 and thalidomide, could specifically promote Cullin 

4Cereblon-dependent degradation of BET proteins 32. Notably, we found that similar to 

cellular response to other BET inhibitors, compared with parental C4-2 cells, SPOP 
knockout cells were relatively resistant, whereas BRD4 knockout cells were more sensitive 

to dBET1 (Supplementary Fig. 10a), which is largely due to the fact that in SPOP knockout 

cells with elevated BRD4 protein abundance, dBET1 cannot efficiently promote the timely 

degradation of BRD4 to trigger cellular apoptosis in low dBET1 concentration 

(Supplementary Fig. 10b). Notably, we confirmed that, the expression of Cereblon was 

comparable in SPOP knockout cells and parental cells (Supplementary Fig. 10c). Moreover, 

dBET1 could efficiently promote BRD4 degradation in Cereblon-WT, but not Cereblon 
knockout 293FT and MMIS cells (Supplementary Fig. 10d, e). These results validate that 

cereblon is the major E3 ligase mediating dBET1-induced degradation of BRD4 protein. To 

further examine whether BRD4 protein abundance also dictates cellular dBET1 sensitivity, 

we treated the SPOP knockout cells with increased doses of dBET1. We found that dBET1 

could gradually promote BRD4 degradation in high doses (Supplementary Fig. 10f). 

Moreover, in SPOP knockout cells, dBET1 could promote BRD4 degradation upon 

decreasing BRD4 abundance comparable to parental cells (Supplementary Fig. 10g).

Taken together, our study uncovers a critical tumor suppressive role of SPOP in prostate 

cancer by earmarking the BRD4 oncoprotein for timely destruction. Furthermore, we show 

that impairment of this signaling axis by either mutations at the E3 ligase (SPOP) level or 

the substrate (BRD4) level can prevent SPOP-mediated destruction of BRD4 by disrupting 

SPOP/BRD4 interaction, leading to stabilization and cooperation of BRD4 with various 

oncogenic transcription factors including AR and ERG to facilitate prostate tumorigenesis 

(Supplementary Fig. 2w). Notably, SPOP somatic mutations are mutually exclusive with 

ERG gene fusion 25, the most frequent genetic alteration event occurred in over 50% of 

Dai et al. Page 7

Nat Med. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



prostate cancer, which dominantly elevates both mRNA and protein levels of ERG and its 

downstream targets to promote cellular migration and invasion 33,34. Our previous study 

demonstrated that SPOP deficiency, caused by either SPOP mutation or depletion of 

endogenous SPOP, led to a moderate increase of ERG protein levels to promote cellular 

migration 28. Our current study suggests that in SPOP-deficient prostate cancer cells, 

elevation in BRD4 transcriptional co-activator might synergize with a moderate increase in 

ERG to favor cell migration and subsequent tumorigenesis. Moreover, our results also 

provide a possible molecular mechanism for BET inhibitor resistance in prostate cancer cells 

harboring SPOP mutations largely through stabilizing BET oncoproteins (Fig. 4p). We are 

also aware of that some SPOP-WT prostate cancer samples also exhibit high protein levels 

of BRD4 (Fig. 2n), indicating that other mechanisms, such as transcriptional regulation and 

genetic amplification, could also lead to BRD4 accumulation independent of SPOP 
mutation, which warrants for future in-depth study. Given the critical oncogenic role of 

BRD4 and high frequency of SPOP mutation in prostate cancer, our findings provide a 

molecular rationale for the clinical investigation of novel strategies to combat prostate 

cancer based on SPOP genetic status.

ONLINE METHODS

Cell culture

HEK293, HEK293T, HeLa, 293FT and mouse embryonic fibroblasts (MEFs) cells were 

maintained in DMEM medium supplemented with 10% FBS. LHMAR, MMIS, C4-2, 

22Rv1 and LNCaP cells were cultured in RPMI 1640 medium with 10% FBS. SPOP+/+ and 

SPOP−/− MEFs were obtained from Dr. Nicholas Mitsiades at Baylor College. Cullin 4A and 

Cullin 4B MEFs were gift of Dr. Pengbo Zhou at Weill Cornell Medical College. 293FTWT, 

293FTCRBN−/−, MMISWT and MMISCRBN−/− cells were kind gift from Dr. William Kaelin 

at Dana Farber Cancer Institute. The human prostate cancer-derived organoids MSK-PCaX 

were cultured as described previously 35. Cell transfection was performed as described 

previously 36. No mycoplasma contamination was observed in these cell lines. Lentiviral 

shRNA virus packaging and subsequent infection of various cell lines were performed 

according to the protocol described previously 37. BET inhibitors, including JQ1, I-BET, 

dBET1, were obtained from Dr. James E. Bradner group in Dana-Farber Cancer Institute. 

Cycloheximide (CHX) assays were performed as described previously 38.

Plasmids

GFP-BRD4, GFP-BRD2, GFP-BRD3, GFP-BRDT, HA-BRD4, Xpress-BRD4 truncations, 

Flag-Keap1, Flag-KLHL12 and Flag-KLHL37 were purchased from Addgene. Flag-BRD4 

was obtained from Dr. Chris French at Brigham and Women’s Hospital, Harvard Medical 

School. GST-BRD4 was generated by sub-cloning the BRD4 1-470 amino acid into 

pGEX-4T-1 vector. KLHL20 was gift of Dr. Ruey-Hwa Chen in Institute of Biological 

Chemistry, Academia Sinica (Taiwan). KLHL2 and KLHL3 were obtained from Dr. Shinichi 

Uchida at Tokyo Medical and Dental University. PLZF was gift of Dr. Junying Yuan at 

Harvard Medical School. Flag-COP1 and Flag-DET1 constructs were kind gift from Dr. 

William Kaelin at Dana-Farber Cancer Institute. Flag-AR and HA-AR constructs were from 

Dr. Shao-yong Chen at Beth Israel Deaconess Medical Center, Harvard Medical School. 

Dai et al. Page 8

Nat Med. Author manuscript; available in PMC 2018 February 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SPOP related constructs were described previously 28. Myc-Cullins constructs were 

described previously 38. Various BRD4 mutants were generated using the QuikChange XL 

Site-Directed Mutagenesis Kit (Agilent) according to the manufacturer’s instructions. 

Details of plasmid constructions are provided upon request.

shRNAs

shRNA vectors to deplete endogenous SPOP (shSPOP: TRCN0000122224, 

TRCN0000139181, TRCN0000145024), ERG (shERG:TRCN0000013913) and BRD2/3 
were purchased from Sigma. shRNA vectors to deplete endogenous BRD4 were kind gifts 

from Dr. Takeshi Shimamura at Loyola University Chicago. shAR vectors were gift from Dr. 

Myles Brown at Dana-Farber Cancer Institute.

Antibodies

All antibodies were used at a 1:1000 dilution in 5% non-fat milk for western blot. Anti-ERG 

antibody [EPR3864 (2)] and (C-20) were purchased from Abcam and Santa Cruz, 

respectively. Anti-SPOP antibody (16750-1-AP), Anti-BRD2 (22236-1-AP) and anti-BRD3 

(11859-1-AP) antibody were purchased from Proteintech. Anti-BRD4 antibody was 

purchased from Cell Signaling (13440) and Bethyl laboratories (A301-985A-M). Anti-

Cullin 3 (2759), anti-GST (2625), anti-DEK (13962s), anti-SRC3 (2126), anti-Cleaved 

Caspase-3 (9664), anti-Cleaved PARP (5625), polyclonal anti-Myc-Tag antibody (2278) and 

monoclonal anti-Myc-Tag (2276) antibodies were purchased from Cell Signaling. Polyclonal 

anti-Flag antibody (F-2425), monoclonal anti-Flag antibody (F-3165, clone M2), anti-

Tubulin antibody (T-5168), anti-Vinculin antibody (V-4505), anti-Flag agarose beads 

(A-2220), anti-HA agarose beads (A-2095), peroxidase-conjugated anti-mouse secondary 

antibody (A-4416) and peroxidase-conjugated anti-rabbit secondary antibody (A-4914) were 

purchased from Sigma. Monoclonal anti-HA antibody (MMS-101P) was purchased from 

Biolegend. Anti-GFP (8371-2) antibody was purchased from Clontech. Anti-Cullin 1 

(SC-17775), anti-AR (N-20), anti-TRIM24/TIF1α (C-4), polyclonal anti-HA (SC-805) and 

anti-p27 (SC-528) were purchased from Santa Cruz. Anti-Xpress (46-0528) antibody was 

purchased from Invitrogen.

Immunoblots and immunoprecipitation

Cells were lysed in EBC buffer (50 mM Tris pH 7.5, 120 mM NaCl, 0.5% NP-40) 

supplemented with protease inhibitors (Complete Mini, Roche) and phosphatase inhibitors 

(phosphatase inhibitor cocktail set I and II, Calbiochem). The protein concentrations of 

lysates were measured by the Beckman Coulter DU-800 spectrophotometer using the Bio-

Rad protein assay reagent. Same amounts of whole cell lysates were resolved by SDS-PAGE 

and immunoblotted with indicated antibodies. For immunoprecipitation, 1000 μg lysates 

were incubated with the indicated antibody (1–2 μg) for 3–4 hours at 4 °C followed by 1 

hour incubation with Protein A sepharose beads (GE Healthcare). Immunoprecipitants were 

washed five times with NETN buffer (20 mM Tris, pH 8.0, 100 mM NaCl, 1 mM EDTA and 

0.5% NP-40) before being resolved by SDS-PAGE and immunoblotted with indicated 

antibodies. Quantification of the immunoblot band intensity was performed with ImageJ 

software.
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Real-time RT-PCR analyses

Total RNA was extracted using the RNeasy mini kit (Qiagen), and the reverse transcription 

reaction was performed using Power SYBR® Green PCR Master Mix (Thermo Fisher 

Scientific, 4367659). The real-time RT-PCR was performed with the 7500 Fast Real-time 

PCR system (ABI). Primers for BRD4 are 5′-AGCAGCAACAGCAATGTGAG-3′ and 5′-

GCTTGCACTTGTCCTCTTCC-3′. Other primers for SPOP, AR and ERG target genes 

were described previously 28. Data was shown as mean ± SD for three independent 

experiments.

In vitro ubiquitination assays

In vitro ubiquitination assays were performed as described previously 38. Briefly, 293T cells 

were transfected with HA-SPOP, Myc-Cul3 and Myc-Rb×1 to purify SPOP/Cullin3/Rb×1 

complex by HA immunoprecipitation. GST-BRD4-1-470 protein (wild-type and ΔD) was 

incubated with purified SPOP/Cullin3/Rb×1 complex together with E1, E2 (UbcH5a and 

UbcH3) and ubiquitin. The reactions were stopped by SDS sample buffer and resolved by 

SDS-PAGE for immunobloting.

In vivo ubiquitination assays

HeLa or HEK293 cells were transfected with HA-Ub and the desired constructs. Thirty-six 

hours post-transfection, cells were treated with 20 μM MG132 for 6 hours. Cells were lysed 

in denaturing buffer (1%SDS, 50 mM Tris, pH 7.5, 0.5 mM EDTA and 1 mM dithiothreitol). 

After incubation at 100 °C for 10 min, the lysate was sonicated and diluted 10 times with 

EBC lysis buffer and incubated with anti-HA-conjugated agarose beads (Sigma, mouse 

antibody) for 4 hours in 4 °C. Immunoprecipitants were washed five times with NETN 

buffer before resolved by SDS-PAGE and immublotted with indicated antibodies. In vivo 
His pull down ubiquitination assays were performed as described previously 28.

Migration assays

For cell migration assays, 3×104 to 1×105 cells were plated in a 8.0 μm 24-well plate 

chamber insert (Corning, 3422) with serum-free medium on the top of insert and 3T3 

conditional medium containing 10% FBS at the bottom of the insert. Each sample was 

performed in triplicate. Cells were incubated for 24 hours and fixed with 4% 

paraformaldehyde for 15 min. After washed with PBS, cells on the top of the insert were 

scraped with a cotton swab. Cells adherent to the bottom were stained with 0.5% crystal 

violet blue for 15 min and then washed with ddH2O. The positive staining cells were 

examined under microscope. Data was shown as mean ± SD from three independent 

experiments.

Cell viability assays

The indicated cell lines were seeded in 96-well (3×103 cells/well) plates and cultured in 100 

ul medium containing 10% serum. After 24 hours, cells were treated with or without various 

concentrations of compounds in 50 μl medium for 24 to 48 hours and the cell viability was 

measured using the Cell Titer Glo (Promega) according to the manufacturer’s instructions. 

The cell viability assay for the human prostate organoid MSK-PCaX cells were performed 
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as described previously 35, 39. For 2-D culture, 5,000 organoids cells per well of a collagen 

coated 96-well cell culture were plated in 100 ul complete human media with vehicle 

(DMSO) control or JQ1 (10–3000 nM). Viable cells were counted using CellTiter-Glo 

(Promega) Luminescent Cell Viability Assay after 72 hours treatment. All cell viability 

experiments were conducted in triplicate. For 3-D culture, 5,000 organoids cells in 10 ul 

Matrigel per well were plated in 96-well cell culture plate. Viable cells under 3-day-

treatment of 100 ul complete human media with vehicle (DMSO) control or JQ1 (10–3000 

nM) were counted using CellTiter-Glo (Promega) Luminescent Cell Viability Assay. Data 

was shown as mean ± SD from three independent experiments.

Colony formation and soft agar assays

For the short-term colony formation assay, the cells were seeded in 6-well plates (1000–

3000 cells/well) in medium and cultured for one to two weeks dependent on the size of the 

colony. Then the cells were fixed by methanol and acetic acid and stained with crystal violet 

and to count cell number. For the long-term soft agar assay, 2% melting Nobel agar was 

prepared and mixed with RPMI1640 to make the 0.4% and 0.8% agar in 50°C. 2 ml 0.8% 

Nobel agar was added in the bottom of the 6-well plate. 1×104 or 3×104 cells per well were 

mixed with 2 ml 0.4% agar and the mixture was added on the top of 0.8% agar. After routine 

culture for 4 to 6 weeks, colony numbers were stained with iodonitrotetrazolium chloride 

and counted. Data was shown as mean ± SD from three independent experiments.

Cell proliferation assays

For cell proliferation assays, the cells were seeded in 6-well plates (1×104 to 1×105 cells/

well). At different time points, the cells were harvested and cell number was counted under 

the microscope. Or the cells were seeded in 96 well plates (1.5×103 cells/well). At the 

indicated time points, the cell proliferation was detected with MTS assay (Promega, G3530) 

according to the manufacturer’s instructions. Data was shown as mean ± SD from three 

independent experiments.

Expression analysis in clinical samples of human prostate adenocarcinoma

Genomic alterations were identified by querying genomic data from Prostate 

Adenocarcinoma dataset of TCGA. Comprehensive data of 485 prostate adenocarcinoma 

cases were retrieved from the TCGA database (http://cancergenome.nih.gov/) regarding 

RNAseq gene expression (Illumina HiSeq RNASeqV2 Level 3.1.9.0). Annotations regarding 

SPOP mutation status were obtained from cBioPortal (http://www.cbioportal.org/) on the 

06/29/2015 40. BRD4 mRNA expression levels were dichotomized into low and high 

expression categories using a model for classification based on finite normal mixture 

modeling (mclust 5.1 package, R 3.2.2). Differential gene expression was performed using 

two-class paired significance of microarray data (SAM 2.0 package, R 3.2.2) and genes 

considered differentially expressed when FDR < 0.05.

Immunohistochemistry (IHC)

BRD4 IHC staining was performed using the A301-985A antibody (Bethyl laboratories) in 

two sets of prostate cancer clinical samples. One set contains 66 SPOP wild type and 12 
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SPOP mutation prostate cancer samples as described previously 28. The other set is a tissue 

microarray (TMA) of 369 analyzable, formalin-fixed paraffin-embedded tissue samples from 

the Institute of Pathology and Molecular Pathology, University Hospital Zurich, 

Switzerland 29. Tumor stage and Gleason score of the cohort were assigned according to the 

International Union Against Cancer (UICC) and WHO/ISUP 2016 criteria 41. The study was 

approved by the Cantonal Ethics Committee of Zurich (ZH-KEK-No. 2008-0025) and the 

associated methods were carried out in accordance with the approved guidelines.

Mouse xenograft assays

5×106 indicated C4-2 or 22Rv1 prostate cancer cells were suspended in 100 μl of RPMI 

1640 medium and mixed with matrigel (Corning, 354234, 1:1) and injected into the flanks 

of male nude mice (10 mice for each group). Tumor size was measured every 2 days with a 

caliper and the tumor volume was determined with the formula: L × W2 × 0.52, where L is 

the longest diameter and W is the shortest diameter. At the end of the studies, mice were 

killed and in vivo solid tumors were dissected and weight. For JQ1 treatment assay, when 

the tumor volume reached 100–150 mm3, xenografted mice were randomized and then 

received (6–7 mice for each group) vehicle or 50 mg/kg JQ1, 5 days a week. Tumor volume 

and weight were measured as mentioned above.

Statistics

The data (except animal data) were obtained from at least three times repeated experiments. 

No statistical method was used to predetermine sample size. Group variation was not 

estimated before experiments. The experiments were not randomized, except for the in vivo 
animal studies with mice, as described above. The number of mice per group was described 

in the corresponding figure legends and none of the animals was excluded from the 

experiment. Statistical associations between experimental groups were tested by two-tailed 

unpaired or paired Student’s t-test, two-sided Fisher’s exact test or Pearson’s chi-squared 

test. Nonparametric Kaplan-Meier estimators were used to analyze overall, disease-specific 

and recurrence-free survival. Patients were censored at the time of their last clinical follow-

up visit. Simultaneous 95% confidence bands were computed for the whole range of time 

values. Differences between survival estimates were evaluated by the log-rank test. The 

threshold for statistical significance was set to p < 0.05.

Data availability

Uncropped images for immunoblots and source data for statistics are provided in 

Supplementary Information section. All other relevant data are available from the 

corresponding author upon reasonable request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Cullin 3SPOP E3 ubiquitin ligase negatively regulates the stability of BET proteins
a. Immunoblot (IB) analysis of whole cell lysates (WCL) derived from 22Rv1 cells. Where 

indicated, MG132 or MLN4924 was added for 10 hours before harvesting the cells.

b. IB analysis of WCL and immunoprecipitates (IP) derived from 293 cells transfected with 

Flag-BRD4 and various Myc-tagged Cullin constructs. 30 hours post-transfection, cells were 

treated with 10 μM MG132 for 10 hours before harvesting.

c. IB analysis of WCL derived from 22Rv1 cells infected with the indicated lentiviral 

shRNAs. Infected cells were selected with 1 μg/ml puromycin for 72 hours to eliminate non-

infected cells before harvesting.

d. IB analysis of WCL and IP derived from 293 cells transfected with HA-BRD4 and Flag-

tagged BTB domain-containing protein constructs. 30 hours post-transfection, cells were 

treated with 10 μM MG132 for 10 hours before harvesting. EV, empty vector.

e. IB analysis of WCL derived from 22Rv1 cells transfected with increasing doses (0.5–3 

μg) of Flag-SPOP.

f. IB analysis of WCL derived from C4-2 cells with SPOP knockout by the CRISPR 

technology. Parental C4-2 cells are used as the control.

g. IB analysis of WCL derived from 22Rv1 cells infected with the indicated lentiviral 

shRNAs. Infected cells were selected with 1 μg/ml puromycin for 72 hours to eliminate non-

infected cells before harvesting.

h. IB analysis of WCL derived from SPOP+/+ and SPOP−/− knockout mouse embryonic 

fibroblasts (MEFs).
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i. IB analysis of WCL and IP derived from HeLa cells transfected with plasmids expressing 

the indicated proteins. 30 hours after transfection, cells were treated with the proteasome 

inhibitor MG132 (20 μM) for 6 hours before collecting.

j. SPOP knockout cells (sgSPOP) as well as parental C4-2 cells (Con) were treated with 100 

μg/ml cycloheximide (CHX) for the indicated time period before harvesting. Equal amounts 

of WCL were immunoblotted with the indicated antibodies.

k. Quantification of the band intensities in (j). BRD4 bands were normalized to vinculin, 

then normalized to the t = 0 time point.

l. The growth curve of 22Rv1 cell lines with depletion of SPOP and/or BRD4. shScr, 

Scramble. *p < 0.05, t-test.

m. Colony formation assays of 22Rv1 cell lines with depletion of SPOP and/or BRD4. *p < 

0.05, t-test.

n. Soft agar assays of C4-2 cell lines with depletion of SPOP and/or BRD4. shScr, 

Scramble. *p < 0.05; **p < 0.01, t-test.

o. IB analysis of WCL derived from 22Rv1 cells infected with the indicated lentiviral 

shRNAs. shScr, Scramble. Infected cells were selected with 1 μg/ml puromycin for 72 hours 

to eliminate non-infected cells before harvesting.

p. Representative images of migrated 22Rv1 cells infected with indicated lentiviral shRNAs. 

shScr, Scramble.

q. Quantification of migrated cells in (p). Data was shown as mean ± SD for three 

independent experiments. **p < 0.01, t-test.
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Figure 2. Prostate cancer-associated SPOP mutants promote prostate tumorigenesis largely by 
elevating protein levels of BET proteins
a. A schematic illustration of SPOP domains and prostate cancer-associated mutations.

b. Immunoblot (IB) analysis of whole cell lysates (WCL) and immunoprecipitates (IP) 

derived from 293 cells transfected with Flag-BRD4 and HA-SPOP-WT or deletion of 

MATH domain-SPOP constructs. 30 hours post-transfection, cells were treated with 10 μM 

MG132 for 10 hours before harvesting. EV, empty vector.

c. IB analysis of WCL derived from 293 cells transfected with indicated plasmids. EV, 

empty vector.
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d. IB analysis of WCL and IP derived from 293 cells transfected with Flag-SPOP-WT or 

prostate cancer (PrCa)-associated SPOP mutants. Cells were treated with 10 μM MG132 for 

10 hours before harvesting. EV, empty vector.

e. IB analysis of WCL derived from LNCaP cells stably expressing Flag-SPOP-WT or PrCa-

associated SPOP mutants. EV, empty vector.

f. 293 cells transfected with Flag-BRD4 together with the indicated HA-SPOP expressing 

plasmids. 30 hours post-transfection, cells were treated with 100 μg/ml cycloheximide 

(CHX) for the indicated time period before harvesting. WCL were subjected to IB analysis. 

EV, empty vector.

g. In vivo ubiquitination assays of WCL and IP derived from HeLa cells transfected with 

plasmids expressing indicated proteins. 30 hours post-transfection, cells were treated with 

the proteasome inhibitor MG132 (20 μM) for 6 hours before cell collection.

h. Colony formation assays of C4-2 cell lines stably expressing SPOP-WT or PrCa-

associated SPOP mutants. **p < 0.01, t-test.

i. C4-2 cell lines stably expressing PrCa-associated SPOP mutants were infected with shScr 

(Scramble) or shBRD4 lentivirus. Infected cells were selected with 1 μg/ml puromycin for 

72 hours to eliminate non-infected cells and used for colony formation assays. **p < 0.01, t-
test.

j–l. Parental or BRD4 knockout C4-2 cells stably expressing SPOP-F102C were injected 

into nude mice (n=10 for each group). The in vivo tumor growth was monitored for 

indicated time period (j). Tumors were dissected and weighed (k–l). **p <0.01, t-test.

m. Representative images of primary prostate cancer patient samples stained for BRD4 by 

immunohistochemistry. Scale bar, 100 μm.

n. Statistical analysis of BRD4 expression in primary prostate cancer patient samples 

harboring SPOP-WT or SPOP-mutations. p value, Chi-squared test.
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Figure 3. SPOP promotes ubiquitination and subsequent destruction of BET proteins in a 
degron-dependent manner
a. A schematic illustration of BRD4 domains and truncation of BRD4 constructs used in this 

study.

b. Immunoblot (IB) analysis of whole cell lysates (WCL) and GST pull down products. EV, 

empty vector.

c. IB analysis of WCL derived from 293 cells transfected with indicated Xpress-BRD4 

truncated constructs different doses of Flag-SPOP expressing construct.

d. Sequence alignment of BET proteins with the SPOP binding motif (degron) in known 

SPOP substrates.
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e. IB analysis of WCL and immunoprecipitates (IP) derived from 22Rv1 prostate cancer 

cells transfected with HA-WT-BRD4, ΔD-BRD4 constructs. 30 hours post-transfection, cells 

were treated with 10 μM MG132 for 10 hours before harvesting. EV, empty vector.

f. IB analysis of WCL derived from 293 cells transfected with indicated HA-BRD4 

constructs with different doses of indicated Flag-SPOP expressing constructs.

g. 293 cells were transfected with indicated HA-BRD4 and Flag-SPOP expressing plasmids. 

30 hours post-transfection, cells were treated with 100 μg/ml cycloheximide (CHX) for the 

indicated time period before harvesting. WCL were subjected to IB analysis.

h. Quantification of the band intensities in (g). BRD4 bands were normalized to Vinculin, 

then normalized to the t = 0 time point.

i. In vivo ubiquitination assays of WCL and IP derived from HeLa cells transfected with 

plasmids expressing the indicated proteins. 30 hours after transfection, cells were treated 

with the proteasome inhibitor MG132 (20 μM) for 6 hours before cell collection.

j. The Cul 3SPOP E3 ligase complex promotes BRD4 ubiquitination in vitro. Affinity-

purified SPOP complexes were incubated with recombinant GST-BRD4 proteins, purified 

E1, E2 and ubiquitin. The ubiquitination reaction products were subjected to IB analysis 

with the anti-BRD4 antibody. LE, Longer Exposure; SE, Shorter Exposure.

k. IB analysis of WCL derived from 22Rv1 cells transfected with indicated constructs. EV, 

empty vector.

l. The growth curve of cells ectopically expressing SPOP and/or BRD4. EV, empty vector. 

*p < 0.05, t-test.

m–n. Representative images of migrated 22Rv1 cells transfected with indicated constructs in 

migration assay (m) and quantification of migrated cells (n). EV, empty vector. Data was 

shown as mean ± SD for three independent experiments. **p < 0.01, t-test; ns, non-

significant.
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Figure 4. BRD4 protein abundance largely determines the resistance of SPOP-deficient prostate 
cancer cells to BET inhibitors
a. The growth curve of C4-2 cells with CRISPR-mediated SPOP knockout (sgSPOP) or 

BRD4 knockout (sgBRD4) that were treated with JQ1 for the indicated time period. Parental 

C4-2 cells were used as control. **p < 0.01, t-test.

b. Cell viability of C4-2 cells depleted for SPOP and/or BRD4 treated with indicated 

concentration of JQ1 for 6 days. shScr, Scramble. **p < 0.01, t-test.

c. Cell viability of C4-2 cells stably expressing SPOP-WT or PrCa-derived SPOP mutants 

that were treated with indicated concentration of JQ1. EV, empty vector. **p < 0.01, t-test.
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d–f. 22Rv1 cells stably expressing SPOP-WT or SPOP-W131G mutant were injected into 

nude mice (n=10 for each group) and grown until tumors reached a size of approximately 

100 mm3. Xenografted mice were randomized and then received (n=7 for each group) 

vehicle, 50 mg/kg JQ1, 5 days a week. In vivo tumor growth was monitored for indicated 

time period (d). Tumors were dissected and weighed (e, f). **p <0.01, t-test. ns, non-

significant.

g. The growth curves of parental as well as CRISPR-mediated BRD4 knockout (sgBRD4) of 

C4-2 cells stably expressing the SPOP-W131G mutant that were treated with JQ1 or vehicle. 

(10% cyclodextran in autoclaved water). **p < 0.01, t-test.

h. Colony formation of parental as well as CRISPR-mediated BRD4 knockout (sgBRD4) of 

C4-2 cells with stably expressing SPOP mutants that were treated with or without JQ1. * p 
<0.05, **p < 0.01, t-test.

i–j. Immunoblot (IB) analysis of C4-2 cells depleting SPOP and/or BRD4 (i) or ectopically 

expressing SPOP-WT or the SPOP-W131G mutant (j), treated with indicated doses of JQ1 

for 24 hours before harvesting. shScr, Scramble; EV, empty vector.

k. IB analysis of whole cell lysates (WCL) derived from human prostate organoid MSK-

PCax. MSK-PCa15 is the SPOP-W131R mutant organoid and MSK-PCa2, MSK-PCa11 and 

MSK-PCa16 are SPOP-WT organoids.

l–m. Cell viability of human prostate MSK-PCax organoids in 2-D (l) and 3-D (m) culture 

conditions that were treated with indicated concentration of JQ1 for 4 days. **p < 0.01, *** 

p < 0.001, t-test.

n. IB analysis of WCL derived from human prostate MSK-PCa15 (SPOP-W131R) 

organoids infected with lentiviral shBRD4. Infected cells were selected with 0.5 μg/ml 

puromycin for 48 hours to eliminate non-infected cells before harvesting. shScr, Scramble.

o. Cell viability of human prostate organoids MSK-PCa15 depleted for BRD4 in 2-D culture 

conditions treated with indicated concentrations of JQ1 for 72 hours. shScr, Scramble. **p < 

0.01, t-test.

q. A schematic illustration of the proposed mechanism through which SPOP mutations lead 

to BET inhibitor (BETi) resistance in the prostate cancer setting. TFs, transcription factors.
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