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Abstract

Background: Oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes are both
lost in central nervous system injury and disease. Activated microglia may play a role in OPC and
oligodendrocyte loss or replacement, but it is not clear how the responses of OPCs and
oligodendrocytes to activated microglia differ.

Methods: OPCs and microglia were isolated from rat cortex. OPCs were induced to differentiate
into oligodendrocytes with thyroid hormone in defined medium. For selected experiments,
microglia were added to OPC or oligodendrocyte cultures. Lipopolysaccharide was used to
activate microglia and microglial activation was confirmed by TNFa ELISA. Cell survival was
assessed with immunocytochemistry and cell counts. OPC proliferation and oligodendrocyte
apoptosis were also assessed.

Results: OPCs and oligodendrocytes displayed phenotypes representative of immature and
mature oligodendrocytes, respectively. Activated microglia reduced OPC survival, but increased
survival and reduced apoptosis of mature oligodendrocytes. Activated microglia also underwent
cell death themselves.

Conclusion: Activated microglia may have divergent effects on OPCs and mature
oligodendrocytes, reducing OPC survival and increasing mature oligodendrocyte survival. This may
be of importance because activated microglia are present in several disease states where both
OPCs and mature oligodendrocytes are also reacting to injury. Activated microglia may
simultaneously have deleterious and helpful effects on different cells after central nervous system
injury.
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Background

Oligodendrocytes develop from a bipotential progenitor
cell, often referred to as an oligodendrocyte progenitor
cell (OPC), or oligodendrocyte - type 2 astrocyte cell
(O2A), as it can differentiate into either an oligodendro-
cyte or astrocyte in vitro [1]. Though more prevalent in the
immature CNS, OPCs persist in the CNS of mature ani-
mals and humans [2,3], and have been shown to respond
to CNS injury by proliferating and possibly taking the
place of mature oligodendrocytes that are lost during
injury or disease [4-6].

Both OPCs and oligodendrocytes die in a variety of CNS
diseases. In periventricular leukomalacia (PVL), OPCs are
lost as a consequence of hypoxia, ischemia, or intrauterine
infection [7]. This loss of OPCs, and the resulting failure
to replace mature oligodendrocytes, is thought to be the
pathologic cause of spastic cerebral palsy [8]. Mature oli-
godendrocytes are lost in multiple sclerosis (MS), the
most common disease of the adult CNS, affecting over
250,000 people living in the US [9]. Oligodendrocytes
and OPCs also die after CNS trauma, such as brain and
spinal cord injury [10,11] and it has been shown that oli-
godendrocyte apoptosis in experimental spinal cord
injury peaks over a week after the initial insult [12,13].
This delayed oligodendrocyte death may reduce the effec-
tiveness of neural conduction in the spared axons that
often exist after spinal cord injury.

CNS inflammation occurs in both disease and trauma,
and is mediated in part by microglia, the resident immune
cells of the CNS. Microglia originate from bone marrow
and migrate into the CNS during early stages of develop-
ment [14]. Microglia display graded levels of activation in
the CNS, from resting, highly ramified microglia, to
phagocytic macrophages [15]. Microglia react quickly in
response to CNS injury or disease [16], migrating into an
injury site [17] and secreting a wide array of molecules
that can be toxic to OPCs and oligodendrocytes, including
tumor necrosis factor-o. (TNFa) [18-20], glutamate [21],
and free radicals [22]. Activated microglia contribute to
OPC and oligodendrocyte death in models of PVL and MS
[23-25]. Furthermore, molecules that induce oli-
godendrocyte death can also lead to microglial activation,
such as glutamate [26,27] and proinflammatory cytokines
[28].

In vitro, microglia are capable of inducing OPC death even
without the two cell populations being in direct contact
[29]. However, in vivo microglia have been observed in
close proximity to dying oligodendrocytes after spinal
cord injury [13]. This proximity after injury suggests a
mechanism by which microglia may influence oli-
godendrocyte and OPC survival, as it has been shown in
vitro that microglia in contact with oligodendrocytes can
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induce oligodendrocyte death via membrane-bound
TNFa which is more potent than soluble TNFa [30]. Addi-
tionally, any soluble factors secreted by microglia could
have a higher effective concentration if secreted into a
small space between cells.

There is also evidence that microglia may play a protective
or helpful role in the injured CNS [31,32]. In vitro, micro-
glia can be recruited by soluble factors released by stressed
oligodendrocytes, and support oligodendrocyte survival
via insulin-like growth factor 2 [33,34]. Additionally,
cytokines produced by microglia may aid in repair after
injury, as mice lacking TNFa undergo delayed remyelina-
tion [35]. Even the observations of Shuman and col-
leagues [13], that activated microglia are found in contact
with apoptotic oligodendrocytes after spinal cord injury,
raises the question of whether microglia destroy oli-
godendrocytes that would otherwise survive after injury,
or are simply phagocytosing oligodendrocytes already
destroyed by other toxins in the damaged CNS. Some data
suggest that microglia play a dual role in CNS injury, exac-
erbating damage in some instances or at some times, and
promoting repair or regeneration at others [36,37]. Shu-
man and colleagues [13] also reported that microglia
undergo apoptosis after spinal cord injury. It has been
demonstrated that certain types of toxin-induced micro-
glial activation can result in microglial death both in vitro
and in vivo [38,39] and microglial death has also been
described in concert with microglial activation in other in
vivo injury paradigms [40].

The current studies were carried out to better to determine
the effect of activated microglia on oligodendrocytes at
different developmental stages and to assess microglial
survival after activation. Though many studies have exam-
ined OPC and oligodendrocyte response to activated
microglia, no study, to our knowledge, has directly com-
pared the response of OPCs and oligodendrocytes to acti-
vated microglia under identical culture conditions.
Examining OPC and oligodendrocyte survival under iden-
tical conditions is important, as these cell types are both
present together in the injured CNS and may respond dif-
ferently to the effects of microglial activation. In this
study, we utilized lipopolysaccharide (LPS) to activate
microglia. LPS activates Toll-like receptor 4 and causes
microglia to release proinflammatory cytokines and
become phagocytic [41,42]. Studies in our laboratory
showed that LPS induced TNFa release from microglia in
a dose-dependent fashion (Fig. 1). We found that LPS-
activated, but not non-activated, microglia reduced OPC
survival. However, both LPS-activated and non-activated
microglia increased mature oligodendrocyte survival even
as microglia themselves underwent activation-induced
cell death. These findings suggest that oligodendrocytes at
different developmental stages respond differently to acti-
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TNFo production by microglia. In a preliminary experi-
ment, microglia alone were treated with LPS at varying doses
and TNFa production was assessed 24 hours later. LPS
induced TNFa production in a dose dependent manner.

vated microglia and that OPCs and mature oligodendro-
cytes may undergo different fates in the face of microglial
activation in vivo.

Methods

Cell culture

All procedures were approved by The Ohio State Univer-
sity Institutional Laboratory Animal Care and Use Com-
mittee. All reagents were purchased from Sigma (St. Louis,
MO) unless otherwise noted. OPCs and oligodendrocytes
were isolated by a protocol similar to that described by
McCarthy and de Vellis [43] with some modifications.
Postnatal day 2 Long Evans rat pups were sacrificed by
rapid decapitation and the cortices were removed and
placed in media containing 7.1 mg/ml NaCl, 0.36 mg/ml
KCl, 0.166 mg/ml KH,PO,, 2.57 mg/ml d-Glucose, 2.4
mg/ml NaHCOj;, 0.01 mg/ml phenol red, 0.9 mg/ml BSA
Fraction V, and 0.33 mg/ml MgSO,, (hereafter referred to
as "dissection media") and minced. The tissue was resus-
pended with 10 mls of dissection media with 0.280 pug/ml
trypsin and shaken on an orbital shaker at 200 rpm for 20
minutes, at 37°C. Next, 10 mls of dissection media with
1.28 pg/ml DNAse and 83.2 pg/ml soy bean trypsin inhib-
itor was added and the mixture was briefly shaken and
centrifuged at 690 rcf for 5 minutes. The pellet was then
resuspended in 3 ml of dissection media with 80 pg/ml
DNAse and 520 pg/ml soy bean trypsin inhibitor and trit-
urated to a single cell suspension. Cells were resuspended
in DMEM (Invitrogen, Carlsbad, CA) with 10% fetal
bovine serum containing 292 pg/ml L-glutamine, 1 mM
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sodium pyruvate (Invitrogen) and 0.04 mg/ml gen-
tamicin (Invitrogen) at a volume of approximately 5 ml
per brain. The suspension was then plated into uncoated
T-75 flasks at 10 mls per flask. Flasks were kept in an incu-
bator at 37°C and 5% CO,. Media was replaced after 24
hours and every 4-6 days thereafter.

Cells were allowed to proliferate until confluent, corre-
sponding to day 9-13 post-dissection. At this time, the
mixed cortical cultures consisted of a layer of astrocytes
adherent to the bottom of the flasks, with OPCs and
microglia growing on top of the astrocytes. Before isolat-
ing pure OPCs, the numbers of microglia in the flasks
were reduced by placing sealed flasks on an orbital shaker
at 200 rpm for 2 hours. After shaking, the supernatant was
replaced with fresh media and flasks were returned to the
incubator for 2 hours. After equilibration, flasks were
shaken overnight to detach OPCs from the microglia-
depleted population. At the completion of the overnight
shake, floating cells were resuspended in 4 ml of serum-
free DMEM Sato with either thyroid hormone (as we have
described previously, [44]) in order to induce maturation
of OPCs to oligodendrocytes, or 10 ng/ml PDGF and 10
ng/ml bFGF in order to maintain cells as OPCs. In order
to remove any microglia that were not removed during the
2 hour shake, the cell suspension was plated onto a sterile
petri dish with a radius of 2.5 mm and returned to the
incubator for 45 minutes where both OPCs and microglia
adhered to the petri dish. Petri dishes were then gently
rinsed with culture media in order to remove OPCs, but
leave the more tightly adherent microglia behind. The
resulting cell suspension was adjusted to a density of
20,000 cells per ml and plated onto poly-L-lysine coated
12 mm glass coverslips in 4-well plates, with 500 ul of cell
suspension added per well. These OPC/oligodendrocyte
cultures were >95% pure with <5% microglia as verified
by immunocytochemistry.

Addition of microglia to oligodendrocyte cultures and
experimental timeline

In selected experiments, microglia were added to OPCs or
oligodendrocytes exactly one day after OPCs/oli-
godendrocytes were isolated from flasks containing mixed
glial cultures. LPS treatments took place exactly 2 days
after OPC/oligodendrocyte plating, and fixation took
place exactly 3 days after OPC/oligodendrocyte plating.
Microglia were harvested from flasks derived from the
same primary dissections as the OPCs or oligodendro-
cytes with which they were combined. To remove micro-
glia from flasks without removing OPCs, T75 flasks were
tapped on the lab bench and the supernatant removed.
Microglia were resuspended in the same medium as the
OPCs or oligodendrocytes with which they were com-
bined. When plated alone, the resuspended cells were
shown to be > 95% pure microglia. Microglia were plated

Page 3 of 12

(page number not for citation purposes)



Journal of Neuroinflammation 2007, 4:28

onto pre-existing OPC or oligodendrocyte cultures at a
ratio of 1:1 by initially resuspending microglia at twice the
desired concentration, removing 250 pl of media from the
OPC or oligodendrocyte cultures and adding 250 ul of
microglia suspension to OPC or oligodendrocyte cultures.
The 1:1 ratio of microglia to oligodendrocyte lineage cells
was chosen to be close to that observed in counts of
microglia:oligodendrocyte ratios in the rat dorsal column
(~2:3, data not shown).

Immunocytochemistry and cell counts

At the conclusion of all experiments, cells were fixed with
2% formaldehyde prepared from paraformaldehyde. All
primary antibodies were purchased from Chemicon
(Temecula, CA) unless otherwise noted. All secondary
antibodies were purchased from Molecular Probes
(Carlsbad, CA). Antibodies were diluted in Hank's Bal-
anced Salt Solution with 5% donor calf serum and cover-
slips were rinsed twice between all antibody applications.
For NG2 labeling, cells were first permeabilized with 0.1%
Triton for 10 minutes, and then incubated with anti-NG2
antibody at a concentration of 1:400 for 1.5 hours, fol-
lowed by goat anti-rabbit Alexa 594 at 1:100 for 1 hour.
For A2B5 labeling, cells were incubated with an antibody
to A2B5 conjugated to Alexa 488 (Chemicon) at 1:100 for
1.5 hours. For GalC labeling, cells were incubated with an
antibody to GalC at 1:400 for 1 hour followed by goat
anti-mouse Alexa 488 at 1:200 for 1 hour. For MBP labe-
ling, cells were first permeabilized with 0.1% Triton for 10
minutes and incubated with an antibody against MBP at
1:200 for 1 hour followed by goat anti-rabbit Alexa 488 at
1:100 for 1 hour. For IB4 labeling, which was completed
following staining for OPC/oligodendrocyte markers,
cells were incubated with Alexa 594-conjugated 1B4
(Molecular Probes) at 1:100 for 30 minutes in a solution
of HBSS with 1 mM calcium and no serum. For all exper-
iments, cells were incubated with 10 pg/ml Hoechst for 5
minutes and mounted on glass slides with Immu-Mount
(Thermo, Pittsburgh, PA) after antibody application.

Cell counts were conducted by an experimenter who was
blind to experimental conditions, using a Zeiss Axioplan
2 microscope (Carl Zeiss, Thornwood, NY). Counts were
conducted using the 40x objective. Continuous, non-
overlapping fields were assessed across the entire coverslip
diameter and every cell whose cell body was within the
eyepiece reticle was assessed. For experiments involving
OPCs or oligodendrocytes, the control condition was
defined as OPCs or oligodendrocytes alone with no
microglia or LPS added. For mature oligodendrocytes,
both live and dead cells were visible, with live cells having
intact nuclei and cell bodies, and dead cells having absent
or fragmented nuclei and fragmented cell bodies. Counts
of both live and dead oligodendrocytes were performed
and values are expressed as percent cell death. Actual cell
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counts rather than biochemical assays of cell death were
used to allow discrimination of microglial and oli-
godendrocyte/OPC cell death in the combined culture
studies. Previous work in our laboratory has shown that
morphology-based live/dead counts of oligodendrocyte
lineage cells correlate well with lactate dehydrogenase
(LDH) assay-based cell death estimates (data not shown).
Live OPCs were defined as A2B5 positive cells with two or
more intact processes and intact nuclei. It was not possible
to reliably quantify dead OPCs, as dead OPC cell bodies
were often absent and it could not be determined how
many OPCs were represented by debris, composed of
OPC processes, left behind after fixation and staining.
Therefore, for OPCs, values were expressed as live cells
counted relative to control. For microglia, live cells were
visible as 1B4 stained cells with intact nuclei, and values
were expressed relative to those under conditions in
which microglia, but not LPS, were added to OPC/oli-
godendrocyte cultures.

Caspase assay

A commercially available caspase assay (FLICA, Immuno-
chemistry Technologies, Bloomington, Minnesota) that
utilizes a fluorescently-tagged poly caspase inhibitor was
utilized in accordance with the manufacturer's recom-
mendations. The use of this assay has been described pre-
viously by Grabarek and colleagues [45]. Caspase positive
oligodendrocytes were defined as cells with fragmented
nuclei that also labeled brightly with the caspase indica-
tor, so that the cell body and processes were visible to con-
firm oligodendrocyte morphology. Cells counts were
performed as described above, and caspase activation was
expressed as percent of control.

TNFa ELISA

A TNFo ELISA was used to verify that the selected dose of
LPS activated microglia under different media conditions.
TNFa concentrations were determined using a double
sandwich ELISA following R&D Systems' (Minneapolis,
MN) recommended protocol. Briefly, 96 well plates were
coated with 4 pg/ml of capture antibody (R&D Systems)
in PBS pH 7.4 overnight. Nonspecific binding was
blocked with PBS containing 1% bovine serum albumin
(BSA) for one hour. Experimental samples and known
standards were diluted 1:2 in PBS with 0.05% Tween and
0.1% BSA and added to the capture antibody for 2 hours
at room temperature. 100 pl per well of biotinylated anti-
rat TNFa antibody (R&D Systems) at a concentration of
400 ng/ml was added for 2 hours at room temperature fol-
lowed by streptavidin horseradish peroxidase conjugate at
1:4000 for 20 minutes. 100 pl per well of K-Blue Max sub-
strate (Neogen, Randolph, WI) was added and allowed to
develop in the dark for 20 minutes. The reaction was
stopped by the addition of 1 M H,SO,. Plates were read
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using a Genios plate reader (Tecan, Switzerland) at 490
nm.

Cell proliferation assay

A BrdU incorporation assay, similar to that employed by
Kondo and Raff [46] was used to assess OPC and oli-
godendrocyte proliferation. Cells were exposed to 20 uM
BrdU for six hours prior to fixation, and then fixed in 2%
formaldehyde as previously described. Cells were post-
fixed in 100% methanol for 10 minutes at -20°C, fol-
lowed by DNA denaturation with 2 M hydrochloric acid
for 30 minutes. Acid was then neutralized with 0.1 M
sodium borate at pH of 8.5 for 10 minutes. Cells were
then permeabilized with 0.1% Triton for 10 minutes and
incubated with primary antibody against BrdU (hybrid-
oma monoclonal antibody developed by Stephen J.
Kaufman, Developmental Studies Hybridoma Bank, The
University of lowa, Department of Biological Sciences,
Iowa City, 1A) at 1:5 for 1 hour followed by goat anti-
mouse secondary antibody conjugated to Alexa 594 at
1:100 for 1 hour. This staining was done in combination
with A2B5 labeling for OPCs and followed by Hoechst
labeling of nuclei. BrdU labeling was evaluated by exam-
ining five random fields per coverslip and the percentage
of OPCs or oligodendrocytes incorporating BrdU was
compared to that of the control condition. All BrdU, cell
survival, and caspase experiments were replicated using
cells from at least two different primary cultures, and all
"n" values refer to individual coverslips on which experi-
ments were carried out. OPC/oligodendrocyte survival,
BrdU and caspase experiments were analyzed via factorial
ANOVA. Additionally, a one way ANOVA with Tukey's
post-hoc test was conducted to determine what groups
differed from OPCs or oligodendrocytes alone. All error
bars represent + SEM. Significance was set at p < 0.05.

LDH assay for assessment of microglia death

A commercially available LDH assay kit (Roche, Indiana-
polis, IN) was used to quantify LDH release in experi-
ments with microglia grown alone. In 3 independent
replications, microglia were isolated as described above,
and plated at concentrations varying from 50,000 to
150,000 cells/ml into a 96 well plate coated with poly-L-
lysine. 24 hours after plating, 10 ng/ml LPS was adminis-
tered for 24 hours and LDH release was assayed according
to the manufacturer's instructions. For positive controls,
microglia were treated with 1% triton for 10 minutes prior
to LDH release quantification. Cell death was measured as
[experimental value - negative control]/[positive control -
negative control]. LDH release by microglia treated in the
two conditions was compared using Student's T-test.
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Results

OPCs cultured with bFGF and PDGF express markers of
both immature and mature oligodendrocyte lineage cells
OPCs grown continuously with PDGF and bFGF were
observed under phase contrast microscopy to have a bipo-
lar morphology typical of OPCs by day 1 in vitro. On day
3 in vitro, cells were labeled with the OPC markers NG2
and A2B5 in their somata and processes (Fig. 2A, B). OPCs
also stained positively for GalC and faintly for MBP, typi-
cally considered to be markers of mature oligodendrocyte
lineage cells (Fig. 2C,D). These observations suggest that
the OPCs in this in vitro system were beginning the transi-
tion toward mature oligodendrocytes [47].

LPS-activated microglia release TNF«

A preliminary experiment was conducted to determine the
response of microglia to varying doses of LPS. Microglia
were exposed to 1 ng/ml, 10 ng/ml and 100 ng/ml of
TNFa for 24 hours. This resulted in increasing production
of TNFa (Fig. 1). There was no detectable TNFa produc-
tion by OPCs or mature oligodendrocytes alone treated
with LPS or microglia cultures that were not treated with
LPS (data not shown). We chose 10 ng/ml LPS for use in
further experiments, as this dose has been shown by oth-
ers to induce microglia-mediated OPC death [48] and was
in the middle of our range of LPS doses that induced
TNFa production. In microglia isolated for use in OPC/
oligodendrocyte survival experiments, there was no signif-
icant effect of media composition (OPC versus oli-
godendrocyte media) on TNFa production by microglia
(data not shown).

A

Figure 2

OPC morphology. OPCs grown in media containing bFGF/
PDGF labeled for oligodendrocyte markers at day 3 in vitro.
OPC:s labeled positively for NG2 (A), A2B5 (B), GalC (C)
and MBP (D).
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Figure 3
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C Activated MG
Reduce OPC Survival

% Control

OPCs OPCs OPCs OPCs

Alone + + +
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n=8 n=10 +
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LPS-activated microglia induce OPC cell death. OPCs were cultured in combination with microglia (A). Dead OPCs
were not able to be quantified due to scattered debris (B), so OPC survival was measured by counting the number of live
OPCs. LPS or microglia alone had no effect on OPC survival but microglia activated with LPS significantly reduced OPC sur-

vival (C, * = p < 0.05 from control, Tukey's, error bars = SEM).

LPS-activated microglia reduce OPC survival

For these experiments, pure OPC cultures, without and
with microglia added, were utilized (Fig. 3A). There was
no effect of 10 ng/ml LPS on the number of live OPCs
when OPCs were cultured alone; additionally, there was
no effect of microglia alone on OPC number. In OPC-
microglia combined cultures, there was a significant
reduction in OPC number when 10 ng/ml LPS was added
for 24 hours (Fig. 3B,C). The number of OPCs in the pres-
ence of microglia plus LPS was reduced to 34 + 5% of con-
trol values (p = 0.002, ANOVA, Tukey's post-hoc),
indicating that LPS-activated microglia decreased OPC
survival. Factorial ANOVA revealed a significant (p =
0.036) interaction between microglia and LPS, and a sig-
nificant main effect of microglia (p = 0.001).

Effects of activated microglia on proliferation of OPCs

To determine if the reduction of OPC number by activated
microglia was due to a decrease in OPC proliferation, a
BrdU assay was performed. OPCs were observed to incor-
porate BrdU in all experimental conditions, with an aver-
age 6% of OPCs incorporating BrdU in the control
condition (Fig. 4A,B,C). There were no significant main
effects or interactions between 10 ng/ml LPS or microglia
on OPC proliferation (Fig. 4D), however the main effect
of microglia on increasing OPC proliferation approached
statistical significance (p = 0.056). This verifies that
reduced OPC numbers due to microglia activation were
due to OPC loss and could not be due to decreased OPC
proliferation.

»

OPC BrdU
Incorporation

OPCs OPCs OPCs OPCs
Alone + + +
n=8 LPS MG MG
n=7 n=g +
LPS n=8

Figure 4

OPC proliferation as measured by BrdU incorpora-
tion. To assure that reduced OPC survival in the presence
of LPS-activated microglia was not due to a reduction in
OPC proliferation, a BrdU incorporation study was con-
ducted. Some OPC nuclei (A) also incorporated BrdU (B).
OPCs were also labeled with antibody to A2B5 (C) to con-
firm that BrdU positive cells were OPCs. OPC proliferation,
as assessed by cell counts, was not altered by microglia or
LPS-activated microglia (though there was a trend toward
increased OPC proliferation in the presence of microglia, p =
0.056, factorial ANOVA for main effect of microglia) verifying
that lower OPC numbers were due to OPC loss rather than
reduced OPC proliferation (D, error bars = SEM).

Page 6 of 12

(page number not for citation purposes)



Journal of Neuroinflammation 2007, 4:28

Oligodendrocytes cultured with thyroid hormone only
express markers of mature oligodendrocytes
Oligodendrocytes grown continuously with thyroid hor-
mone matured rapidly and were seen to have multiple
processes by day 1 in vitro. Oligodendrocytes were labeled
with antibodies to GalC and MBP on day 3 in vitro (Fig.
5C, D). Oligodendrocytes grown in thyroid hormone did
not stain positively for NG2 or A2B5 (Fig. 5A,B) indicat-
ing that these oligodendrocytes were mature.

Both "resting" and LPS-activated microglia reduce cell
death of mature oligodendrocytes

For these experiments, pure oligodendrocyte cultures,
with and without microglia added, were utilized (Fig. 6A).
Oligodendrocyte death was quantified as percent dead
out of total since remains of individual dead oligodendro-
cytes were still clearly visible after fixation and staining
(Fig. 6B). As with OPCs, there was no main effect of 10 ng/
ml LPS alone on oligodendrocyte survival. However, there
was a main effect of microglia on oligodendrocyte survival
(Fig. 6C, p < 0.001, factorial ANOVA). In the presence of
microglia, oligodendrocyte death was significantly
decreased to 33 + 8% from control values of 56 + 10% (p
= 0.013, ANOVA, Tukey's post-hoc), and in the presence
of microglia and LPS, oligodendrocyte death was signifi-
cantly reduced to 28 + 9% (p = 0.004, ANOVA, Tukey's
post-hoc). Analysis of total number (live + dead) oli-
godendrocytes revealed no effect of treatment group on
total oligodendrocyte number, verifying that microglia

Figure 5

Oligodendrocyte morphology. Oligodendrocytes grown
in media containing thyroid hormone labeled for oli-
godendrocyte markers at day 3 in vitro. Oligodendrocytes did
not label positively for the immature OPC markers NG2 (A)
or A2B5 (B), but did label for the mature oligodendrocyte
markers GalC (C) and MBP (D).

http://www.jneuroinflammation.com/content/4/1/28

did not alter oligodendrocyte attachment to the culture
substrate (data not shown).

Thyroid hormone has been shown to inhibit oli-
godendrocyte proliferation [49]. As expected, no oli-
godendrocytes in the control condition incorporated
BrdU, and neither microglia nor LPS alone or in combina-
tion induced BrdU incorporation into oligodendrocytes
(data not shown). This verifies that microglia mediated
protection of oligodendrocytes was due to increased oli-
godendrocyte survival and not cell division.

To exclude a possible influence of thyroid hormone on
the pro-survival effect of microglia, the experiment was
repeated with thyroid hormone-containing media being
replaced with thyroid hormone-free media on day 1 in
vitro (at the same time microglia were added to oli-
godendrocytes). Under these conditions, the significant
protective effect of microglia was retained (p = 0.043, fac-
torial ANOVA, data not shown).

Microglia reduce apoptosis of mature oligodendrocytes

Since oligodendrocytes in our study were grown without
growth factors such as CNTF, that have been shown to
promote oligodendrocyte survival in vitro [50], we utilized
a caspase activation assay to determine if oligodendro-
cytes underwent apoptosis over time in vitro. Previously,
we have used specific activated caspase-3 antibodies in
oligodendrocytes [44], however in this study we wished to
examine a broad range of activated caspase enzymes.
Using a poly-caspase detection assay, we evaluated oli-
godendrocyte apoptosis at various time points and found
that oligodendrocyte apoptosis increased over time in cul-
ture (data not shown). Since caspase activation was high-
est at the terminal time point of 3 DIV, we conducted an
experiment examining oligodendrocyte caspase activation
with and without microglia and 10 ng/ml LPS at this time
point. Apoptotic oligodendrocytes were seen to have con-
densed, pyknotic or fragmented nuclei (Fig. 7A) and
labeled brightly with the caspase detector (Fig. 7B). The
caspase probe labeling illuminated oligodendrocyte cell
bodies so that it was possible to verify the cell phenotype.
No microglia were observed to be labeled with the caspase
probe. There was a significant reduction in oligodendro-
cyte caspase activation in the presence of microglia,
regardless of the presence of LPS (Fig. 7C, p < 0.001, fac-
torial ANOVA). In the presence of microglia, caspase acti-
vation was significantly decreased to 50 + 9% of control
values (p = 0.015), and in the presence of microglia and
LPS, caspase activation was decreased to 60 + 10% of con-
trol values, but did not achieve statistical significance (p =
0.064). The reduction of time-dependent caspase activa-
tion in oligodendrocytes in the presence of microglia
likely explains the increase in oligodendrocyte survival in
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Figure 6
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Microglia and LPS-activated microglia both increase oligodendrocyte survival. Oligodendrocytes were cultured in
combination with microglia (A). Dead oligodendrocytes were visible by cellular debris left behind after fixation and staining (B)
and therefore oligodendrocyte cell death was quantified as percent cell death based on cell counts. Both microglia and micro-
glia activated by LPS significantly reduced the percentage of dead oligodendrocytes (C, * = p < 0.05, factorial ANOVA for main
effect of microglia, error bars = SEM). The protective effect of microglia was unchanged by the presence of LPS (p < 0.05 fac-

torial ANOVA).

the presence of microglia and LPS-activated microglia (see
Fig. 6).

Microglia undergo cell death in response to LPS activation
Microglia survival was assessed after LPS activation in
experiments where OPC and oligodendrocyte survival
were measured. In experiments conducted with microglia
in combined culture with OPCs, where media contained
bFGF and PDGF, microglia survival was significantly
decreased to 58 + 8% of control values after treatment
with 10 ng/ml LPS for 24 hours (p < 0.001, Student's T-
test, Fig. 8A). In experiments conducted with microglia in
culture with oligodendrocytes in media containing thy-
roid hormone, microglia numbers were significantly
decreased to 14 + 2% of control values after treatment
with 10 ng/ml LPS for 24 hours (p < 0.001, Student's T-
test, Fig. 8B).

To determine if activation-induced microglia death was
due to the presence of OPCs or oligodendrocytes in cul-
ture with microglia, an experiment was conducted with
microglia cultured alone. As in the previous experiment,
microglia survival in both media compositions was signif-
icantly reduced in response to activation with 10 ng/ml
LPS (data not shown). Thus, microglial cell death in
response to LPS-activation was not due to the presence of
OPCs or oligodendrocytes in culture. To confirm that
lower numbers of microglia counted were due to micro-
glial death and not simply detachment from coverslips
before fixation, a LDH assay was used to assess microglial
cell death in response to LPS in the aforementioned media
compositions. 10 ng/ml LPS induced significant LDH
release from microglia as compared to controls in both
media compositions (data not shown). Therefore, lower

microglia counts represent cell death and not simply
detachment of microglia from the culture substrate.

Discussion

Here we demonstrate that the maturation state of oli-
godendrocyte lineage cells has a profound effect on their
response to microglia and microglial activation. While
reducing the survival of OPCs, LPS-activated microglia
increase the survival of mature oligodendrocytes. It is
especially significant that in both cases, activated micro-
glia were able to reverse the baseline state of oligodendro-
cyte lineage cells: normally proliferating OPCs were lost as
a consequence of microglia activation, and mature oli-
godendrocytes that are normally undergoing apoptosis
are rescued by activated microglia. A recent study has
shown that as OPCs mature to oligodendrocytes a wide
range of genes are differentially transcribed [47]. Tt is
important to appreciate that even though OPCs are able to
differentiate into mature oligodendrocytes in a matter of
days both in vitro [47] and in vivo [51], these two cell types
have very different properties and functional capabilities.
Our data support the growing appreciation of the differ-
ences between these cells, showing that OPCs and mature
oligodendrocytes could undergo divergent fates in an
environment where activated microglia are present.

Several previous studies have shown that LPS-activated
microglia are toxic to OPCs both in vitro and in vivo
[23,24,48] and that this effect is mediated in part by oxi-
dative stress [29]. Our studies indicate that mature oli-
godendrocytes benefit from the presence of microglia, and
presumably resist the deleterious effects that activated
microglia exert on OPCs. This is consistent with other
studies showing oligodendrocytes to be more resistant
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Figure 7

Microglia reduce caspase activation in oligodendro-
cytes. Fragmented and condensed nuclei in oligodendrocyte
cultures (A) were found in all cell bodies that labeled with a
caspase indicator probe (B), which allowed for identification
of oligodendrocytes by morphology. Overlap of apoptotic-
morphology nuclei and the caspase indicator were used to
confirm apoptotic cell death (C). The inset in panel C shows
another representative image of a fragmented nucleus in an
oligodendrocyte positive for caspase activation. Cell counts
were conducted to quantify caspase activation (D, * = p <
0.05, factorial ANOVA for main effect of microglia, error
bars = SEM). Microglia and LPS-activated microglia both
reduced oligodendrocyte apoptosis, suggesting that increased
oligodendrocyte survival in the presence of microglia is due
to a reduction in apoptosis. As in figure 5, the protective
effect of microglia was unchanged by the presence of LPS
(factorial ANOVA).

than OPCs to a wide variety of insults, including TNFa
[52], interferon gamma [53], excitotoxicity [54,55], radia-
tion injury [56], and free radical mediated injury [57].
Many changes that occur in oligodendrocytes as they
mature could promote resistance to injury, including a
decrease in ionotropic glutamate receptor expression [58],
an increase in metabotropic glutamate receptor expres-
sion [59], changes in pro- or anti-apoptotic gene expres-
sion [60], or increased antioxidant enzymes [61]. It is
possible that mature oligodendrocytes in our study
resisted microglia-mediated injury due to increased glu-
tathione stores compared to OPCs, as reported by Fragoso
and colleagues [62], which would render them less sus-
ceptible to microglia-mediated oxidative injury.

Though our data show that microglia only induced a
trend toward increased OPC proliferation (Fig. 4), a previ-
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Figure 8

Assessment of microglial cell death. In experiments in
which microglia were combined with OPCs, 10 ng/ml LPS
significantly reduced microglia number to 58 * 8% of control,
based on cell counts (A). In experiments in which microglia
were combined with oligodendrocytes, 10 ng/ml LPS signifi-
cantly reduced microglia number to 14 + 2% of control (B, *
= p < 0.05, T-test, error bars = SEM).

ous report has shown that media from activated microglia
have the ability to increase OPC proliferation [63]. The
difference between this study and ours may lie in the dif-
ferent preparations used. While Filipovic and Zecevic [63]
showed that microglia secrete factors that can induce OPC
proliferation, this does not exclude the possibility that
other microglia-derived factors can induce OPC cell death
as well. If OPC death is induced by short-acting sub-
stances such as free radicals, and OPC proliferation is
induced by more stable proteins, it is possible that condi-
tioned medium from activated microglia, as used by
Filipovic and Zecevic [63], would be more likely to isolate
the proliferative effects of activated microglia. This is in
contrast to our preparation where microglia and OPCs
were in culture together and all substances produced by
microglia had direct and immediate access to OPCs.

Understanding the physiologic differences between
mature and immature oligodendrocytes may lead to ther-
apeutic strategies for preserving OPCs vulnerable to loss
in periventricular leukomalacia, or for preserving OPCs
that proliferate after CNS injury. It has been shown previ-
ously that OPCs proliferate after SCI [64]. However, the
net effect of SCI is to reduce oligodendrocyte numbers, at
least in the long tracts damaged by the lesion [10]. Recent
data from our laboratory suggest that some OPCs that
proliferate after spinal cord injury die by apoptosis after
the population initially expands (unpublished data). It is
possible that proliferating OPCs in vivo, as in our in vitro
study, are unable to withstand toxins produced by acti-
vated microglia after spinal cord injury. This OPC prolif-
eration followed by apoptosis may represent a failed
attempt at remyelination after spinal cord injury due to
OPCs' intrinsic vulnerability to inflammation.
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Though no previous study to our knowledge has directly
compared the effects of activated microglia on different
stages of oligodendrocyte lineage cells, some studies have
previously examined microglia-mediated oligodendro-
cyte survival. Pro-survival factors secreted by microglia,
such as insulin-like growth factor-2, may protect oli-
godendrocytes from TNFa and other molecules produced
by activated microglia [33]. However, microglia have been
shown to reverse their phenotype from protective to toxic
for oligodendrocytes after activation with interferon-
gamma [34]. The fact that in our experiments, LPS-activa-
tion did not change the anti-apoptotic effect of microglia,
shows that increased activation does not always cause
microglia to lose their protective effects. Additionally,
recent data show that activated microglia can induce or
hinder OPC proliferation depending on the cytokine pro-
file used to activate microglia [36]. Recently, different pro-
inflammatory substances that activate microglia have
been shown to have different effects on demyelination
and OPC proliferation in vivo [65]. In the injured CNS,
multiple inflammatory cytokines are produced [66] and
the combination of cytokines and other molecules that
induce inflammation may change over time, potentially
resulting in a dynamic microglia phenotype after injury.
Further studies should be directed toward ascertaining
how microglial activation changes over time and in
response to different stimuli.

Microglia activated with LPS have been previously shown
to undergo cell death in a dose-responsive manner [67].
As with microglia-mediated OPC death, microglial "auto-
crine" death can be mediated by free radicals [68]. LPS
exposure can induce caspase activation in microglia [69],
but LPS can also cause microglia to be more likely to
undergo necrotic cell death under some conditions [70].
In our experiments, we did not observe caspase activation
in microglia. This may be because microglial apoptosis
occurred early after LPS addition, or that microglial cell
death was primarily necrotic in nature. It is also possible
that microglia detached from the growth substrate prior to
undergoing cell death, as microglia fragments were rarely
observed, unlike OPCs and oligodendrocytes. Regardless
of the nature of microglial cell death, it is important to
note that the pro-survival effect of microglia on oli-
godendrocytes was preserved even as microglia numbers
were markedly reduced due to LPS activation. It is possible
that sufficient microglia-derived survival factors for oli-
godendrocytes were produced before microglia were lost
due to LPS activation. Alternately, the pro-survival effects
of microglia may only require a small number of micro-
glia, and the microglia that persist in the presence of LPS-
activation may be sufficient to support oligodendrocyte
survival. In either case, the ability of a reduced population
of microglia to maintain their pro-survival effect on oli-
godendrocytes demonstrates that microglial activation is

http://www.jneuroinflammation.com/content/4/1/28

not necessarily harmful to all CNS cells. Microglial cell
death also occurs during neuroinflammation and after
injury in vivo [13,71] and may be a form of autoregulation
to limit the microglial response to injury and reduce dam-
age to other CNS cells.

Conclusion

In conclusion, we demonstrate that activated microglia
decrease survival of OPCs but that microglia, whether or
not they have been stimulated with LPS, reduce apoptosis
and increase survival of mature oligodendrocytes in vitro.
The effects of activated microglia on OPC and oli-
godendrocyte viability are present even as microglia them-
selves undergo cell death due to activation, indicating that
the effects of microglia on OPC and oligodendrocyte sur-
vival may not require a stable population of microglia. A
further understanding of the mechanisms behind OPCs'
and oligodendrocytes' differential response to microglia
may aid in the development of therapies for several CNS
diseases where microglial activation and OPC and oli-
godendrocyte death occur together.
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