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Anterior Cruciate Ligament Loading
Increases With Pivot-Shift Mechanism
During Asymmetrical Drop Vertical Jump
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Background: Frontal plane trunk lean with a side-to-side difference in lower extremity kinematics during landing increases
unilateral knee abduction moment and consequently anterior cruciate ligament (ACL) injury risk. However, the biomechanical
features of landing with higher ACL loading are still unknown. Validated musculoskeletal modeling offers the potential to quantify
ACL strain and force during a landing task.

Purpose: To investigate ACL loading during a landing and assess the association between ACL loading and biomechanical factors
of individual landing strategies.

Study Design: Descriptive laboratory study.

Methods: Thirteen young female athletes performed drop vertical jump trials, and their movements were recorded with
3-dimensional motion capture. Electromyography-informed optimization was performed to estimate lower limb muscle forces with
an OpenSim musculoskeletal model. A whole-body musculoskeletal finite element model was developed. The joint motion and
muscle forces obtained from the OpenSim simulations were applied to the musculoskeletal finite element model to estimate ACL
loading during participants’ simulated landings with physiologic knee mechanics. Kinematic, muscle force, and ground-reaction
force waveforms associated with high ACL strain trials were reconstructed via principal component analysis and logistic regression
analysis, which were used to predict trials with high ACL strain.

Results: The median (interquartile range) values of peak ACL strain and force during the drop vertical jump were 3.3% (-1.9% to
5.1%) and 195.1 N (53.9 to 336.9 N), respectively. Four principal components significantly predicted high ACL strain trials, with
100% sensitivity, 78% specificity, and an area of 0.91 under the receiver operating characteristic curve (P < .001). High ACL strain
trials were associated with (1) knee motions that included larger knee abduction, internal tibial rotation, and anterior tibial trans-
lation and (2) motion that included greater vertical and lateral ground-reaction forces, lower gluteus medius force, larger lateral
pelvic tilt, and increased hip adduction.

Conclusion: ACL loads were higher with a pivot-shift mechanism during a simulated landing with asymmetry in the frontal plane.
Specifically, knee abduction can create compression on the posterior slope of the lateral tibial plateau, which induces anterior tibial
translation and internal tibial rotation.

Clinical Relevance: Athletes are encouraged to perform interventional and preventive training to improve symmetry during
landing.
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Anterior cruciate ligament (ACL) injuries are one of the
most devastating injuries in sports. While surgical recon-
struction is the clinical standard of care for a ruptured ACL,
problems that persist after the reconstruction include a
lengthy rehabilitation, a low rate of return to sports, and
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a high rate of reinjury of the graft."1”*3 Injury reduction
remains the most effective way to resolve these circum-
stances, and it is therefore important to study injury
mechanisms to develop effective reduction programs.?
Landing is the most frequent athletic motor task associated
with ACL injuries.” Accordingly, cadaveric simulations of
landing tasks were developed and have revealed that
externally applied knee abduction moment, anterior tibial
force, internal tibial rotation moment, and impulsive
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ground-reaction forces induce ACL strain and rup-
ture. 25464750 Although these in vitro simulations aimed
to simulate joint loading during in vivo landing, there
remains a gap in knowledge relative to the complex nature
of individual landing strategies, inclusive of patient-
specific kinematics and muscle activations.

While ACL strain is influenced by multiplane load-
ing,'*2%33 knee abduction moment during landing is a pre-
dictor of ACL injury, and it increases ACL strain in
cadaveric simulations.??>2546:47.50 A recent musculoskele-
tal modeling study demonstrated that knee abduction
moment was larger during landing in the frontal plane,
with higher vertical and lateral ground-reaction force,
lower gluteus medius force, and a laterally shifted and
tilted pelvic position.?! This musculoskeletal modeling
study®! supported a previously proposed ACL injury mech-
anism in frontal plane mechanics.?*

Three-dimensional motion capture systems and muscu-
loskeletal modeling have been used to investigate in vivo
biomechanics and neuromuscular activations and forces
during landing tasks.3236:3741.4951 With the advance of
musculoskeletal modeling and its optimization techniques,
the estimation of muscle activations and forces better cap-
tures muscle physiology as compared with classic static
optimization methods.'®*® However, only a few musculo-
skeletal modeling studies have reported ligament loading
and knee joint contact force with validated material prop-
erties and a 6 degrees of freedom (DOF) knee joint, which is
necessary to obtain accurate ligament loading.

A validated specimen-specific musculoskeletal finite ele-
ment (FE) model has the potential to address these limita-
tions, as it could reveal the precise 6 DOF knee kinematics
in response to observed muscle forces and ground-reaction
forces.262740 Thus, associations between ACL load and
whole-body biomechanics during landing can be evaluated
with a validated musculoskeletal FE model.

The purpose of this study was to assess the association
between ACL loading calculated in a validated FE model
and biomechanical factors of individual landing strategies
measured in vivo during landing. In this article, landings
where there is a frontal plane trunk lean with a side-to-side
difference in lower extremity biomechanics are referred to
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as asymmetrical. The hypothesis was that a simulated
landing with asymmetry in the frontal plane would show
higher ACL strain and force as compared with a symmetric
landing. Specifically, it was hypothesized that the trials
with higher estimated ACL strain and force would be asso-
ciated with higher vertical and lateral ground-reaction
forces, lower gluteus medius force, and laterally shifted and
tilted pelvic motion, as reported in previous studies.?*%!
This information will contribute to the understanding of
ACL biomechanics during in vivo landings and to the devel-
opment of injury screening and reduction protocols.

METHODS
Experimental Testing

Thirteen young female athletes participated in this study
(mean * SD age, 15.6 + 1.6 years; height, 169.8 £ 5.6 cm;
mass, 62.6 + 5.2 kg). Each participant performed 3 drop
vertical jump (DVJ) trials. The participants were
instructed to drop from a 30 cm-high box onto 2 force plates
(AMTI) and to immediately perform a maximum vertical
jump. Institutional review board approval and informed
consent were obtained before the execution of this study.
A total of 35 reflective markers were placed on the ath-
lete, and marker trajectories were collected using a motion
capture system (EVaRT Version 5; Motion Analysis Corp)
with 10 digital cameras (Eagle cameras; Motion Analysis
Corp) sampled at 240 Hz. Ground-reaction forces were syn-
chronously recorded at 1200 Hz with the 2 force plates.
Kinematic and ground-reaction force data were low-pass
filtered using a zero-lag fourth-order Butterworth filter at
12 and 50 Hz, respectively.®! Surface electromyography
(EMG) data for the right leg were measured using a telem-
etry surface EMG system (TeleMyo 2400; Noraxon) at a
sampling rate of 1200 Hz. The electrodes were placed on
the biceps femoris, semitendinosus, rectus femoris, vastus
lateralis, vastus medialis, gastrocnemius medialis, adduc-
tor longus (to represent the adductor longus and gracilis
during muscle force estimation), and gluteus medius of
each participant.®'"'® The raw EMG data were band-pass
filtered, full-wave rectified, and low-pass filtered at 6 Hz.5!
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Figure 1. Work flow of the computational modeling to estimate ligament loading during the drop vertical jump, in which individual
landing strategies were maintained. Joint motion and muscle forces were estimated using electromyography-informed optimiza-
tion in OpenSim simulation. Joint motion was inputted to first finite element (FE) simulation to simulate the same landing and obtain
nodal coordinates of knee and ankle joint center positions. To simulate more physiologic knee joint mechanics, the joint center
position was kinematically driven, and muscle forces from OpenSim simulation were applied in the second FE simulation. Black
arrows on the joint center indicate kinematically driven degrees of freedom (DOF). Inferosuperior DOF on the ankle joint were
unconstrained to apply vertical ground-reaction force (GRF), whereas rotation on the transverse plane was kinematically driven to
track toe direction. The pelvis was kinematically driven with 6 DOF motion according to OpenSim simulation. This allows hip
internal/external rotation as well as knee abduction/adduction and 3 DOF translations to be unconstrained and dependent on
muscle force, joint contact force, and GRF for physiologic simulation.

Processed EMG data were normalized to peak EMG mag-
nitudes from the athlete across all the motor activities per-
formed during data collection, which included open chain
maximum voluntary contractions and DVJ from different
drop heights (15 and 45 cm).3*

Computational Simulations

To estimate ACL strain and force during landings, sequen-
tial OpenSim simulations and FE simulations were exe-
cuted. Joint motions and muscle forces were estimated in

the OpenSim simulations and inputted to FE simulations to
estimate ACL strain and force in a response to the joint
motion, muscle forces, and ground-reaction force (Figure 1).

OpenSim Simulations. Muscle forces were estimated
with OpenSim 3.3 as previously described.’! Briefly, a
generic musculoskeletal model** with additional DOF of
knee abduction/adduction and internal/external rotation
and additional hip external rotator muscles was scaled to
the participant’s body size and weight. The maximum iso-
metric force of each muscle was increased by 20% to enable
the muscles to generate the required joint torques during
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landing. The scaled models were used to obtain the joint
kinematics and muscle forces using EMG-informed direct
collocation in OpenSim and custom MATLAB code
(R2017b; MathWorks). An objective function was aimed to
track patient-specific measured EMG signals. In the mus-
culoskeletal modeling step, 2 trials did not achieve the tol-
erance of muscle force optimization and were excluded from
the analysis.

FE Simulations. One of 4 previously developed and val-
idated specimen-specific FE models of the knee (from spec-
imen “ML” [male, left leg], see Navacchia et al®*?) was
utilized to create a musculoskeletal FE model in this
study. Briefly, the previously validated FE model of the
knee included specimen-specific bone and cartilage geom-
etries and calibrated ligaments on the tibiofemoral and
patellofemoral joint.?? The material properties of the liga-
ments, including stiffness and reference strain, were com-
putationally optimized to match measurements from in
vitro experimental testing by minimizing the results from
model and experiments. The in vitro experimental testing
included kinematic and ACL strain measurements under
a variety of external loading conditions, which included
anterior tibial shear force, knee abduction moment, inter-
nal tibial rotation moment, and ground-reaction force. The
experimental measurements were performed at 25° of
knee flexion.

In the present study, a generic model of the pelvis was
added to the knee model using ABAQUS/Explicit (SIMU-
LIA). The subsequent musculoskeletal FE model included a
3 DOF ball joint at the hip, 12 DOF knee joint (6 DOF
tibiofemoral and 6 DOF patellofemoral),® and 1 DOF hinge
joint at the ankle. A total of 24 muscles that span the hip
and knee joints were modeled as unidimensional connec-
tors, consistent with the OpenSim simulations.

The same landing tasks simulated with OpenSim were
also simulated with the FE model. Individual landing strat-
egies (eg, knee-in, toe-out) were maintained, as determined
by the knee and ankle joint center location and toe direc-
tion. First, pelvic, hip, knee, and ankle joints were kinemat-
ically driven on the basis of the joint angles obtained from
the OpenSim simulation inverse kinematics, and the posi-
tions in space of the knee joint center (midpoint between
medial and lateral knee condyles) and ankle joint center
(midpoint between medial and lateral malleoli) during
landing were recorded. In the second FE simulation, the
knee and ankle joint center positions were driven kinemat-
ically according to the first step, and the rotational and
translational DOF on the hip and knee joints remained
unconstrained. The muscle forces and the vertical
ground-reaction force were applied to each muscle and to
the ankle, respectively. The mediolateral and anteroposter-
ior positions of the ankle joint center were also driven,
while the inferosuperior position was left free to transfer
correctly the ground force to the knee. In addition, a point
on the ankle located 10 mm in front of the ankle joint center
was kinematically driven in the mediolateral position to
track the toe direction during landing.

This strategy was performed to simulate the physiologi-
cal knee joint mechanics, in which internal/external hip
rotation and knee abduction/adduction and translational
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DOF depend on muscle, ligament, contact, and ground-
reaction forces, while maintaining the individual landing
strategies. Only the vertical component of ground-reaction
force was applied at the ankle joint center because all the
other DOF (anteroposterior and mediolateral translation
and the rotation on transverse plane) were kinematically
driven (Figure 1).

ACL strain and force were averaged and summed,
respectively, across the 4 modeled fibers (2 fibers each in
the anteromedial and posterolateral bundles of the ACL).
ACL strain was calculated as 100 x (L — L)/Lo, where L and
Ly are current length and reference length (slack length
determined by optimization in validation step®®), respec-
tively. Lo values for the anteromedial and posterolateral
bundles of the ACL were 33.4 and 17.6 mm, respectively,
and the same value was used for both fibers in a bundle.
The resultant kinematics of the hip and knee joint were
extracted from the FE simulation. The knee joint kinemat-
ics were calculated according to the coordinate system of
Grood and Suntay.® The OpenSim simulation results were
used for the outcomes of pelvic and trunk kinematics and
muscle forces.

Statistical Analysis

The third quartiles of ACL strain/force were calculated and
set as thresholds to define high-strain/force trials. To iden-
tify which variables and which time range predicted the
occurrence of high ACL strain during landing, a principal
component (PC) analysis was performed with the kine-
matic, ground-reaction force, and muscle force continuous
data, as described in a previous study.?® All data were
trimmed from initial contact (IC) to 100 milliseconds after
IC and resampled to 101 data points. This time range was
selected to focus on the period where maximal ACL strain
and ACL rupture events occurred during previous cadav-
eric simulations.®3%% PC analysis was performed after the
data were standardized to a z score. In total, 36 PCs were
assessed with the broken stick method, which detects the
significant PCs that explain the variance more than PCs
derived from a random data set.2® With this method, the
first 7 PCs were detected as significant and were incorpo-
rated in the logistic regression.

Logistic regression analyses were performed to choose
the PCs that predicted high ACL strain trials. The best-fit
model was selected with the forward direction stepwise
minimum Bayesian information criterion. Sensitivity,
specificity, and area under the receiver operator charac-
teristic curve were used to assess how well the logistic
regression analysis predicted the occurrence of high ACL
strain trials and high ACL force trials. Waveforms that
presented features of high ACL strain trials were recon-
structed using the PCs selected by logistic regression. The
low- and high-risk waveforms were reconstructed on each
variable. PC analysis and the corresponding data proces-
sing were performed using custom MATLAB code, while
the logistic regression analysis was performed with JMP
(Version 14 Pro; SAS Institute Inc). Statistical signifi-
cance was set to P < .05.



The Orthopaedic Journal of Sports Medicine

w

ACL Loading During Landing 5

—— Median
800 e HighACL force
= =+ Low ACL force
Interquartile range
600

ACL force (N)

g

Median
I5 [ e HighACL strain
= = :Low ACL strain
10 Interquartile range
8 s
£
£ o0
o«
3)
< N
\
\
-10 A - Py, 00220 o
~Se ST T N~
-15
0 20 40 60 80

Time (ms)

100

0 20 40 60 80 100
Time (ms)

Figure 2. Median, interquartile range, and representative trials of (A) high and low ACL strain and (B) ACL force. Time zero indicates
time of the initial contact to the ground. ACL, anterior cruciate ligament.

RESULTS

Median (interquartile range) peak ACL strain and force
during landing were 3.3% (-1.9% to 5.1%) and 195.1 N
(53.9 to 336.9 N), respectively (Figure 2). The third quar-
tiles of the ACL strain, 5.1% was chosen as the cutoff value
to detect high ACL strain trials. The median (interquartile
range) time of peak ACL strain and force within the trials
with more than the third quartile of strain or force were
56 milliseconds (29.5-100 milliseconds) and 34 milliseconds
(8-84 milliseconds), respectively.

Trials with high ACL strain were significantly predicted
by 4 PCs in the logistic regression (P < .001). The logistic
regression model presented 100% sensitivity, 78% specific-
ity, and an area of 0.91 under the receiver operator charac-
teristic curve (Figure 3). The PCs that predicted high ACL
strain trials were high PC2 score, low PC4 score, low PC6
score, and high PC7 score.

High-risk waveforms were reconstructed using the 4 PCs
included in the logistic regression model and demonstrated
the features of high ACL strain trials. With regard to knee
joint kinematics, knee abduction, internal tibial rotation,
and tibial translation in the anterior, medial, and superior
directions were higher in the high-risk waveforms com-
pared with the low-risk waveforms from IC to 100 millise-
conds after IC (Figure 4).

The high-risk waveforms showed larger peak ground-
reaction forces (vertical: at approximately 75 milliseconds;
lateral: immediately after IC), as well as lower gluteus med-
ius force from IC to 100 milliseconds after IC. Furthermore,
larger lateral pelvic tilt and hip adduction (indicative of lat-
eral pelvic shift?!) from IC to 100 milliseconds after IC were
observed (Figure 5). The muscle forces were mostly lower in
the high-risk waveforms except for the iliacus, psoas, vastus
intermedius, and gastrocnemius medialis. The waveforms
for all muscle forces are available in the Appendix.

DISCUSSION

This study was conducted to analyze the relationship
between estimated ACL loading and biomechanical
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Figure 3. ROC curve of the 4 principal components that pre-
dicted high anterior cruciate ligament strain trials with 100%
sensitivity, 78% specificity, and an area of 0.91 under the
ROC curve. ROC, receiver operating characteristic.

variables during a variety of simulated DVJ trials. The
assessment of ACL loading was performed with a whole-
body musculoskeletal FE model. This was the first study
to estimate absolute ACL strain and force during an in vivo
landing using a specimen-specific, validated FE model. The
hypothesis was that ACL loading would be higher in asym-
metrical landing in the frontal plane, especially with (1)
higher vertical and lateral ground-reaction forces, (2) lower
gluteus medius force, and (3) laterally tilted and shifted
pelvic motion. The hypothesis was investigated using
reconstructed waveforms from PCs that predicted the trials
with high ACL strain in a logistic regression model. Our
hypothesis was supported, as the peak vertical and lateral
ground-reaction force was higher, the gluteus medius force
was lower, and the lateral pelvic tilt and hip adduction
(indicative of lateral pelvic shift®!) were higher in the
high-risk waveforms. Therefore, this study demonstrated
that estimated ACL loading was greater during simula-
tions of the participants’ landings that exhibited asymme-
try in the frontal plane than in landings that were
symmetrical.
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The ACL strain and force during DVJs seen in the cur-
rent study were lower compared with previously reported
failure loads in young female and male in vitro specimens,
which were 15% to 30% and 1266 to 2160 N, respec-
tively.>1052 Ag expected, the ACL strain and force esti-
mates in this study were substantially lower than
measures at failure, as data from laboratory-controlled
DVJ trials were used to drive the models. For 15 of the
37 trials, peak strain was observed at IC, when the knee
was extended the most. This is consistent with previous
fluoroscopic studies.'>'3 However, the trials that ACL load-
ing was higher than the third quartile presented peak
forces at approximately 30 to 60 milliseconds after IC,
which is consistent with previously reported ACL failure
time from video analysis and cadaveric landing
simulations, 5393150

The 6 DOF tibiofemoral joint kinematics revealed that
higher knee abduction, internal tibial rotation, and trans-
lations toward the anterior, medial, and superior directions
were linked to higher ACL strain. The observed increase in
tibial translation in the anterior and superior directions
indicated that the relative position of the tibial and femoral
condyle became more distant in the anteroposterior DOF
and closer in proximity in the inferosuperior DOF. This
indicated that the femoral condyle rolled posterior and infe-
rior down the tibial plateau. Furthermore, increased knee
abduction under a compressive load supported the presence
of a continuous compression on the lateral tibial plateau.

With increased internal rotation, the lateral femoral con-
dyle must roll in an inferior and posterior direction at a
greater magnitude than the medial femoral condyle to dem-
onstrate these kinematic combinations. These observations
indicate that a pivot-shift mechanism occurred, in which
the knee abduction created a compression on the lateral
plateau of the tibia and induced anterior tibial translation
and internal tibial rotation partially because of the poste-
rior tibial slope.?® Specifically, the previous validation
study of the model presented that the local angle of the
tibial plateau slope, which was calculated on each surface
element of the cartilage model, initiated at the tibial emi-
nence and reached its maximal angulation of 22° at the
posterior edge of the tibia (see Navacchia et al®®). In the
trials with high ACL loading, ACL loads were presented
even with the increased knee flexion angle in the later
phase of landing. This is consistent with previous in vitro
studies indicating that the ACL is loaded under anterior
tibial force and knee abduction moment at the knee flexion
angle of 60° to 90°.16:32

The present findings showed that ACL strain was higher
during asymmetrical landings, as the waveforms of high
ACL strain trials demonstrated higher peak vertical and
lateral ground-reaction forces as well as lower gluteus med-
ius force and laterally tilted and shifted pelvic motion. Knee
abduction angle during DVJ is a predictor of ACL injury.>2°
The present study confirmed that athletes with a high knee
abduction angle have higher ACL strain during the DVJ.
Note that this study does not prove a single effect of knee
abduction angle but rather that other featured biomechan-
ical variables are linked in high ACL strain trials. A
recently presented ACL injury reduction program includes
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trunk and hip joint exercises to stabilize body control and
reduce ACL injury risk.?2234248 Although these previous
studies could not quantify the effect of such training on
ACL loading, the present study supports the results from
the training program, suggesting that they have the poten-
tial to decrease ACL loading during landing.

Generally, lower muscle forces were observed in high
ACL strain waveforms, except for the iliacus, psoas, vastus
intermedius, and gastrocnemius medialis. The vastus
intermedius and gastrocnemius medialis might contribute
to an increase in ACL loading as antagonists of the ACL.*!
However, a causal analysis was not performed in this
study, and the causal effect of these muscles on ACL load-
ing remains unclear.

This study had some limitations. First, the FE analysis
was conducted separately from the muscle force estimation
step. Since the ligament forces and contact forces on the
knee joint resist external joint moments, especially knee
abduction/adduction and internal/external rotation
moments, there are interactions between ligament forces and
muscle forces. As some previous studies have reported,?®4°
concurrent estimation of muscle, ligament, and joint contact
forces would more adequately unveil the causal interaction
between these forces. Second, only 1 specimen-specific FE
model was used for all the landing trials, and body weight
and size were not scaled to each participant.

While the methodology in this study was aimed at simu-
lating ACL loading during an in vivo landing with physio-
logic loading, the results do not represent the participants’
actual ACL strain/force during landing. The ACL loads sim-
ulated in this study represent the loads in the ligament for
a single model landing with various strategies. Patient-
specific models that account for personalized anatomy are
needed to overcome this limitation. However, in vivo
patient-specific models with validated ligament properties
have not yet been reported in the literature. Promising work
has been done to correlate magnetic resonance images with
in vivo ligamentous material properties®® and may assist in
the development of these patient-specific models in future
studies. In addition, the validation step of the FE model was
performed relative to a knee flexion angle of 25°.3° There-
fore, a limitation of the current modeling paradigm is that
the results have not been explicitly validated throughout the
full range of flexion expressed by each range of motion.
Finally, ground-reaction force was applied on the ankle joint
center but not on the foot, since the ankle joint was not
validated and the movement was kinematically driven.

CONCLUSION

Trials with higher but noninjurious ACL loads were pre-
dicted by higher tibial translations toward the anterior,
medial, and compressive directions, as well as knee abduc-
tion and internal tibial rotation, during DVJ tasks using a
musculoskeletal FE model. These findings were observed
during an asymmetrical landing in the frontal plane with
higher vertical and lateral ground-reaction force, lower glu-
teus medius force, and laterally tilted and shifted pelvic
motion. Clinicians and trainers are encouraged to work with
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patients and athletes who present with asymmetrical land-
ing techniques and to utilize preventive training interven-
tions with the goal of encouraging symmetrical landings
during practice.
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APPENDIX

Mean (thin line), high ACL strain (thick line), and low ACL strain (dashed line) waveforms of muscle forces reconstructed from
the 4 principal components that significantly predicted high ACL strain trials. The numbers for glutei muscles indicate their
three fibers in the models. Time zero indicates initial contact to the ground. ACL, anterior cruciate ligament.
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