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Abstract

Traditional feature dimension reduction methods have been widely used to uncover biological
patterns or structures within individual spatial transcriptomics data. However, these methods are
designed to yield feature representations that emphasize patterns or structures with dominant high
variance, such as the normal tissue spatial pattern in a precancer setting. Consequently, they may
inadvertently overlook patterns of interest that are potentially masked by these high-variance
structures. Herein we present our graph contrastive feature representation method called CoCo-ST
(Comparing and Contrasting Spatial Transcriptomics) to overcome this limitation. By
incorporating a background data set representing normal tissue, this approach enhances the
identification of interesting patterns in a target data set representing precancerous tissue.
Simultaneously, it mitigates the influence of dominant common patterns shared by the background
and target data sets. This enables discerning biologically relevant features crucial for capturing
tissue-specific patterns, a capability we showcased through the analysis of serial mouse

precancerous lung tissue samples.



Analyzing spatial transcriptomics (ST) data requires robust feature representation methods to
effectively capture the intricate biological information or patterns enriched in these high-
dimensional data sets. Although traditional dimension reduction techniques like principal
component analysis (PCA!) and nonnegative matrix factorization (NMF?) have been widely
adopted as off-the-shelf approaches for ST data dimension reduction, they primarily aimed at
capturing global patterns and variations in the original high-dimensional ST data sets. More
recently, the integration of spatial constraints into dimension reduction algorithms has led to the
emergence of robust feature representation approaches such as nonnegative spatial factorization?,
spatial PCA*, and MEFISTO’. However, these methods tend to prioritize the identification of
prominent global patterns with high variability, potentially missing finer localized intrinsic
structures marked by lower variability. Furthermore, they are designed to explore one data set at a
time and are not tailored to studying the evolutionary dynamics of a tumor microenvironment
across multiple data sets. These constraints can result in overlooked information, particularly when
studying carcinogenesis, in which tumors progress from a few isolated precancerous sites to
invasive cancer across various tissue samples. The majority of these samples exhibit common
global patterns (representing normal tissue biology) that may not be of primary interest.
Conversely, a small portion of samples contain unique, crucial precancerous structures that require
specific attention.

To address these constraints, we proposed a graph contrastive learning framework that we
called CoCo-ST (Compare and Contrast Spatial Transcriptomics). CoCo-ST operates by taking
two ST data sets as inputs: one serving as the reference (background) and another as the target.

These ST data sets typically have certain common structures that are usually not the primary foci.



The goal is to extract feature representations that emphasize the new and unique structures enriched
in the target ST data set.

In the present study, we used CoCo-ST to thoroughly investigate carcinogenesis using ST
data sets from an in-house curated carcinogenesis mouse model. This approach yielded feature
representations that enhanced our ability to discern distinctive and noteworthy structures within
the target ST data, leading to improvements in downstream analysis.

CoCo-ST was inspired by the recent successes of contrastive learning approaches®®, which
learn discriminative feature representations by contrasting positive pairs (similar samples) with
negative pairs (dissimilar samples). In our CoCo-ST design workflow (Fig. 1a), we began by
collecting tissue samples from mouse lung and processing them using the Visium technology (10x
Genomics) to obtain the ST data. We then organized the resulting gene expression data into a gene-
spot matrix and further normalized the data to eliminate technical artifacts. CoCo-ST proceeded
to construct two weighted graphs, one each for the background and target ST data sets—allowing
us to capture the local structures within the data sets. We derived contrastive feature
representations by comparing and contrasting the local variances of the background and target
graphs. We achieved this by assessing the difference between their respective local total scatter
matrices. In the case of a new target ST data set, CoCo-ST simply uses the learned transformation
to generate feature representations for the new data (Fig. la). These contrastive feature
representations can serve as inputs for various other ST analysis tools, for enhanced downstream
analysis. We have illustrated the effectiveness of these contrastive feature representations across
multiple downstream analysis tasks, including ST data visualization, spatial domain identification,

tissue-specific spatial trajectory inference, trajectory inference across multiple tissues, and



examination of cell-cell interaction. It is worth mentioning here that CoCo-ST is generically
applicable to any ST data types that can be represented in form a gene-spot matrix.

We first applied CoCo-ST to learn transformation by using a mouse normal lung tissue
sample (MLP-1) as the background and an abnormal lung tissue sample (MLP-6) containing
structures other than the normal spatial domain (Extended Data Fig. 1) as the target. We designated
MLP-1 as the background ST data because its spatial structures belong to the normal lung spatial
domain, which was also present in all the rest of the tissue samples. We then applied the learned
transformation to the remaining tissue samples, resulting in contrastive feature representations that
we subsequently used for spatial domain identification (Extended Data Fig. 1) and further
downstream analysis. Note, CoCo-ST does not require much data to determine a good
transformation compared to the conventional machine learning approaches. Additionally, it has
the potential to capture more specific structures within individual samples. These properties make
CoCo-ST a valuable complement to large foundation model-based approaches.

Uniform manifold approximation and projection (UMAP) embedding of the learned
contrastive features in the target ST data (Extended Data Fig. 2a) illustrated CoCo-ST’s
effectiveness in determining feature representations that provide robust discrimination of various
spatial structures in the target tissue (Fig. 1b). Clustering the ST data based on the learned
contrastive components led to the identification of six clusters, each corresponding to a unique
spatial structure. These spatial structures detected using CoCo-ST’s contrastive components agree
well with pathologist-annotated regions (Fig. 1b). Spatial clustering of spots based on components
determined using the compared Seurat (PCA), STUtility (NMF), NSF and MEFISTO methods
failed to effectively detect the hotspot region annotated as hyperplasia by the pathologist (Fig. 1b).

Inability to detect spatial structures of low variability affects the performance of the compared



methods in detecting the early adenoma (hotspot) region. However, Seurat (PCA) detected the
hotspot region but annotated it as belonging to spatial domain 2.

We further annotated the detected spatial structures detected using CoCo-ST based on their
differentially expressed marker genes (Extended Data Fig. 2b) and spatial locations. The
distribution of these marker genes, including Epasl for normal lung tissue (endothelial PAS
domain), Slc26a4 for fibrotic/scarred tissue, Cybb for adjacent normal tissue, Hp for the
bronchus/alveoli, Ctsh for the adenoma, and Msln for the membrane, showed the expected high
expression patterns (Extended Data Fig. 2c). To further validate the adenoma region (hotspot)
detected using CoCo-ST, we investigated the most differentially expressed marker genes for the
detected adenoma regions and found 3498 marker genes at a false-discovery rate of 5% (Fig. 1c).
The most differentially expressed marker genes were domain-specific metagenes for the adenoma
region (including the hotspot region). For example, a metagene consisting of Ctsh, Cxcl15, and
Slc34a2 marked the hotspot region clearly, as these genes exhibited high expression patterns in
both the larger adenoma region and smaller hotspot region (Fig. le). The Cxcll5, and Slc34a2
genes are uniquely identified by CoCo-ST. The high expression of these genes at both the large
and hotspot adenoma regions indicates that these two spatial domains are anatomically similar.
Seurat’s inability to identify these important marker genes results to categorizing the hotspot
region as belonging to the fibrotic/scarred tissue (Fig. 1b). Also, Ctsh gene was reported to be
differentially expressed in adenoma region of patients with colorectal cancer’. Gene set enrichment
analysis of the 10 most differentially expressed marker genes in our study identified biological
processes related to lung fibrosis, apoptotic processes, and cell polarity (Extended Data Fig. 2d).
For comparison, we also investigated the most differentially expressed marker genes for the

compared Seurat (PCA), STUtility (NMF), NSF and MEFISTO methods (Fig. 1d, Extended Data



Fig. 2e) based on the learned embedding of these methods and found several genes, most of which
marked the larger adenoma region but not the smaller hotspot region. For example, the Trf gene
was the top marker gene for all of the compared methods (Extended Data Fig. 2e); however, this
gene had a high expression pattern in the larger adenoma region but not in the hotspot region (Fig.
1f). These results demonstrated that the compared Seurat (PCA), STUtility (NMF), NSF and
MEFISTO methods focus on identifying the main adenoma region with the largest variance,
lacking the ability to identify domain-specific metagenes that capture the smaller adenoma
structure (hotspot) with relatively low variance.

Examining the weights of the first five contrastive components revealed that CoCo-ST
effectively identified major spatial domains (Fig. 2a), indicating that it captured local variations
associated with the interesting spatial structures in the target data. For example, component 1
explained variation in multiple spatial domains, which was characterized by large positive weights
around the adenoma and alveoli/bronchus and negative weights around the normal lung.
Comparing to Seurat (PCA), STUtility (NMF), NSF and MEFISTO, the top components of these
methods predominantly focus on the normal lung structure with the largest variance (Fig. 2d). For
example, the first components of both Seurat PCA and NSF exhibited larger weights on normal
lung structures. Because the first few components of these methods are expected to capture most
of the information in the original data and are subsequently used as inputs for downstream analysis,
relying solely on these components may result in overlooking crucial biological insights. To gain
deeper insight into the underlying biological processes associated with these components, we
further investigated the top 20 genes with the largest weights on each of the CoCo-ST’s contrastive
components (Fig. 2b). This highlighted individual genes encoding domain-specific signatures such

as Retnla, Cyp2f2, Ctsh, Ccl6, and Acta2 (Fig. 2c) as well as gene sets linked with broader



biological processes and pathways. Gene set enrichment analysis with the top 20 marker genes for
each component revealed enriched gene ontology terms and KEGG pathways specific to each
spatial domain. These included heme binding on component 1, retinol metabolism on component
2, IgA immunoglobulin complex on component 3, lysosome on component 4, and extracellular
matrix on component 5 (Extended Data Fig. 3).

To investigate the impact of different graph construction methods (molecular vs. spatial)
on CoCo-ST’s performance, we constructed a similarity graph based on spatial coordinates rather
than gene expression data as done in our prior experiments. This approach has proven highly
effective!’, as it assumes that neighboring spots in the tissue have similar gene expression patterns
and likely belong to the same spatial domain. Our findings demonstrated robust CoCo-ST
performance when using the similarity graph constructed from the spatial coordinates, effectively
identifying the major spatial domains across all target tissue samples (Extended Data Fig. 4). In
summary, CoCo-ST demonstrates robust performance with similarity graphs constructed from
both spatial coordinates and gene expression data.

Next, we performed deconvolution analysis to infer the cell type composition at each of
the spatial domains detected using CoCo-ST. For this analysis, we used matched single-cell RNA
sequencing (scCRNA-seq) data (Extended Data Fig. 5a) obtained from the same MLP tissue samples
as a reference. As expected for the MLP-6 tissue sample (Extended Data Fig. 5b), we observed a
concentration of endothelial cells in the normal lung spatial domain (endothelial PAS domain)
(Extended Data Figs. 5c,d, 6, 7). The fibrotic/scarred and bronchus/alveoli spatial domains were
enriched with fibroblasts. In the adjacent normal spatial domain was an abundance of endothelial
cells, whereas the adenoma spatial domain had enrichment of macrophages and proliferating

macrophages (Extended Data Figs. 5c,d, 6, 7). Notably, we observed tumor-associated



macrophages (TAMs) in the adjacent normal spatial domain (Extended Data Figs. 5c.d, 6, 7),
which exhibited significantly upregulated Ccl6. This gene was the top gene with the highest weight
on component 4 (Fig. 2¢). Of note, component 4 exhibited large weights in spatial regions
corresponding to the regions with the highest Ccl6 gene expression. Also, high expression of the
Ccl6 gene in a mouse model of lung cancer was reported to be associated with tumor growth and
increased metastasis'!. This evidence underscores the intricate cellular compositions within
specific spatial domains, shedding light on potential implications for the progression of lung
cancer.

After determining the composition of cell types in the various tissue samples through our
deconvolution analysis, we next inferred their communication patterns. Initially, we identified cell-
cell interactions by examining ligand-receptor patterns within the individual MLP tissue samples.
Our analysis of the MLP-6 tissue sample revealed a strong pattern of communication between
endothelial and epithelial cells as well as between endothelial cells and fibroblasts (Extended Data
Fig. 5e). Also, we observed strong communication initiating from both proliferating macrophages
and B cells within the adenoma spatial domain, indicating an active immune response.

We observed that multiple signaling pathways, including programmed death-ligand 1,
GRN, inducible co-stimulator, NECTIN, interleukin-6, WNT, and CXCL, played pivotal roles in
cell interactions across different spatial domains. Notably, we predominantly observed WNT
ligand-receptor interactions in endothelial cells, epithelial cells, fibroblasts, and macrophages
(Extended Data Fig. 5f). Additionally, we observed WNT signaling interactions between
proliferating macrophages and B cells, which are enriched in the adenoma spatial domain.
Meanwhile, we found self-interaction (among cells of the same group) to be the strongest in

proliferating T cells, proliferating macrophages, and endothelial cells (Extended Data Fig. 5g).
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Network centrality analysis of the inferred WNT signaling network identified TAMs
(macrophages and proliferating macrophages) as prominent mediators (gatekeepers) as well as
influencers controlling the communication (Extended Data Fig. 5h). Prior studies demonstrated
that WNT signaling supports TAMs as drivers of tumor growth and that TAM-derived WNT
ligands support tumorigenesis'2.

We delved deeper into the cell-cell interactions across groups of tissue samples associated
with the adenoma and adenocarcinoma spatial domains as determined using CoCo-ST.
Specifically, we aggregated the communication weights of multiple tissue samples containing the
adenoma (MLP-3, -4, -5, -6, -7, and -9) and adenocarcinoma (MLP-8 and -10) spatial domains to
investigate the cell-cell interactions on a broader scale. Of note, we observed a bidirectional
interaction between epithelial cells and proliferating macrophages in the adenocarcinoma group
(Extended Data Fig. 8a,b) but did not see a similar interaction pattern in the adenoma group
(Extended Data Fig. 8c,d). This is consistent with the established role of TAMs in promoting tumor
growth and metastasis by engaging in an autocrine loop with cancer cells, thereby stimulating
cancer cell progression'>-16.

Next, we investigated how the normal endothelial, adjacent normal, and tumor spatial
domains are connected to each other during tumorigenesis. Specifically, we performed spatial
trajectory inference with MLP-6 tissue using the contrastive components derived from CoCo-ST.
This analysis revealed a trajectory starting from the normal endothelial domain and moving toward
the adjacent normal domain and further into the adenoma spatial domain (Extended Data Fig.
9a,b). To gain a comprehensive view of the trajectory of precancer evolution across the entire

population, we combined spots belonging to the adenoma and adenocarcinoma spatial domains as

identified by our contrastive components. We then determine a UMAP embedding of the spots
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(Extended Data Fig. 9¢) with which the trajectories were reconstructed (Extended Data Fig. 9d).
As seen in Extended Data Fig. 9c, the contrastive components effectively discriminated the three
spatial domains and identified a trajectory starting from the normal lung, passing toward the
adenoma, and ending at the adenocarcinoma cluster (Extended Data Fig. 9d). These findings align
with the well-known biology of mouse tumorigenesis, consisting of a transition from normal tissue
to hyperplasia, adenoma, and finally adenocarcinoma. Furthermore, we identified modules of
differentially expressed genes that were co-expressed across spots in the different spatial domains
as determined using CoCo-ST (Extended Data Fig. 9e.f). Notably, these modules demonstrated
high specificity for the different spatial domains, further indicating the effectiveness of CoCo-ST
in determining feature representations that captured both the shared and unique spatial structures
across the different tissues.

Lastly, we employed CoCo-ST to analyze a publicly available Visium data set generated
from mouse brain (anterior and posterior). This data set shows tissue structures that are
considerably more complex than the mouse lung precancer data set described above. First, we
examined the spatial domain identification performance of CoCo-ST when considering the anterior
slice as the reference and the posterior slice as the target and vice versa. The spatial domains
detected using CoCo-ST’s contrastive components agree well with the Allen Institute for Brain
Science reference atlas diagram (Extended Data Fig. 10a)!”. We further investigated the top five
contrastive components as determined using CoCo-ST for both the anterior and posterior slices.
All of these components captured spatial patterns highlighting specific major anatomical regions
in the brain (Extended Data Fig. 10b,e). Similar to the mouse precancer model, these components
exhibited high component values on specific anatomical regions, such as the cerebral cortex (for

anterior component 1) and choroid plexus (for posterior component 2). The top genes for each
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component (Extended Data Fig. 10c,f) had distinct spatial patterns and exhibited spatial
localization to specific brain regions (Extended Data Fig. 10d,g).

To summarize, we introduced an ST feature representation method that opens up the
application of graph contrastive learning to ST data analysis. This approach offers significant
advantages, particularly in scenarios involving the analysis of multiple ST data sets. It effectively
identifies interesting, unique spatial structures in a target ST data set while mitigating the influence
of dominant high-variance spatial structures that are common to both target and background ST
data sets. Whereas we focused on the ST and Visium platforms, adaptation of CoCo-ST to other
platforms such as Xenium, CosMX SMI and MERFISH on which the data can be represented in

the form of a gene spot matrix is plausible.
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Methods

Problem definition and notation

We represented a spatially resolved ST slice from a spatial genomics technology as the set of pairs
{x;, i} ., with y; € R? denoting a vector of spatial coordinates and x; € R? denoting a vector of

measured gene expression at a corresponding spatial location. We referred to a single spatial
. . .. T
location x; as a spot and s € {1, 2, ..., S;} as a slice containing ng spots. Let Xg = [xf, X5,y e, xﬁs]

. .. . T
denote the matrix containing the spot gene expression measurements and Yy = [yf, V3, e y,fs]

denote the corresponding spatial location matrix from slice s. Worth noting is that the number of
spots can differ across different slices and that the slices may be from the same tissue sample or
from two different tissue sample.

Our goal is to analyze these S; slices by finding discriminative feature representations that
capture the interesting spatial patterns within the different slices. To do this, we identified a
background ST data set containing dominant high-variance spatial structures that were present
across all slices.

The background ST data play a crucial role in effectively contrasting dominant high-
variance spatial structures, which was not the primary focus of this analysis, and in turn assists in
detecting the intriguing unique spatial structures enriched in individual target slices. Three key
advancements underlie the robust performance of our graph contrastive learning approach. First,
we used paired slices to mitigate the impact of spatial structures that are not of primary interest,
which subsequently aided the detection of unique spatial structures of particular interest in
individual target slices. Second, we constructed local similarity graphs to capture the nuanced local
structures in both the background and target ST data sets, thereby ensuring that important spatial

structures are not lost. Third, we applied the concept of contrastive learning to compare and
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contrast the graph embedding of the background and target ST data sets, ensuring that similar spots
are positioned close to each other and that dissimilar ones are distanced in the latent space. This
collective methodology ensures the accurate identification and representation of distinctive spatial

structures.

Graph representation learning

Recent advances in spatial molecular profiling made graph learning a focus of attention because
of the innate resemblance of spatial information to spatial graphs. Graph embedding techniques
have great potential for various applications across spatially resolved transcriptomics. Because ST
data sets can be represented in a matrix format, we can identify spots as entities of interest and
interrogate their interaction. This is equivalent to constructing gene or spot graphs based on
suitable similarity measures. Herein we describe the construction of such molecular similarity
graphs. An essential task in ST data analysis is to find a lower dimensional manifold space that
captures local neighborhood information. Given an ST datum (slice), we can construct a weighted

graph G = (V, E) representing complex, non-Euclidean structures, with edges e;; € E connecting
nearby nodes i and j (i,j € V) to each other if spots x; and x]-s are molecularly similar. A natural

variation of this graph is to construct a graph of k-nearest neighbors in which similarity of nodes

is usually quantified using the Euclidean metric (i.e., nodes i and j are connected by an edge e;; if

x5

i is among the k-nearest neighbors of x7 or x; is among the k-nearest neighbors of x;'). The

J

graph structure G = (V, E) is commonly encoded in an ng X n, affinity matrix S with entries in
[0, 1] and takes large values if x; and xjs are close (or similar). Several approaches to computing
the affinity matrix S are available, one of which is the heat kernel weighting technique depicted

by the equation
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-]
S5 =13e" © , ifxj € N(x})orx’ €N(x{) (),
0, Otherwise

where N (xjs ) denotes the set of k-nearest neighbors of x]-s and t is a user-specified parameter.

Based on the graph construction approach described above, the similarity among spots is
quantified based on gene expression measurements at the corresponding spots. However, because
gene expression measurements are captured alongside its spatial information in ST, these spatial
locations can be used to construct similarity graphs. The spatial graphs constructed in this way are
similar to molecular similarity graphs in the sense that nodes correspond to spots. However, edges
capture proximity of spots in the R? coordinate space. The affinity matrix with the spatial locations

can now be constructed as

S§=3e" & , ifyj€ N(y;)orx7 € N(x?) (2).
0, Otherwise

Also, the spatial graph can be constructed using both the spatial locations and the molecular
profiles treated as node features. Graph representation learning approaches are considered to
determine biologically meaningful representations of these graphs by finding meaningful lower
dimensional representations of nodes present in a complex graph, where local structures in the data
are well captured. A widely used criterion for determining such a representation is to solve the

objective function
: n N sl|2cs
mul,nzi,;zlllzi —77[|"Ss5; 3,
where z7 = WTx? denotes the lower dimensional representation of x;. Solving Eq. (3) under

appropriate constraints ensures that if x; and xjs are similar (or nodes i and j are connected in the

graph), then z; and z;’ are similar (close), as well.
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Contrastive representation learning
Contrastive learning has recently emerged as a successful method of unsupervised graph
representation learning. Contrastive learning methods first perform augmentation of the input data
and enforce via a suitable objective function mapping of augmentation of the same data (positive
pairs) close to each other in the representation (latent) space and augmentation of different data
(negative pairs) far apart from each other. Arguably, a low-dimensional representation that is near
optimal in the contrastive objective function is guaranteed to linearly separate similar data from
dissimilar data. Such representations provide competitive performance in a host of downstream
tasks. In early visual representation learning studies, researchers leveraged a pixel as local view to
conduct local-to-local'® or local-to-global' contrastive learning, whereas researchers recently
found that randomly cropped image snippets help contrastive models better capture the
relationships between image elements®. This motivated us to perform contrastive representation
learning at the global image level.

Like several other machine learning approaches, contrastive representation learning can be
performed in an unsupervised (self-supervised) or supervised learning strategy. In self-supervised
settings, contrastive learning methods learn discriminative feature representations based on some

similarity measure defined according to the data. Consider the objective function defined by*’
1 2 v 2\)?
L1=(1—Y)*E||xi—xj|| +E*{max(0,m—||xi—xj|| )}

),
where m > 0 is a hyperparameter defining the lower bound distance between dissimilar samples,

Y is a binary label with ¥ = 0 if x; and x; are similar, and Y = 1 if x; and x; are dissimilar.

Minimizing the objective function is an attempt to determine a lower dimensional manifold
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subspace where similar input samples are mapped nearby and dissimilar samples are far apart.
When sample labels are available, they can be integrated into the definition of similarity and
dissimilarity to better guide the contrastive model to mapped samples belonging to the same class
(same label) close to each other and samples of different classes farther apart. This approach is
referred to as supervised contrastive representation learning. Both the self-supervised and fully
supervised contrastive learning approaches are powerful methods of learning discriminative

feature representations.

Graph contrastive feature representation using CoCo-ST

Most of the traditional feature representation approaches are designed to determine feature
representations through maximization of data variance. These approaches can perform poorly if
the ST data structures with maximal variances are not the structures of interest, as the local
structures of interest are masked by the dominant high-variance structures. The feature
representations determined using these approaches capture little to no useful information reflecting
the unique low-variance local structures present in the ST data, which are usually treated as noise.
Also, these traditional approaches are designed to explore one ST data set at a time, which can
hinder their performance in cases where there are multiple interconnected data sets that need to be
explored.

To overcome these limitations, we propose CoCo-ST, which compares and contrasts the
global and local variances in ST data sets to better capture discriminant and structural information.
More generally, we use two ST data sets (background and target) and subsequently construct two
similarity graph views: one for the background ST data set and the other for the target ST data set.

We then design a contrastive objective function to learn feature representations that capture high
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global (and/or local) variances enriched in the target ST data while simultaneously attaining small
global (and/or local) variances in the background ST data. Given a background ST data set X; =

T . . . . ) .
[xf X2, x,l{b] containing spatial structures of no primary interest, such as a normal lung region,

we can use the following two terms to measure the smoothness of the lower dimensional

representation:
np
Ry =min > [lx? — wwTxp|
i=1
= max tr(WTX,XIW) (5)
and
np
R, = min " [WTxb - wx||"sh
ij=1
np
— oy 3 WD) WT - WAt (af) W
ij=1
= mmi,n tr(WTX, LPXTwW) (6),

where tr(-) is the trace operator, D is a diagonal matrix whose entries are the column (or row)
sums of S, D;; = Y. Six, and L = D — S is the graph Laplacian matrix. We consider the symmetric
normalized graph Laplacian matrix L = D~2LD~'/2 in our later derivations. By minimizing R,
we aim to minimize the reconstruction error, whereas minimizing R, is an attempt to preserve the
local structure (i.e., if two spots x; and xjs are molecularly similar, their low-dimensional
representations WTxf’ and WTx}’ are also similar). Combining Egs. (5) and (6), we can have the

equivalent formulation
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0, = max tr(WTX,XIW) — u, tr(WTX,LPXIT W)
wTw=1

= max tr(WTX,H,XIW) (7),
wTw=I

where H, =1 — uyLP, I is an identity matrix, L? is the normalized graph Laplacian for the
background ST data, and 0 < p; < 1 1is a hyperparameter that controls the smoothness of the new
representation. The matrix H, = I — p; L? can be considered a graph Laplacian filter?! that helps

smooth the data while preserving underlying spatial structures in an ST slice.
Similarly, for a target ST data set X; = [xf, x5, ...,x,tlt] containing unique, interesting

spatial structures, we can write the formulation

0, = max tr(WTXHXIW) (8),
wTw=I1

where H, = I — u,Lt, L! is the normalized graph Laplacian for the target ST dataand 0 < p, < 1
is a hyperparameter.

Combining Egs. (7) and (8), CoCo-ST solves the following objective function

03 = max tr(WTX HXTW) —ntr(WTX, H,XITW) ),

where 17 > 0 is the contrastive parameter that determines the tradeoff between high target global
(and/or local) variance and low background global (and/or local) variance. We will first describe
how to maximize the objective function O5. Let A be the Lagrange multiplier for the constraint

WTW = I. The Lagrange L is
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L =tr(WTX,HXTW) — ner(WT X, H, XIW) — Aer(WTW —1)  (10).

The partial derivative of £ with respect to W' is

22 = X HXIW = 1X,HyXFW — AW

(11).
The optimum solution to Eq. (10) satisfies j_v[; = 0. We therefore have

X HXTW — nXp,H,XTW — AW = 0

(X H XT —nX,HyXDHW = AW (12).

Thus, the transformation matrix that maximizes the objective function O3 can be obtained by
solving the eigenvalue problem (Eq. 12). Let wy, wy, ..., w,, be the eigenvectors from Eq. (12)
corresponding to the top p largest eigenvalues A; = A, = -+, = A,. The lower dimensional
manifold representation can then be obtained as follows:

xf -zl =WTx! (13),

WT = [wy, wy, ..., W]
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where z! is a p-dimensional representation of x}, and W is a d X p matrix. This feature
representation preserves the local structure of the ST data sets. A step-by-step description of the

proposed CoCo-ST method is summarized in Algorithm 1.

Algorithm 1. CoCo-ST.

T T
Input: Background X, = [x’l’,xlz’,...,xgb] and target X; = [x'i,x%, ...,xflt] ST data sets,

T
together with corresponding spatial locations Y, = [y’l’, y5, ..., yﬂb] and Y, =

[ytl, Vo, oon, y,tlt]T, the number of nearest neighbors (k), and the hyperparameters pq, U,
and 7.
Output: The low-dimensional contrastive feature representations for the target ST data Z, =
wrx,
1. Construct the adjacency matrix for both the background and target ST data sets according to
Eq. (1) or (2).
2. Construct the normalized graph Laplacian matrices L? and L* together with the graph
Laplacian filters H, = I — u,L? and H, = I — p,Lt.
3. Compute the matrices X, H, X} and X, H X7 .
4. Solve the eigenvalue problem in Eq. (12).
5. Compute the low-dimensional contrastive feature representations for the target ST data as

Z, = W'X,.

We next investigate the computational complexity of the proposed CoCo-ST algorithm. Its

complexity is dominated mainly by three parts: local similarity graph construction, matrix
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multiplication, and solving an eigenvalue problem. Assuming we have n;, and n; spots in d-
dimensional spaces (d gene expression measurements) for the background and target ST data sets,
to construct the similarity graphs, we first perform a k-nearest neighbor search for both data sets.
The distance between any two spots in the background ST data can be computed in 0(dn?), and

the k-nearest neighbors can be found with O(knZ). Thus, the k-nearest neighbor search for the
background and target ST data sets has complexities 0((d + k)nﬁ) and 0((d + k)n?),
respectively. The complexities for computing the matrices X, Hp,X] and X H. X! are
0((n12, +ny d)d) and O((n? + n,d)d), respectively. The last part is computing the eigenvectors
corresponding to the top p eigenvalues of the eigenproblem in Eq. (12), whose complexity is

0(pd?). Therefore, the time complexity of the CoCo-ST algorithm is O ((d + k)(nZ +n?) +

((np + dny + (0 + Dy + pd)d). Because k < ny(orn;) and p < d, the overall complexity

of CoCo-ST is determined by the number of spots n, (or n;) and the number of genes (d).

Several aspects of the proposed CoCo-ST approach are worth highlighting. Specifically:

1. If uy, = py = 0, the matrices X, H,X] and X, H, X} reduce to X, X] and X, X[, respectively,
so the objective function (O3) reduces to that of contrastive PCA (cPCA)?%. Therefore,
cPCA can be regarded as a variant of CoCo-ST.

2. Whereas cPCA and the majority of the traditional feature representation approaches focus
on global geometrical structures, CoCo-ST can exploit the intrinsic geometric structures of
ST data sets and incorporate them as additional regularization terms. Through construction
of a graph to model local geometric structures, CoCo-ST can have more discriminating

power than cPCA and the traditional feature representation approaches.
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3. CoCo-ST simultaneously learns both global and local-level representations to complement
tissue-wide representations, enabling it to distinguish different spatial areas in an ST tissue
slice.

4. The graphs in our proposed CoCo-ST approach are solely unsupervised and constructed
from molecular data or spatial location information. Other information, such as label
information, can also be used to guide graph construction, leading to other extensions of
CoCo-ST such as supervised or semisupervised CoCo-ST.

5. The proposed CoCo-ST approach differs from existing graph contrastive learning
approaches that focus on graph neural network architectures for graph structured data.
CoCo-ST considers the gene expression data and tries to learn local representations to
better capture ST data structural information. As such, the objective functions of CoCo-ST

and the conventional graph neural networks are different.

Why is CoCo-ST good for ST data analysis?

CoCo-ST imposes molecularly or spatially similar spots to have similar feature representations,
by which the intrinsic geometric structure of the ST data tends to be preserved. This is a useful
property in ST data analysis because interesting spatial structures will not be lost owing to feature
representation. In addition, CoCo-ST determines its discriminant (contrastive) feature
representations from both the background and target ST data sets and thus can provide even more
discriminative feature representations than the traditional approaches that focus only on a single

ST data set. To explain this, we provided the following remarks and theorem.

Remark 1
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When 1 = 0, CoCo-ST degenerates to a feature representation method that determines its
discriminant vectors from the range space of the matrix X.H.X] associated with the target data
alone. When n > 0, the matrix X,H,X] — nX,H, X} is not guaranteed to be positive semidefinite
even though X,H, X[ and X, H, X! are both symmetric and positive semidefinite. Let w be the
eigenvector of the matrix X, H, XT — nX,H,X} corresponding to the eigenvalue A < 0. We then
have
(X HXT — X, HyXP)w = Aw
wX H XIw = qwX, H,X[w + 1

wX H X{w N A
WX H XTw 1 WX,HyXTw

Because both X, H,XT and X, H,X] are positive semidefinite, we can conclude that

wX H XITw A

Y 7 T, n + Y 7 T >0

WXbeXbW WXbeXbW

Thus, the eigenvectors corresponding to the negative eigenvalues are derived from the range space

of X, H, X} and contain some discriminant information.

Theorem 1

Suppose the matrix X,H,X] is singular and that w is an eigenvector of the matrix X H X} —
nXpHp X! corresponding to the eigenvalue 1 > 0. The eigenvector w is then in the null space of
XpHp X whenn — oo.

Proof. Because w is the eigenvector of the matrix X, H.X] — nX,H,X} corresponding to the
eigenvalue 4 > 0, we have

(XcH XT = nXpHpX])w = Aw
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T 1 T
wX,Hy Xyw = E(WXthXt w—21)
Since A > 0, we have the following:
T 1 T
wX,HyXpw < ﬁthHtXt w

Of note is that both X,H,X] and X,H,X] are positive semidefinite (i.e., wX,H,Xfw > 0 and
wXp,HyXI'w > 0). As a result, we have

lim wX,H,XIw =0 ]
n—oo

Thus, as n — oo, the eigenvectors corresponding to the positive eigenvalues belong to the null

space of X, H, X[ .

Remark 2
As n — oo, the eigenvectors corresponding to the positive eigenvalues of the eigenproblem (Eq.
[12]) contain the most discriminant information. We can rewrite the eigenvalue problem (Eq. [12])
as
(X H XT — X, HpXD)w = w
wX H XITw = nqwX, H, XIw + 1

wX H XIw
5
WXbeXgW

Thus, as n — oo, the eigenvectors corresponding to the positive eigenvalues contain the most

discriminant information.

Remark 3
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As n — oo, the eigenvectors corresponding to the zero eigenvalues of the eigenproblem (Eq. [12])
contain no discriminant information. When A = 0, the eigenvalue problem reduces to
X H XT —nX,HyXDw = Aw =0
WX H XI'w = nwX, H, X]'w
Since wX, H,XIw and wX, H,XI'w are finite and n — oo, we have

wX HXIw =0, wX,HXw=0

Thus, the eigenvectors corresponding to the zero eigenvalues contain no discriminant
information, as 1 — oo. In general, we can conclude that CoCo-ST derives its discriminant feature
vectors from the range spaces of both X.H. X7 and X, H,X}. The parameter 1 can be used to
balance the contribution from the two spaces. Moreover, by extracting the eigenvectors of the
eigenvalue problem in Eq. (12) corresponding to the largest positive eigenvalues, CoCo-ST can
capture the most discriminant information in both the background and target ST data sets, enabling

effective identification of the interesting spatial structures enriched in the target ST data set.

Nonlinear extension of CoCo-ST

Thus far, we have focused on linear feature representation. However, biological data are well
known to be complex and highly nonlinear. Therefore, we extended CoCo-ST to perform nonlinear
feature representation in a reproducing kernel Hilbert space H, which gives rise to nonlinear
CoCo-ST. We considered nonlinear mapping ¢(-) of both the background X}, and target X, ST
data sets from the original input spaces to H'. Let ®;, and @, denote the background and target ST

data sets in H:

@, = [p(eD), p(xD), ., p (2]
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T
@, = [p(x), p(x5), ., P(x7,)]
Denote by V the projection matrix in H. The corresponding objective function (O3) of CoCo-ST
inH is

0, = max tr(VT®,H,®TV) —ntr(VT o, H,®TV)

vTy=I]
(14).

Let N = ny, + n;, and define the data q4, g5, ..., gy by

xf, if1<i<n
q; =

b .
Xi_pn, Otherwise

Since the projection vectors vq, vy, ..., 1, (column vectors in V) are linear combinations of

¢(q1), 9(qz), ..., p(qn), coefficients a;,i = 1, 2, ..., N exist such that

N

vy = Z a; p(q;) = Pea

i=1
=V =d,A
where a = (ay, @y, ...,ay)T € RN, A = [al,a?, ..., aP]. Following some algebraic formulations,

we can rewrite the objective function (0,) in the following equivalent form:

04 = rdpax tr(ATOT &, H,dT D A) —ntr (AT dTd, H,dT D A)
c Fcha—

= fnax_ tr(ATK . H,K..A) —ntr (ATK , Hy K, A)

(15),
where K., = ®Id,, K., = ®Id,, K, = ®T D, K.y = ®Id,, and K, = O] d_ are the kernel
matrices. Several choices of the kernel functions are available, including the polynomial kernel

£_yb]|®
K(xf, x2) = ((xD7x? +1)%; Gaussian kernel K(xf,x?) = exp (— M) and sigmoid
kernel K(xit,xf’) = ((xit)Txlb + V)-
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Following approach similar to that in linear CoCo-ST, the projection vectors in Eq. (15)
can be obtained as the eigenvectors corresponding to the top p largest eigenvalues of the
generalized eigenvalue problem

(KeeHeKee — nKep Hp Kpc)A = AK A
(16)

To obtain a stable solution of the eigenvalue problem in Eq. (16), the kernel matrix K.
must be nonsingular. When K. is singular, we can adopt the idea of regularization by adding a
small constant value p to the diagonal of K. as K., + plI for any p > 0. The matrix K.. + pl is
nonsingular, and the projection vectors can be computed as the generalized eigenvectors of

(KeeHeKee = nKep Hp Kpc)A = A(Kee + pI)A

(17).

Animal model

Wild-type mice (strain #009104; n = 12,9S4) were purchased from The Jackson Laboratory and
housed in colony cages under pathogen-free conditions at The University of Texas MD Anderson
Cancer Center Research Animal Support Facility. The mice were housed at an ambient
temperature of 20-26°C and humidity range of 30-70% with a 12-h light-dark cycle. All animal
experiments were conducted following MD Anderson Institutional Animal Care and Use
Committee—approved protocols (approval number 00001217-RNO03). For carcinogen-induced
mouse models, a urethane-induced mouse model was used. Specifically, the 12,954 wild-type mice
described above received intraperitoneal injections of 1 mg/g (body weight) urethane three times

over 8 days when they were 6 weeks old. The mice were killed 7, 14, 20, 30, and 40 weeks after
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urethane administration, with a O-week time point for mice that received no treatment. Both normal

lung and lung tumor tissue samples were collected from the mice for downstream analysis.

Single-cell sequencing and analysis

Fresh normal lung and lung tumor tissue samples collected from mice were immediately cut into
pieces and placed in RPMI 1640 medium (Thermo Fisher Scientific) with 10% fetal bovine serum
(FBS; Gibco). The tissue samples were enzymatically digested using a tumor dissociation mixture
composed of 1 mg/ml collagenase A (Sigma), 0.4 mg/ml hyaluronidase (Sigma), and 1:5 bovine
serum albumin fraction V (Thermo Fisher Scientific) according to the manufacturers’ instructions.
Dissociation of tissue was carried out for 2 h on a rotary shaker at 37°C until all large tissue
fragments were digested. Next, the dissociated tissues were transferred to conical tube and
centrifuged at 350g for 5 min. The supernatant was removed, and 1-5 ml of prewarmed trypsin-
EDTA was added to the collagenase/hyaluronidase-dissociated cells, resuspending them.
Subsequently, 10 ml of cold RPMI 1640 without phenol red supplemented with 2% FBS was added
and centrifuged at 350g for 5 min. As much of the supernatant as possible was collected, and 5 ml
of prewarmed 5 U/ml dispase (STEMCELL Technologies) and 50 pl of DNase I solution (10
mg/ml in 0.15 M NaCl; STEMCELL Technologies) were added. The samples were pipetted for 1
min using a 1-ml micropipettor to further dissociate cell clumps. The cell suspension was diluted
with an additional 10 ml of cold RPMI 1640 without phenol red supplemented with 2% FBS, and
the cell suspension was filtered through a 40-pum Falcon cell strainer (Thermo Fisher Scientific)
into a 50-ml tube. The cell suspension was further centrifuged at 450g for 5 min, and the
supernatant was discarded. The pellet was resuspended in a 1:4 mixture of cold RPMI 1640 without

phenol red supplemented with 2% FBS and an ammonium chloride solution (STEMCELL
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Technologies), which was followed by centrifugation at 450g for 5 min and discarding of the
supernatant. Ten microliters of the cell suspension for each sample was analyzed using an
automated cell counter (Thermo Fisher Scientific) to determine the number of live cells.
Throughout the dissociation procedure, cells were kept on ice when possible. The cells were then
loaded onto a Chromium single-cell controller (10x Genomics) to create single-cell gel beads in
an emulsion according to the manufacturer's protocol. SCRNA-seq libraries were constructed using
a Single Cell 5’ Library and Gel Bead Kit v3.1 (10x Genomics) and sequenced using a NovaSeq
6000 sequencer (Illumina) at the Genomic and RNA Profiling Core at Baylor College of

Medicine.

Tissue preparation and ST

Normal and tumor tissue samples from mouse lungs were fixed in 10% formalin at room
temperature for 24-48 h using a fixative volume 5-10 times greater than that of the tissue volume.
Fixed tissues were transferred to 70% ethanol for temporary storage at 4°C. Paraffin embedding
was conducted by the MD Anderson Research Histology Core Laboratory. Formalin-fixed,
paraffin-embedded blocks were cut into 10-um-thick sections using a precooled RNase-free
microtome. These sections were then transferred onto Visium Spatial Gene Expression slides (10x
Genomics), which were pretreated via floating in a water bath at 43°C. Following sectioning, the
slides were dried at 42°C in a SimpliAmp Thermal Cycler (Thermo Fisher Scientific) for 3 h
according to the manufacturer's instructions. The slides were placed in a slide mailer, sealed with
thermoplastic (Parafilm: Thermo Fisher Scientific), and stored overnight in a refrigerator at 4°C.
The slides were then deparaffinized, fixed, stained with hematoxylin and eosin, and imaged at 5x

magnification using a DM5500 B microscope (Leica Microsystems). Tile scans of the entire array
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were acquired using Leica Application Suite X software and merged. Spatial gene expression
libraries (Visium ST; 10x Genomics) were processed according to the manufacturer’s instructions
and sequenced using a NovaSeq 6000 sequencer (Illumina). All hematoxylin and eosin staining,
imaging, library preparation, and sequencing processes were carried out at the Genomic and RNA

Profiling Core at Baylor College of Medicine.

Data processing

ScRNA-seq data. Raw base call files were analyzed using Cell Ranger v.3.0.2 software (10x
Genomics). The mkfastq command was used to generate FASTQ files, and the count command
was used to generate raw gene-barcode matrices aligned to the GRCh38 Ensembl 93 genome. The
data were aggregated using the cellranger aggr command, and further downstream analysis was
conducted in R version 4.1.0 using the Seurat package (v.4.1.1). To ensure our analysis was
performed using high-quality cells, filtering of cells was conducted by retaining cells that had
unique feature counts greater than 200 or less than 5000 and had mitochondrial content less than

15%. After removing doublets, the total cell number was 70,698.

ST data. The ST data sets were processed using Space Ranger software (v.2.0.1; 10x Genomics).
The spatial sequencing data were aligned to mouse pre-mRNA genome reference version mm10
(downloaded from the 10x Genomics website) using Space Ranger, and mRNA count matrices
were generated by adding intronic and exonic reads for each gene in each location. Paired
histological hematoxylin and eosin stained images of tissues were processed using Space Ranger
to select locations covered by tissue by aligning prerecorded spot locations with fiducial border

spots in the images.
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Data analysis

ScRNA-seq analysis. The scRNA-seq data were first normalized, and the 2000 most highly
variable genes in the data were identified using variance-stabilizing transformation implemented
in the Seurat package. Data were then scaled, and the first 30 principal components were extracted.
The principal components were further transformed into the UMAP embedding space for which
clustering analysis was conducted. The original Louvain algorithm was used for modularity
optimization. The resulting 14 clusters were visualized in a 2D UMAP representation and
annotated to known biological cell types using canonical marker genes. The following cell types
were annotated (selected markers are listed in parentheses): endothelial cells (Pecami, Vwf, Etsl,
Ace, Eng, Cldn5, and Mcam), epithelial cells (Epcam, Mucl, Cdhl, Krt7, and Krt8), fibroblasts
(Pdpn, Dcn, Col3al, Mgp, Collal, and Col6al), macrophages (Apoe, Clga, Clgb, Clgc, Marco,
Mrcl, Fabp4, Inhba, Ccl4, Cxcll0, Rsad2, and Herc6), conventional dendritic cells (cDC; H2-Aa,
Ccr7, Flt3, Fscnl, and Clec9a), proliferating macrophages (Mki67, Tubb5, and Tubalb), B cells
(Cd19, Ms4al, Cd79a, Cd79b, and Blnk), T cells (Trbc2, Cd2, Cd3d, Cd3e, Cd3g, Cd4, CdS8a,
Cd8bl, 1l2ra, and Foxp3), proliferating T cells (Mki67, Tubb5, and Tubalb), plasmacytoid
dendritic cells (pDC; Siglech, Ly6c2, and Cd209d), neutrophils (S100a8, S100a9, and Csf3r),
plasma cells (Sdcl, Mzbl, Xbpl, and Jchain), monocytes (Cdi4, Fcgrd, Lstl, and Vcan), and

natural killer cells (Nkg7, Klrgl, and Ncrl).

ST analysis. The raw expression count matrices for both the background and target ST data sets
were normalized using variance-stabilizing transformation implemented in the Seurat package.

The normalized data were then standardized to have zero mean and unit standard deviation. The
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standardized expression data matrices with 3000 genes were then used as inputs to our CoCo-ST
method for low-dimensional feature representation. Clustering on the UMAP-embedded learned
contrastive feature representations was then performed. Further differential gene expression
analysis was conducted, and spatial domains were annotated based on the differentially expressed

marker genes.

Pathway analysis

The most important genes (the 20 genes with the largest weights) on the top five contrastive
components were identified, and the biological processes associated with these contrastive
components were examined. Specifically, gene set enrichment analysis was performed with these
20 genes with the largest weights in the loading matrix using the g:GOSt function in the gprofiler2
package. In this analysis, all of the input 3000 genes were used as the background, and the default
options in the g:SCS method in gprofiler2 were used for multiple testing correction. The gene sets
were downloaded from the Molecular Signatures Database, including the KEGG, Gene Ontology
biological processes, Gene Ontology cellular components, and Gene Ontology molecular

functions.

Cell type deconvolution

Cell type deconvolution in ST enables estimation of cell type composition on each spatial location
by leveraging a reference scRNA-seq data set. Cell type deconvolution was performed using the
RCTD? method implemented in the spacexr R package. SCRNA-seq data for the same mouse lung
tumor samples (MLP samples) served as the reference data for deconvolution. The reference data

contained 70,698 cells of multiple immune and malignant types as described in the scRNA-seq
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analysis section. The RCTD method was run in doublet mode to estimate the reference cell type

composition on each spatial location. Other parameters were set to the default settings.

Cell-cell interaction

Cell-cell interaction for the ST data sets was performed using CellChat**. The CellChatDB.mouse
database of ligand-receptor interactions specifically curated for mice was used to identify
overexpressed ligand-receptor interactions. The group-level communication probability or
interaction weights were then computed using the truncated mean method with a 10% truncated
mean. Subsequently, the communication probability at the signaling pathway level was computed
by summarizing the communication probabilities of all ligand-receptor interactions associated
with each signaling pathway. Finally, the cell-cell communication network was aggregated by

summarizing the overall communication probabilities.

Trajectory inference analysis

For spatial trajectory analysis of individual tissue samples, the low-dimensional contrastive feature
representations were used as inputs to the Slingshot algorithm?. Slingshot was applied to the
contrastive feature representations so that nearby tissue spatial locations with similar gene
expression would have similar pseudotimes. Because Slingshot requires predefined cluster labels,
the spatial domain labels from the spatial domain identification analysis were used for Slingshot.
The normal lung spatial domain was set as the start cluster (beginning of the trajectory or
pseudotime) with a focus on trajectory inference on tumor and tumor-adjacent spatial domains to

determine how these locations are connected to one another during tumorigenesis.
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For the trajectory analysis with combined tissue samples, spots belonging to normal lung,
adenoma, and adenocarcinoma spatial domains as determined using the contrastive feature
representations were collected, and Monocle3?° was used to infer the trajectory. First, the
combined data (spots)were processed using the standard Seurat approach, including total count
normalization, scaling, and PCA analysis. Next, UMAP embedding was determined, which was
used to learn the trajectory that fits the spots’ UMAP coordinates. A principal graph was then fit
on the UMAP embedding, and the spots were ordered according to their progress along the learned
trajectory. To identify genes that varies among spot clusters in the UMAP embedding space, spatial
autocorrelation analysis (Moran’s I) was performed, and the obtained variable genes were grouped
into modules by determining UMAP embedding of the genes followed by gene clustering based

on Louvain community detection analysis.
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Code availability
Installation instructions and tutorials, together with the code used for data analysis and generating

figures, can be found at https://github.com/WulLLabMDA/CoCo-ST .
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Figure Legends

Fig. 1| CoCo-ST identifies unique, interesting spatial structures enriched in ST data sets. a,
Overview of the CoCo-ST workflow. b, A target ST tissue sample containing unique, interesting
spatial structures annotated by a pathologist and spatial domains/regions identified using the
different feature representation methods. ¢, Volcano plot of the most differentially expressed
genes for the adenoma spatial domain identified by CoCo-ST. d, Volcano plot of the most
differentially expressed genes for the adenoma spatial domain identified using the compared
approaches. e, Spatial expression patterns for the most differentially expressed genes (Ctsh,
Cxcll5, and Slc34a2) for the adenoma spatial domain identified using CoCo-ST. These genes
had high expression patterns in both the larger and smaller (hotspot) adenoma spatial domains. f,
Spatial expression pattern for the most differentially expressed gene (Trf) for the adenoma
spatial domain identified using the compared approaches. This gene had high expression pattern
only within the larger adenoma spatial domain, with no such pattern observed in the smaller

(hotspot) region.

Fig. 2 | CoCo-ST’s contrastive components marked interesting spatial structures enriched
in ST data sets. a, Spatial patterns captured by the first five contrastive components of CoCo-
ST. b, The top 20 genes with the largest weights on the corresponding first five contrastive
components. Symbols to the right of the bars indicate the signs of the weights. ¢, Expression
patterns for the top representative genes for each of the first five contrastive components. d,

Spatial patterns captured by the first five components of the compared approaches.
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Supplementary Information
Extended Data Fig. 1 | Spatial domains identified on all MLP tissue samples using CoCo-
ST’s contrastive components. The similarity graphs for both the background and target ST data

sets were constructed based on the molecular data sets.

Extended Data Fig. 2 | Differential gene expression analysis of detected spatial domains. a,
UMAP embedding of the contrastive components determined using CoCo-ST on the target ST
tissue sample. B, UMAP embedding of spotsshowing the expression of some of the most
differentially expressed genes in different clusters identified using the contrastive feature
representations from CoCo-ST. ¢, Violin plots of the expression levels for the most differentially
expressed genes for the different spatial domains identified using CoCo-ST. d, Biological
processes and pathways associated with the 10 most differentially expressed genes for the
adenoma spatial domain detected using CoCo-ST. e, Violin plots of the expression levels for the
most differentially expressed genes for the different spatial domains identified using the

compared feature representation approaches.

Extended Data Fig. 3 | Biological processes and pathways associated with CoCo-ST’s

contrastive components.

Extended Data Fig. 4 | Spatial domains identified on all MLP tissue samples using CoCo-

ST’s contrastive components. The similarity graphs for both the background and target ST data

sets were constructed based on spatial locations.
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Extended Data Fig. 5 | Application of CoCo-ST’s contrastive components to studying cell-
cell interaction at different cancer stages. a, UMAP embedding of the scRNA-seq data set
used as a reference for cell type deconvolution. b, Spatial domains identified in the MLP-6
tissue sample using CoCo-ST’s contrastive components. ¢, Cell type annotation on each of the
spatial locations in MLP-6 tissue sample as inferred by the RCTD deconvolution algorithm. d,
Percentage of different cell types (y-axis) in the different spatial domains (x-axis) detected using
CoCo-ST. e, Cell-cell interaction weight plot for MLP-6 tissue sample. The thicker the line, the
stronger the interaction between the cell types. f, Chord plot of the cell-cell interactions via
canonical WNT signaling. g, Heat map of the communication probabilities for WNT signaling
from senders (sources) to receivers (targets). h, Heat map of network centrality scores for WNT

signaling highlighting the major signaling roles of the different cell groups.

Extended Data Fig. 6 | Predicted spatial distributions of major cell types in the MLP-6

tissue sample.

Extended Data Fig. 7 | Distribution of different cell types in each spatial domain on the
MLP-6 tissue sample determined using CoCo-ST. The cell type percentages in each spatial

domain add up to 100%.

Extended Data Fig. 8 | Aggregated cell-cell interaction plots on the combined MLP tissue
samples containing the adenoma and adenocarcinoma spatial domains. a, Cell-cell
interaction weight plot for the adenocarcinoma-related MLP tissue samples. b, Simplified cell-

cell interaction plots for a showing signaling sent from each cell group. The thicker the line, the
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stronger the communication. ¢, Cell-cell interaction weight plot for the adenoma-related MLP
tissue samples. d, Simplified cell-cell interaction plots for ¢ showing signaling sent from each

cell group. The thicker the line, the stronger the communication.

Extended Data Fig. 9 | Application of CoCo-ST’s contrastive components to trajectory
inference (cancer evolution). a, Spatial trajectory inference based on CoCo-ST’s determined
contrastive components. The arrows indicate the direction of the trajectory, which points from
the normal lung spatial domain to the adenoma spatial domain. b, Learned trajectory pseudotime,
with red- to green-colored regions indicating tissue locations with low and high pseudotime. ¢,
UMAP embedding of spots belonging to the combined normal, adenoma, and adenocarcinoma
spatial domains as determined using CoCo-ST. d, Trajectory inference of the cancer evolution
from normal tissue to adenoma to adenocarcinoma colored according to their corresponding
pseudotimes. e, Heat map of gene modules containing differentially co-expressed genes that vary
across the different stages of cancer as determined from the learned trajectory in d. f, Bar plot of

the number of differentially co-expressed genes in each module in e.

Extended Data Fig. 10 | Application of CoCo-ST to a mouse brain ST data set. a, Spatial
domains/regions identified on anterior and posterior mouse brain tissue samples based on CoCo-
ST’s contrastive components. b, Spatial patterns on the anterior mouse brain tissue sample
captured by the first five contrastive components of CoCo-ST. ¢, The 20 genes with the largest
weights on the first five contrastive components in b. Symbols to the right of the bars indicate
the signs of the weights. d, Expression patterns for some representative genes in ¢. e, Spatial

patterns on the posterior mouse brain tissue sample captured by the first five contrastive

44



components of CoCo-ST. f, The 20 genes with the largest weights on the first five contrastive

components in e. g, Expression patterns for some representative genes in f.
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