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Abstract 

Traditional feature dimension reduction methods have been widely used to uncover biological 

patterns or structures within individual spatial transcriptomics data. However, these methods are 

designed to yield feature representations that emphasize patterns or structures with dominant high 

variance, such as the normal tissue spatial pattern in a precancer setting. Consequently, they may 

inadvertently overlook patterns of interest that are potentially masked by these high-variance 

structures. Herein we present our graph contrastive feature representation method called CoCo-ST 

(Comparing and Contrasting Spatial Transcriptomics) to overcome this limitation. By 

incorporating a background data set representing normal tissue, this approach enhances the 

identification of interesting patterns in a target data set representing precancerous tissue. 

Simultaneously, it mitigates the influence of dominant common patterns shared by the background 

and target data sets. This enables discerning biologically relevant features crucial for capturing 

tissue-specific patterns, a capability we showcased through the analysis of serial mouse 

precancerous lung tissue samples.  
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Analyzing spatial transcriptomics (ST) data requires robust feature representation methods to 

effectively capture the intricate biological information or patterns enriched in these high-

dimensional data sets. Although traditional dimension reduction techniques like principal 

component analysis (PCA1) and nonnegative matrix factorization (NMF2) have been widely 

adopted as off-the-shelf approaches for ST data dimension reduction, they primarily aimed at 

capturing global patterns and variations in the original high-dimensional ST data sets. More 

recently, the integration of spatial constraints into dimension reduction algorithms has led to the 

emergence of robust feature representation approaches such as nonnegative spatial factorization3, 

spatial PCA4, and MEFISTO5. However, these methods tend to prioritize the identification of 

prominent global patterns with high variability, potentially missing finer localized intrinsic 

structures marked by lower variability. Furthermore, they are designed to explore one data set at a 

time and are not tailored to studying the evolutionary dynamics of a tumor microenvironment 

across multiple data sets. These constraints can result in overlooked information, particularly when 

studying carcinogenesis, in which tumors progress from a few isolated precancerous sites to 

invasive cancer across various tissue samples. The majority of these samples exhibit common 

global patterns (representing normal tissue biology) that may not be of primary interest. 

Conversely, a small portion of samples contain unique, crucial precancerous structures that require 

specific attention. 

To address these constraints, we proposed a graph contrastive learning framework that we 

called CoCo-ST (Compare and Contrast Spatial Transcriptomics). CoCo-ST operates by taking 

two ST data sets as inputs: one serving as the reference (background) and another as the target. 

These ST data sets typically have certain common structures that are usually not the primary foci. 
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The goal is to extract feature representations that emphasize the new and unique structures enriched 

in the target ST data set.  

In the present study, we used CoCo-ST to thoroughly investigate carcinogenesis using ST 

data sets from an in-house curated carcinogenesis mouse model. This approach yielded feature 

representations that enhanced our ability to discern distinctive and noteworthy structures within 

the target ST data, leading to improvements in downstream analysis.  

CoCo-ST was inspired by the recent successes of contrastive learning approaches6-8, which 

learn discriminative feature representations by contrasting positive pairs (similar samples) with 

negative pairs (dissimilar samples). In our CoCo-ST design workflow (Fig. 1a), we began by 

collecting tissue samples from mouse lung and processing them using the Visium technology (10x 

Genomics) to obtain the ST data. We then organized the resulting gene expression data into a gene-

spot matrix and further normalized the data to eliminate technical artifacts. CoCo-ST proceeded 

to construct two weighted graphs, one each for the background and target ST data sets—allowing 

us to capture the local structures within the data sets. We derived contrastive feature 

representations by comparing and contrasting the local variances of the background and target 

graphs. We achieved this by assessing the difference between their respective local total scatter 

matrices. In the case of a new target ST data set, CoCo-ST simply uses the learned transformation 

to generate feature representations for the new data (Fig. 1a). These contrastive feature 

representations can serve as inputs for various other ST analysis tools, for enhanced downstream 

analysis. We have illustrated the effectiveness of these contrastive feature representations across 

multiple downstream analysis tasks, including ST data visualization, spatial domain identification, 

tissue-specific spatial trajectory inference, trajectory inference across multiple tissues, and 
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examination of cell-cell interaction. It is worth mentioning here that CoCo-ST is generically 

applicable to any ST data types that can be represented in form a gene-spot matrix. 

We first applied CoCo-ST to learn transformation by using a mouse normal lung tissue 

sample (MLP-1) as the background and an abnormal lung tissue sample (MLP-6) containing 

structures other than the normal spatial domain (Extended Data Fig. 1) as the target. We designated 

MLP-1 as the background ST data because its spatial structures belong to the normal lung spatial 

domain, which was also present in all the rest of the tissue samples. We then applied the learned 

transformation to the remaining tissue samples, resulting in contrastive feature representations that 

we subsequently used for spatial domain identification (Extended Data Fig. 1) and further 

downstream analysis. Note, CoCo-ST does not require much data to determine a good 

transformation compared to the conventional machine learning approaches. Additionally, it has 

the potential to capture more specific structures within individual samples. These properties make 

CoCo-ST a valuable complement to large foundation model-based approaches. 

Uniform manifold approximation and projection (UMAP) embedding of the learned 

contrastive features in the target ST data (Extended Data Fig. 2a) illustrated CoCo-ST’s 

effectiveness in determining feature representations that provide robust discrimination of various 

spatial structures in the target tissue (Fig. 1b). Clustering the ST data based on the learned 

contrastive components led to the identification of six clusters, each corresponding to a unique 

spatial structure. These spatial structures detected using CoCo-ST’s contrastive components agree 

well with pathologist-annotated regions (Fig. 1b). Spatial clustering of spots based on components 

determined using the compared Seurat (PCA), STUtility (NMF), NSF and MEFISTO methods 

failed to effectively detect the hotspot region annotated as hyperplasia by the pathologist (Fig. 1b). 

Inability to detect spatial structures of low variability affects the performance of the compared 
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methods in detecting the early adenoma (hotspot) region. However, Seurat (PCA) detected the 

hotspot region but annotated it as belonging to spatial domain 2. 

We further annotated the detected spatial structures detected using CoCo-ST based on their 

differentially expressed marker genes (Extended Data Fig. 2b) and spatial locations. The 

distribution of these marker genes, including Epas1 for normal lung tissue (endothelial PAS 

domain), Slc26a4 for fibrotic/scarred tissue, Cybb for adjacent normal tissue, Hp for the 

bronchus/alveoli, Ctsh for the adenoma, and Msln for the membrane, showed the expected high 

expression patterns (Extended Data Fig. 2c). To further validate the adenoma region (hotspot) 

detected using CoCo-ST, we investigated the most differentially expressed marker genes for the 

detected adenoma regions and found 3498 marker genes at a false-discovery rate of 5% (Fig. 1c). 

The most differentially expressed marker genes were domain-specific metagenes for the adenoma 

region (including the hotspot region). For example, a metagene consisting of Ctsh, Cxcl15, and 

Slc34a2 marked the hotspot region clearly, as these genes exhibited high expression patterns in 

both the larger adenoma region and smaller hotspot region (Fig. 1e). The Cxcl15, and Slc34a2 

genes are uniquely identified by CoCo-ST. The high expression of these genes at both the large 

and hotspot adenoma regions indicates that these two spatial domains are anatomically similar. 

Seurat’s inability to identify these important marker genes results to categorizing the hotspot 

region as belonging to the fibrotic/scarred tissue (Fig. 1b). Also, Ctsh gene was reported to be 

differentially expressed in adenoma region of patients with colorectal cancer9. Gene set enrichment 

analysis of the 10 most differentially expressed marker genes in our study identified biological 

processes related to lung fibrosis, apoptotic processes, and cell polarity (Extended Data Fig. 2d). 

For comparison, we also investigated the most differentially expressed marker genes for the 

compared Seurat (PCA), STUtility (NMF), NSF and MEFISTO methods (Fig. 1d, Extended Data 
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Fig. 2e) based on the learned embedding of these methods and found several genes, most of which 

marked the larger adenoma region but not the smaller hotspot region. For example, the Trf gene 

was the top marker gene for all of the compared methods (Extended Data Fig. 2e); however, this 

gene had a high expression pattern in the larger adenoma region but not in the hotspot region (Fig. 

1f). These results demonstrated that the compared Seurat (PCA), STUtility (NMF), NSF and 

MEFISTO methods focus on identifying the main adenoma region with the largest variance, 

lacking the ability to identify domain-specific metagenes that capture the smaller adenoma 

structure (hotspot) with relatively low variance. 

Examining the weights of the first five contrastive components revealed that CoCo-ST 

effectively identified major spatial domains (Fig. 2a), indicating that it captured local variations 

associated with the interesting spatial structures in the target data. For example, component 1 

explained variation in multiple spatial domains, which was characterized by large positive weights 

around the adenoma and alveoli/bronchus and negative weights around the normal lung. 

Comparing to Seurat (PCA), STUtility (NMF), NSF and MEFISTO, the top components of these 

methods predominantly focus on the normal lung structure with the largest variance (Fig. 2d). For 

example, the first components of both Seurat PCA and NSF exhibited larger weights on normal 

lung structures. Because the first few components of these methods are expected to capture most 

of the information in the original data and are subsequently used as inputs for downstream analysis, 

relying solely on these components may result in overlooking crucial biological insights. To gain 

deeper insight into the underlying biological processes associated with these components, we 

further investigated the top 20 genes with the largest weights on each of the CoCo-ST’s contrastive 

components (Fig. 2b). This highlighted individual genes encoding domain-specific signatures such 

as Retnla, Cyp2f2, Ctsh, Ccl6, and Acta2 (Fig. 2c) as well as gene sets linked with broader 
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biological processes and pathways. Gene set enrichment analysis with the top 20 marker genes for 

each component revealed enriched gene ontology terms and KEGG pathways specific to each 

spatial domain. These included heme binding on component 1, retinol metabolism on component 

2, IgA immunoglobulin complex on component 3, lysosome on component 4, and extracellular 

matrix on component 5 (Extended Data Fig. 3).  

To investigate the impact of different graph construction methods (molecular vs. spatial) 

on CoCo-ST’s performance, we constructed a similarity graph based on spatial coordinates rather 

than gene expression data as done in our prior experiments. This approach has proven highly 

effective10, as it assumes that neighboring spots in the tissue have similar gene expression patterns 

and likely belong to the same spatial domain. Our findings demonstrated robust CoCo-ST 

performance when using the similarity graph constructed from the spatial coordinates, effectively 

identifying the major spatial domains across all target tissue samples (Extended Data Fig. 4). In 

summary, CoCo-ST demonstrates robust performance with similarity graphs constructed from 

both spatial coordinates and gene expression data. 

Next, we performed deconvolution analysis to infer the cell type composition at each of 

the spatial domains detected using CoCo-ST. For this analysis, we used matched single-cell RNA 

sequencing (scRNA-seq) data (Extended Data Fig. 5a) obtained from the same MLP tissue samples 

as a reference. As expected for the MLP-6 tissue sample (Extended Data Fig. 5b), we observed a 

concentration of endothelial cells in the normal lung spatial domain (endothelial PAS domain) 

(Extended Data Figs. 5c,d, 6, 7). The fibrotic/scarred and bronchus/alveoli spatial domains were 

enriched with fibroblasts. In the adjacent normal spatial domain was an abundance of endothelial 

cells, whereas the adenoma spatial domain had enrichment of macrophages and proliferating 

macrophages (Extended Data Figs. 5c,d, 6, 7). Notably, we observed tumor-associated 
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macrophages (TAMs) in the adjacent normal spatial domain (Extended Data Figs. 5c,d, 6, 7), 

which exhibited significantly upregulated Ccl6. This gene was the top gene with the highest weight 

on component 4 (Fig. 2c). Of note, component 4 exhibited large weights in spatial regions 

corresponding to the regions with the highest Ccl6 gene expression. Also, high expression of the 

Ccl6 gene in a mouse model of lung cancer was reported to be associated with tumor growth and 

increased metastasis11. This evidence underscores the intricate cellular compositions within 

specific spatial domains, shedding light on potential implications for the progression of lung 

cancer. 

After determining the composition of cell types in the various tissue samples through our 

deconvolution analysis, we next inferred their communication patterns. Initially, we identified cell-

cell interactions by examining ligand-receptor patterns within the individual MLP tissue samples. 

Our analysis of the MLP-6 tissue sample revealed a strong pattern of communication between 

endothelial and epithelial cells as well as between endothelial cells and fibroblasts (Extended Data 

Fig. 5e). Also, we observed strong communication initiating from both proliferating macrophages 

and B cells within the adenoma spatial domain, indicating an active immune response. 

We observed that multiple signaling pathways, including programmed death-ligand 1, 

GRN, inducible co-stimulator, NECTIN, interleukin-6, WNT, and CXCL, played pivotal roles in 

cell interactions across different spatial domains. Notably, we predominantly observed WNT 

ligand-receptor interactions in endothelial cells, epithelial cells, fibroblasts, and macrophages 

(Extended Data Fig. 5f). Additionally, we observed WNT signaling interactions between 

proliferating macrophages and B cells, which are enriched in the adenoma spatial domain. 

Meanwhile, we found self-interaction (among cells of the same group) to be the strongest in 

proliferating T cells, proliferating macrophages, and endothelial cells (Extended Data Fig. 5g). 
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Network centrality analysis of the inferred WNT signaling network identified TAMs 

(macrophages and proliferating macrophages) as prominent mediators (gatekeepers) as well as 

influencers controlling the communication (Extended Data Fig. 5h). Prior studies demonstrated 

that WNT signaling supports TAMs as drivers of tumor growth and that TAM-derived WNT 

ligands support tumorigenesis12.  

We delved deeper into the cell-cell interactions across groups of tissue samples associated 

with the adenoma and adenocarcinoma spatial domains as determined using CoCo-ST. 

Specifically, we aggregated the communication weights of multiple tissue samples containing the 

adenoma (MLP-3, -4, -5, -6, -7, and -9) and adenocarcinoma (MLP-8 and -10) spatial domains to 

investigate the cell-cell interactions on a broader scale. Of note, we observed a bidirectional 

interaction between epithelial cells and proliferating macrophages in the adenocarcinoma group 

(Extended Data Fig. 8a,b) but did not see a similar interaction pattern in the adenoma group 

(Extended Data Fig. 8c,d). This is consistent with the established role of TAMs in promoting tumor 

growth and metastasis by engaging in an autocrine loop with cancer cells, thereby stimulating 

cancer cell progression13-16.  

Next, we investigated how the normal endothelial, adjacent normal, and tumor spatial 

domains are connected to each other during tumorigenesis. Specifically, we performed spatial 

trajectory inference with MLP-6 tissue using the contrastive components derived from CoCo-ST. 

This analysis revealed a trajectory starting from the normal endothelial domain and moving toward 

the adjacent normal domain and further into the adenoma spatial domain (Extended Data Fig. 

9a,b). To gain a comprehensive view of the trajectory of precancer evolution across the entire 

population, we combined spots belonging to the adenoma and adenocarcinoma spatial domains as 

identified by our contrastive components. We then determine a UMAP embedding of the spots 
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(Extended Data Fig. 9c) with which the trajectories were reconstructed (Extended Data Fig. 9d). 

As seen in Extended Data Fig. 9c, the contrastive components effectively discriminated the three 

spatial domains and identified a trajectory starting from the normal lung, passing toward the 

adenoma, and ending at the adenocarcinoma cluster (Extended Data Fig. 9d). These findings align 

with the well-known biology of mouse tumorigenesis, consisting of a transition from normal tissue 

to hyperplasia, adenoma, and finally adenocarcinoma. Furthermore, we identified modules of 

differentially expressed genes that were co-expressed across spots in the different spatial domains 

as determined using CoCo-ST (Extended Data Fig. 9e,f). Notably, these modules demonstrated 

high specificity for the different spatial domains, further indicating the effectiveness of CoCo-ST 

in determining feature representations that captured both the shared and unique spatial structures 

across the different tissues.  

Lastly, we employed CoCo-ST to analyze a publicly available Visium data set generated 

from mouse brain (anterior and posterior). This data set shows tissue structures that are 

considerably more complex than the mouse lung precancer data set described above. First, we 

examined the spatial domain identification performance of CoCo-ST when considering the anterior 

slice as the reference and the posterior slice as the target and vice versa. The spatial domains 

detected using CoCo-ST’s contrastive components agree well with the Allen Institute for Brain 

Science reference atlas diagram (Extended Data Fig. 10a)17. We further investigated the top five 

contrastive components as determined using CoCo-ST for both the anterior and posterior slices. 

All of these components captured spatial patterns highlighting specific major anatomical regions 

in the brain (Extended Data Fig. 10b,e). Similar to the mouse precancer model, these components 

exhibited high component values on specific anatomical regions, such as the cerebral cortex (for 

anterior component 1) and choroid plexus (for posterior component 2). The top genes for each 
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component (Extended Data Fig. 10c,f) had distinct spatial patterns and exhibited spatial 

localization to specific brain regions (Extended Data Fig. 10d,g). 

To summarize, we introduced an ST feature representation method that opens up the 

application of graph contrastive learning to ST data analysis. This approach offers significant 

advantages, particularly in scenarios involving the analysis of multiple ST data sets. It effectively 

identifies interesting, unique spatial structures in a target ST data set while mitigating the influence 

of dominant high-variance spatial structures that are common to both target and background ST 

data sets. Whereas we focused on the ST and Visium platforms, adaptation of CoCo-ST to other 

platforms such as Xenium, CosMX SMI and MERFISH on which the data can be represented in 

the form of a gene spot matrix is plausible.  
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Methods 

Problem definition and notation 

We represented a spatially resolved  ST slice from a spatial genomics technology as the set of pairs {𝑥𝑖, 𝑦𝑖}𝑖=1𝑛 , with 𝑦𝑖 ∈ 𝑅2 denoting a vector of spatial coordinates and 𝑥𝑖 ∈ 𝑅𝑑 denoting a vector of 

measured gene expression at a corresponding spatial location. We referred to a single spatial 

location 𝑥𝑖 as a spot and 𝑠 ∈ {1, 2, … , 𝑆𝑙} as a slice containing 𝑛𝑠 spots. Let 𝑋𝑠 = [𝑥1𝑠, 𝑥2𝑠 , … , 𝑥𝑛𝑠𝑠 ]𝑇
 

denote the matrix containing the spot gene expression measurements and 𝑌𝑠 = [𝑦1𝑠, 𝑦2𝑠, … , 𝑦𝑛𝑠𝑠 ]𝑇
 

denote the corresponding spatial location matrix from slice 𝑠. Worth noting is that the number of 

spots can differ across different slices and that the slices may be from the same tissue sample or 

from two different tissue sample.   

Our goal is to analyze these 𝑆𝑙 slices by finding discriminative feature representations that 

capture the interesting spatial patterns within the different slices. To do this, we identified a 

background ST data set containing dominant high-variance spatial structures that were present 

across all slices.  

The background ST data play a crucial role in effectively contrasting dominant high-

variance spatial structures, which was not the primary focus of this analysis, and in turn assists in 

detecting the intriguing unique spatial structures enriched in individual target slices. Three key 

advancements underlie the robust performance of our graph contrastive learning approach. First, 

we used paired slices to mitigate the impact of spatial structures that are not of primary interest, 

which subsequently aided the detection of unique spatial structures of particular interest in 

individual target slices. Second, we constructed local similarity graphs to capture the nuanced local 

structures in both the background and target ST data sets, thereby ensuring that important spatial 

structures are not lost. Third, we applied the concept of contrastive learning to compare and 
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contrast the graph embedding of the background and target ST data sets, ensuring that similar spots 

are positioned close to each other and that dissimilar ones are distanced in the latent space. This 

collective methodology ensures the accurate identification and representation of distinctive spatial 

structures.  

 

Graph representation learning  

Recent advances in spatial molecular profiling made graph learning a focus of attention because 

of the innate resemblance of spatial information to spatial graphs. Graph embedding techniques 

have great potential for various applications across spatially resolved transcriptomics. Because ST 

data sets can be represented in a matrix format, we can identify spots as entities of interest and 

interrogate their interaction. This is equivalent to constructing gene or spot graphs based on 

suitable similarity measures. Herein we describe the construction of such molecular similarity 

graphs. An essential task in ST data analysis is to find a lower dimensional manifold space that 

captures local neighborhood information. Given an ST datum (slice), we can construct a weighted 

graph 𝐺 = (𝑉, 𝐸) representing complex, non-Euclidean structures, with edges 𝑒𝑖𝑗 ∈ 𝐸 connecting 

nearby nodes 𝑖 and 𝑗 (𝑖, 𝑗 ∈ 𝑉) to each other if spots 𝑥𝑖𝑠 and 𝑥𝑗𝑠 are molecularly similar. A natural 

variation of this graph is to construct a graph of 𝑘-nearest neighbors in which similarity of nodes 

is usually quantified using the Euclidean metric (i.e., nodes 𝑖 and 𝑗 are connected by an edge 𝑒𝑖𝑗 if 𝑥𝑖𝑠 is among the 𝑘-nearest neighbors of 𝑥𝑗𝑠 or 𝑥𝑗𝑠 is among the 𝑘-nearest neighbors of 𝑥𝑖𝑠). The 

graph structure 𝐺 = (𝑉, 𝐸) is commonly encoded in an 𝑛𝑠 × 𝑛𝑠 affinity matrix 𝑆 with entries in 

[0, 1] and takes large values if 𝑥𝑖𝑠 and 𝑥𝑗𝑠 are close (or similar). Several approaches to computing 

the affinity matrix 𝑆 are available, one of which is the heat kernel weighting technique depicted 

by the equation 
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𝑆𝑖𝑗𝑠 = {𝑒−‖𝑥𝑖𝑠−𝑥𝑗𝑠‖2𝑡 ,     if 𝑥𝑖𝑠 ∈ 𝑁(𝑥𝑗𝑠) or 𝑥𝑗𝑠 ∈ 𝑁(𝑥𝑖𝑠)0,                                              Otherwise        (1), 

where 𝑁(𝑥𝑗𝑠) denotes the set of 𝑘-nearest neighbors of 𝑥𝑗𝑠 and 𝑡 is a user-specified parameter.  

Based on the graph construction approach described above, the similarity among spots is 

quantified based on gene expression measurements at the corresponding spots. However, because 

gene expression measurements are captured alongside its spatial information in ST, these spatial 

locations can be used to construct similarity graphs. The spatial graphs constructed in this way are 

similar to molecular similarity graphs in the sense that nodes correspond to spots. However, edges 

capture proximity of spots in the 𝑅2 coordinate space. The affinity matrix with the spatial locations 

can now be constructed as 

𝑆𝑖𝑗𝑠 = {𝑒−‖𝑦𝑖𝑠−𝑦𝑗𝑠‖2𝑡 ,     if 𝑦𝑖𝑠 ∈ 𝑁(𝑦𝑗𝑠) or 𝑥𝑗𝑠 ∈ 𝑁(𝑥𝑖𝑠)0,                                               Otherwise          (2). 

Also, the spatial graph can be constructed using both the spatial locations and the molecular 

profiles treated as node features. Graph representation learning approaches are considered to 

determine biologically meaningful representations of these graphs by finding meaningful lower 

dimensional representations of nodes present in a complex graph, where local structures in the data 

are well captured. A widely used criterion for determining such a representation is to solve the 

objective function min𝑊 ∑ ‖𝑧𝑖𝑠 − 𝑧𝑗𝑠‖2𝑆𝑖𝑗𝑠𝑛𝑠𝑖,𝑗=1      (3), 

where 𝑧𝑖𝑠 = 𝑊𝑇𝑥𝑖𝑠 denotes the lower dimensional representation of 𝑥𝑖𝑠. Solving Eq. (3) under 

appropriate constraints ensures that if 𝑥𝑖𝑠 and 𝑥𝑗𝑠 are similar (or nodes 𝑖 and 𝑗 are connected in the 

graph), then 𝑧𝑖𝑠 and 𝑧𝑗𝑠 are similar (close), as well.  
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Contrastive representation learning 

Contrastive learning has recently emerged as a successful method of unsupervised graph 

representation learning. Contrastive learning methods first perform augmentation of the input data 

and enforce via a suitable objective function mapping of augmentation of the same data (positive 

pairs) close to each other in the representation (latent) space and augmentation of different data 

(negative pairs) far apart from each other. Arguably, a low-dimensional representation that is near 

optimal in the contrastive objective function is guaranteed to linearly separate similar data from 

dissimilar data. Such representations provide competitive performance in a host of downstream 

tasks. In early visual representation learning studies, researchers leveraged a pixel as local view to 

conduct local-to-local18 or local-to-global19 contrastive learning, whereas researchers recently 

found that randomly cropped image snippets help contrastive models better capture the 

relationships between image elements6. This motivated us to perform contrastive representation 

learning at the global image level.  

Like several other machine learning approaches, contrastive representation learning can be 

performed in an unsupervised (self-supervised) or supervised learning strategy. In self-supervised 

settings, contrastive learning methods learn discriminative feature representations based on some 

similarity measure defined according to the data. Consider the objective function defined by20 

𝐿1 = (1 − 𝑌) ∗ 12 ‖𝑥𝑖 − 𝑥𝑗‖2 + 𝑌2 ∗ {max (0, 𝑚 − ‖𝑥𝑖 − 𝑥𝑗‖2)}2
   

 (4), 

where 𝑚 > 0 is a hyperparameter defining the lower bound distance between dissimilar samples, 𝑌 is a binary label with 𝑌 = 0 if 𝑥𝑖 and 𝑥𝑗 are similar, and 𝑌 = 1 if 𝑥𝑖 and 𝑥𝑗 are dissimilar. 

Minimizing the objective function is an attempt to determine a lower dimensional manifold 
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subspace where similar input samples are mapped nearby and dissimilar samples are far apart. 

When sample labels are available, they can be integrated into the definition of similarity and 

dissimilarity to better guide the contrastive model to mapped samples belonging to the same class 

(same label) close to each other and samples of different classes farther apart. This approach is 

referred to as supervised contrastive representation learning. Both the self-supervised and fully 

supervised contrastive learning approaches are powerful methods of learning discriminative 

feature representations.  

 

Graph contrastive feature representation using CoCo-ST 

Most of the traditional feature representation approaches are designed to determine feature 

representations through maximization of data variance. These approaches can perform poorly if 

the ST data structures with maximal variances are not the structures of interest, as the local 

structures of interest are masked by the dominant high-variance structures. The feature 

representations determined using these approaches capture little to no useful information reflecting 

the unique low-variance local structures present in the ST data, which are usually treated as noise. 

Also, these traditional approaches are designed to explore one ST data set at a time, which can 

hinder their performance in cases where there are multiple interconnected data sets that need to be 

explored.  

To overcome these limitations, we propose CoCo-ST, which compares and contrasts the 

global and local variances in ST data sets to better capture discriminant and structural information. 

More generally, we use two ST data sets (background and target) and subsequently construct two 

similarity graph views: one for the background ST data set and the other for the target ST data set. 

We then design a contrastive objective function to learn feature representations that capture high 
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global (and/or local) variances enriched in the target ST data while simultaneously attaining small 

global (and/or local) variances in the background ST data. Given a background ST data set 𝑋𝑏 =[𝑥1𝑏 , 𝑥2𝑏 , … , 𝑥𝑛𝑏𝑏 ]𝑇
 containing spatial structures of no primary interest, such as a normal lung region, 

we can use the following two terms to measure the smoothness of the lower dimensional 

representation: 

ℛ1 = min𝑊 ∑‖𝑥𝑖𝑏 − 𝑊𝑊𝑇𝑥𝑖𝑏‖2𝑛𝑏
𝑖=1  

  = max𝑊  𝑡𝑟(𝑊𝑇𝑋𝑏𝑋𝑏𝑇𝑊)    (5) 

and  

ℛ2 = min𝑊 ∑ ‖𝑊𝑇𝑥𝑖𝑏 − 𝑊𝑇𝑥𝑗𝑏‖2𝑛𝑏
𝑖,𝑗=1 𝑆𝑖𝑗𝑏  

= min𝑊 ( ∑ 𝑊𝑇𝑥𝑖𝑏𝐷𝑖𝑖𝑏(𝑥𝑖𝑏)𝑇𝑊𝑇𝑛𝑏
𝑖,𝑗=1 − 𝑊𝑇𝑥𝑖𝑏𝑆𝑖𝑗𝑏 (𝑥𝑗𝑏)𝑇𝑊𝑇) 

  = min𝑊  𝑡𝑟(𝑊𝑇𝑋𝑏𝐿𝑏𝑋𝑏𝑇𝑊)     (6), 

where 𝑡𝑟(⋅) is the trace operator, 𝐷 is a diagonal matrix whose entries are the column (or row) 

sums of 𝑆, 𝐷𝑖𝑖 = ∑ 𝑆𝑖𝑘𝑘 , and 𝐿 = 𝐷 − 𝑆 is the graph Laplacian matrix. We consider the symmetric 

normalized graph Laplacian matrix 𝐿̅ = 𝐷−1/2𝐿𝐷−1/2 in our later derivations. By minimizing ℛ1, 

we aim to minimize the reconstruction error, whereas minimizing ℛ2 is an attempt to preserve the 

local structure (i.e., if two spots 𝑥𝑖𝑠 and 𝑥𝑗𝑠 are molecularly similar, their low-dimensional 

representations 𝑊𝑇𝑥𝑖𝑏 and 𝑊𝑇𝑥𝑗𝑏 are also similar). Combining Eqs. (5) and (6), we can have the 

equivalent formulation 
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𝒪1 = max𝑊𝑇𝑊=𝐼 𝑡𝑟(𝑊𝑇𝑋𝑏𝑋𝑏𝑇𝑊) − 𝜇1𝑡𝑟(𝑊𝑇𝑋𝑏𝐿̅𝑏𝑋𝑏𝑇𝑊) 

           = max𝑊𝑇𝑊=𝐼 𝑡𝑟(𝑊𝑇𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑊)      (7), 

 

where 𝐻𝑏 = 𝐼 − 𝜇1𝐿̅𝑏, 𝐼 is an identity matrix, 𝐿̅𝑏 is the normalized graph Laplacian for the 

background ST data, and 0 ≤ 𝜇1 ≤ 1 is a hyperparameter that controls the smoothness of the new 

representation. The matrix 𝐻𝑏 = 𝐼 − 𝜇1𝐿̅𝑏 can be considered a graph Laplacian filter21 that helps 

smooth the data while preserving underlying spatial structures in an ST slice.  

Similarly, for a target ST data set 𝑋𝑡 = [𝑥1𝑡, 𝑥2𝑡 , … , 𝑥𝑛𝑡𝑡 ]𝑇
 containing unique, interesting 

spatial structures, we can write the formulation 

 

       𝒪2 = max𝑊𝑇𝑊=𝐼 𝑡𝑟(𝑊𝑇𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑊)    (8), 

 

where 𝐻𝑡 = 𝐼 − 𝜇2𝐿̅𝑡, 𝐿̅𝑡 is the normalized graph Laplacian for the target ST data and 0 ≤ 𝜇2 ≤ 1 

is a hyperparameter.  

Combining Eqs. (7) and (8), CoCo-ST solves the following objective function 

 𝒪3 = max𝑊𝑇𝑊=𝐼 𝑡𝑟(𝑊𝑇𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑊) − 𝜂𝑡𝑟(𝑊𝑇𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑊)      (9), 

 

where 𝜂 ≥ 0 is the contrastive parameter that determines the tradeoff between high target global 

(and/or local) variance and low background global (and/or local) variance. We will first describe 

how to maximize the objective function 𝒪3. Let Λ be the Lagrange multiplier for the constraint 𝑊𝑇𝑊 = 𝐼. The Lagrange ℒ is  
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      ℒ = 𝑡𝑟(𝑊𝑇𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑊) − 𝜂𝑡𝑟(𝑊𝑇𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑊) − Λ𝑡𝑟(𝑊𝑇𝑊 − 𝐼) (10). 

 

The partial derivative of ℒ with respect to 𝑊 is 

 

𝜕ℒ𝜕𝑊 = 𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑊 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑊 − ΛW    

 (11). 

 

The optimum solution to Eq. (10) satisfies 
𝜕ℒ𝜕𝑊 = 0. We therefore have 

 𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑊 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑊 − ΛW = 0 

   (𝑋𝑡𝐻𝑡𝑋𝑡𝑇 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇)𝑊 = ΛW     (12). 

 

Thus, the transformation matrix that maximizes the objective function 𝒪3 can be obtained by 

solving the eigenvalue problem (Eq. 12). Let 𝑤1, 𝑤2, … , 𝑤𝑝 be the eigenvectors from Eq. (12) 

corresponding to the top 𝑝 largest eigenvalues 𝜆1 ≥ 𝜆2 ≥ ⋯ , ≥ 𝜆𝑝. The lower dimensional 

manifold representation can then be obtained as follows: 

      𝑥𝑖𝑡 → 𝑧𝑖𝑡 = 𝑊𝑇𝑥𝑖𝑡      (13), 𝑊𝑇 = [𝑤1, 𝑤2, … , 𝑤𝑝] 
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where 𝑧𝑖𝑡 is a 𝑝-dimensional representation of 𝑥𝑖𝑡, and 𝑊 is a 𝑑 × 𝑝 matrix. This feature 

representation preserves the local structure of the ST data sets. A step-by-step description of the 

proposed CoCo-ST method is summarized in Algorithm 1.   

 

Algorithm 1. CoCo-ST. 

Input: Background 𝑿𝒃 = [𝒙𝟏𝒃, 𝒙𝟐𝒃, … , 𝒙𝒏𝒃𝒃 ]𝑻
 and target 𝑿𝒕 = [𝒙𝟏𝒕 , 𝒙𝟐𝒕 , … , 𝒙𝒏𝒕𝒕 ]𝑻

 ST data sets, 

together with corresponding spatial locations 𝒀𝒃 = [𝒚𝟏𝒃, 𝒚𝟐𝒃, … , 𝒚𝒏𝒃𝒃 ]𝑻
 and 𝒀𝒕 =

[𝒚𝟏𝒕 , 𝒚𝟐𝒕 , … , 𝒚𝒏𝒕𝒕 ]𝑻
, the number of nearest neighbors (𝒌), and the hyperparameters 𝝁𝟏, 𝝁𝟐 

and 𝜼.  

Output: The low-dimensional contrastive feature representations for the target ST data 𝒁𝒕 =𝑾𝑻𝑿𝒕 
1. Construct the adjacency matrix for both the background and target ST data sets according to 

Eq. (1) or (2). 

2. Construct the normalized graph Laplacian matrices 𝑳̅𝒃 and 𝑳̅𝒕 together with the graph 

Laplacian filters 𝑯𝒃 = 𝑰 − 𝝁𝟏𝑳̅𝒃 and 𝑯𝒕 = 𝑰 − 𝝁𝟐𝑳̅𝒕. 
3. Compute the matrices 𝑿𝒃𝑯𝒃𝑿𝒃𝑻 and 𝑿𝒕𝑯𝒕𝑿𝒕𝑻. 

4. Solve the eigenvalue problem in Eq. (12). 

5. Compute the low-dimensional contrastive feature representations for the target ST data as 𝒁𝒕 = 𝑾𝑻𝑿𝒕. 
 

We next investigate the computational complexity of the proposed CoCo-ST algorithm. Its 

complexity is dominated mainly by three parts: local similarity graph construction, matrix 
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multiplication, and solving an eigenvalue problem. Assuming we have 𝑛𝑏 and 𝑛𝑡 spots in 𝑑-

dimensional spaces (𝑑 gene expression measurements) for the background and target ST data sets, 

to construct the similarity graphs, we first perform a 𝑘-nearest neighbor search for both data sets. 

The distance between any two spots in the background ST data can be computed in 𝑂(𝑑𝑛𝑏2), and 

the 𝑘-nearest neighbors can be found with 𝑂(𝑘𝑛𝑏2). Thus, the 𝑘-nearest neighbor search for the 

background and target ST data sets has complexities 𝑂((𝑑 + 𝑘)𝑛𝑏2) and 𝑂((𝑑 + 𝑘)𝑛𝑡2), 

respectively. The complexities for computing the matrices 𝑋𝑏𝐻𝑏𝑋𝑏𝑇 and 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 are 𝑂((𝑛𝑏2 + 𝑛𝑏𝑑)𝑑) and 𝑂((𝑛𝑡2 + 𝑛𝑡𝑑)𝑑), respectively. The last part is computing the eigenvectors 

corresponding to the top 𝑝 eigenvalues of the eigenproblem in Eq. (12), whose complexity is 𝑂(𝑝𝑑2). Therefore, the time complexity of the CoCo-ST algorithm is 𝑂 ((𝑑 + 𝑘)(𝑛𝑏2 + 𝑛𝑡2) +
((𝑛𝑏 + 𝑑)𝑛𝑏 + (𝑛𝑡 + 𝑑)𝑛𝑡 + 𝑝𝑑)𝑑). Because 𝑘 ≪ 𝑛𝑏(or 𝑛𝑡) and 𝑝 ≪ 𝑑, the overall complexity 

of CoCo-ST is determined by the number of spots 𝑛𝑏(or 𝑛𝑡) and the number of genes (𝑑).  

Several aspects of the proposed CoCo-ST approach are worth highlighting. Specifically: 

1. If 𝜇1 = 𝜇2 = 0, the matrices 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 and 𝑋𝑏𝐻𝑏𝑋𝑏𝑇 reduce to 𝑋𝑡𝑋𝑡𝑇 and 𝑋𝑏𝑋𝑏𝑇, respectively, 

so the objective function (𝒪3) reduces to that of contrastive PCA (cPCA)22. Therefore, 

cPCA can be regarded as a variant of CoCo-ST.  

2. Whereas cPCA and the majority of the traditional feature representation approaches focus 

on global geometrical structures, CoCo-ST can exploit the intrinsic geometric structures of 

ST data sets and incorporate them as additional regularization terms. Through construction 

of a graph to model local geometric structures, CoCo-ST can have more discriminating 

power than cPCA and the traditional feature representation approaches.  
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3. CoCo-ST simultaneously learns both global and local-level representations to complement 

tissue-wide representations, enabling it to distinguish different spatial areas in an ST tissue 

slice.  

4. The graphs in our proposed CoCo-ST approach are solely unsupervised and constructed 

from molecular data or spatial location information. Other information, such as label 

information, can also be used to guide graph construction, leading to other extensions of 

CoCo-ST such as supervised or semisupervised CoCo-ST.  

5. The proposed CoCo-ST approach differs from existing graph contrastive learning 

approaches that focus on graph neural network architectures for graph structured data. 

CoCo-ST considers the gene expression data and tries to learn local representations to 

better capture ST data structural information. As such, the objective functions of CoCo-ST 

and the conventional graph neural networks are different.  

 

Why is CoCo-ST good for ST data analysis? 

CoCo-ST imposes molecularly or spatially similar spots to have similar feature representations, 

by which the intrinsic geometric structure of the ST data tends to be preserved. This is a useful 

property in ST data analysis because interesting spatial structures will not be lost owing to feature 

representation. In addition, CoCo-ST determines its discriminant (contrastive) feature 

representations from both the background and target ST data sets and thus can provide even more 

discriminative feature representations than the traditional approaches that focus only on a single 

ST data set. To explain this, we provided the following remarks and theorem. 

 

Remark 1 
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When 𝜂 = 0, CoCo-ST degenerates to a feature representation method that determines its 

discriminant vectors from the range space of the matrix 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 associated with the target data 

alone. When 𝜂 > 0, the matrix 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇 is not guaranteed to be positive semidefinite 

even though 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 and 𝑋𝑏𝐻𝑏𝑋𝑏𝑇 are both symmetric and positive semidefinite. Let 𝑤 be the 

eigenvector of the matrix 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇 corresponding to the eigenvalue 𝜆 < 0. We then 

have (𝑋𝑡𝐻𝑡𝑋𝑡𝑇 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇)𝑤 = 𝜆𝑤 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤 = 𝜂𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 + 𝜆 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 = 𝜂 + 𝜆𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 

Because both 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 and 𝑋𝑏𝐻𝑏𝑋𝑏𝑇 are positive semidefinite, we can conclude that 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 = 𝜂 + 𝜆𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 ≥ 0 

Thus, the eigenvectors corresponding to the negative eigenvalues are derived from the range space 

of 𝑋𝑏𝐻𝑏𝑋𝑏𝑇 and contain some discriminant information. 

 

Theorem 1 

Suppose the matrix 𝑋𝑏𝐻𝑏𝑋𝑏𝑇 is singular and that 𝑤 is an eigenvector of the matrix 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 −𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇 corresponding to the eigenvalue 𝜆 > 0. The eigenvector 𝑤 is then in the null space of 𝑋𝑏𝐻𝑏𝑋𝑏𝑇 when 𝜂 → ∞.  

Proof. Because 𝑤 is the eigenvector of the matrix 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇 corresponding to the 

eigenvalue 𝜆 > 0, we have (𝑋𝑡𝐻𝑡𝑋𝑡𝑇 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇)𝑤 = 𝜆𝑤 
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𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 = 1𝜂 (𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤 − 𝜆) 

Since 𝜆 > 0, we have the following:  

𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 < 1𝜂 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤 

Of note is that both 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 and 𝑋𝑏𝐻𝑏𝑋𝑏𝑇 are positive semidefinite (i.e., 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤 ≥ 0 and 𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 ≥ 0). As a result, we have lim𝜂→∞ 𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 = 0   ∎ 

Thus, as 𝜂 → ∞, the eigenvectors corresponding to the positive eigenvalues belong to the null 

space of 𝑋𝑏𝐻𝑏𝑋𝑏𝑇.  

 

Remark 2 

As 𝜂 → ∞, the eigenvectors corresponding to the positive eigenvalues of the eigenproblem (Eq. 

[12]) contain the most discriminant information. We can rewrite the eigenvalue problem (Eq. [12]) 

as (𝑋𝑡𝐻𝑡𝑋𝑡𝑇 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇)𝑤 = 𝜆𝑤 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤 = 𝜂𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 + 𝜆 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 → ∞ 

Thus, as 𝜂 → ∞, the eigenvectors corresponding to the positive eigenvalues contain the most 

discriminant information.  

 

Remark 3 
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As 𝜂 → ∞, the eigenvectors corresponding to the zero eigenvalues of the eigenproblem (Eq. [12]) 

contain no discriminant information. When 𝜆 = 0, the eigenvalue problem reduces to (𝑋𝑡𝐻𝑡𝑋𝑡𝑇 − 𝜂𝑋𝑏𝐻𝑏𝑋𝑏𝑇)𝑤 = 𝜆𝑤 = 0 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤 = 𝜂𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 

Since 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤 and 𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 are finite and 𝜂 → ∞, we have 𝑤𝑋𝑡𝐻𝑡𝑋𝑡𝑇𝑤 = 0, 𝑤𝑋𝑏𝐻𝑏𝑋𝑏𝑇𝑤 = 0 

 

Thus, the eigenvectors corresponding to the zero eigenvalues contain no discriminant 

information, as 𝜂 → ∞. In general, we can conclude that CoCo-ST derives its discriminant feature 

vectors from the range spaces of both 𝑋𝑡𝐻𝑡𝑋𝑡𝑇 and 𝑋𝑏𝐻𝑏𝑋𝑏𝑇. The parameter 𝜂 can be used to 

balance the contribution from the two spaces. Moreover, by extracting the eigenvectors of the 

eigenvalue problem in Eq. (12) corresponding to the largest positive eigenvalues, CoCo-ST can 

capture the most discriminant information in both the background and target ST data sets, enabling 

effective identification of the interesting spatial structures enriched in the target ST data set. 

 

Nonlinear extension of CoCo-ST 

Thus far, we have focused on linear feature representation. However, biological data are well 

known to be complex and highly nonlinear. Therefore, we extended CoCo-ST to perform nonlinear 

feature representation in a reproducing kernel Hilbert space ℋ, which gives rise to nonlinear 

CoCo-ST. We considered nonlinear mapping 𝜙(⋅) of both the background 𝑋𝑏 and target 𝑋𝑡 ST 

data sets from the original input spaces to ℋ. Let Φ𝑏 and Φ𝑡 denote the background and target ST 

data sets in ℋ: Φ𝑏 = [𝜙(𝑥1𝑏), 𝜙(𝑥2𝑏), … , 𝜙(𝑥𝑛𝑏𝑏 )]𝑇
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Φ𝑡 = [𝜙(𝑥1𝑡), 𝜙(𝑥2𝑡), … , 𝜙(𝑥𝑛𝑡𝑡 )]𝑇
 

Denote by 𝑉 the projection matrix in ℋ. The corresponding objective function (𝒪3) of CoCo-ST 

in ℋ is 

   𝒪4 = max𝑉𝑇𝑉=𝐼 𝑡𝑟(𝑉𝑇Φ𝑡𝐻𝑡Φ𝑡𝑇𝑉) − 𝜂𝑡𝑟(𝑉𝑇Φ𝑏𝐻𝑏Φ𝑏𝑇𝑉)   

 (14). 

Let 𝑁 = 𝑛𝑏 + 𝑛𝑡, and define the data 𝑞1, 𝑞2, … , 𝑞𝑁 by 

𝑞𝑖 = {𝑥𝑖𝑡 ,       𝑖𝑓 1 ≤ 𝑖 ≤ 𝑛𝑡𝑥𝑖−𝑛𝑡𝑏 ,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

Since the projection vectors 𝑣1, 𝑣2, … , 𝑣𝑝 (column vectors in 𝑉) are linear combinations of 𝜙(𝑞1), 𝜙(𝑞2), … , 𝜙(𝑞𝑁), coefficients 𝛼𝑖 , 𝑖 = 1, 2, … , 𝑁 exist such that 

𝑣𝑘 = ∑ 𝛼𝑖𝑁
𝑖=1 𝜙(𝑞𝑖) = Φ𝑐𝛼 

⟹ 𝑉 = Φ𝑐Α 

where 𝛼 = (𝛼1, 𝛼2, … , 𝛼𝑁)𝑇 ∈ 𝑅𝑁, Α = [𝛼1, 𝛼2, … , 𝛼𝑝]. Following some algebraic formulations, 

we can rewrite the objective function (𝒪4) in the following equivalent form: 𝒪4 = maxΑ𝑇Φ𝑐𝑇Φ𝑐Α=𝐼 𝑡𝑟(Α𝑇Φ𝑐𝑇Φ𝑡𝐻𝑡Φ𝑡𝑇Φ𝑐Α) − 𝜂𝑡𝑟(Α𝑇Φ𝑐𝑇Φ𝑏𝐻𝑡Φ𝑏𝑇Φ𝑐Α) 

= maxΑ𝑇𝐾𝑐𝑐Α=𝐼 𝑡𝑟(Α𝑇𝐾𝑐𝑡𝐻𝑡𝐾𝑡𝑐Α) − 𝜂𝑡𝑟(Α𝑇𝐾𝑐𝑏𝐻𝑏𝐾𝑏𝑐Α)   

 (15), 

where 𝐾𝑐𝑐 = Φ𝑐𝑇Φ𝑐, 𝐾𝑐𝑡 = Φ𝑐𝑇Φ𝑡, 𝐾𝑡𝑐 = Φ𝑡𝑇Φ𝑐, 𝐾𝑐𝑏 = Φ𝑐𝑇Φ𝑏, and 𝐾𝑏𝑐 = Φ𝑏𝑇Φ𝑐 are the kernel 

matrices. Several choices of the kernel functions are available, including the polynomial kernel 

К(𝑥𝑖𝑡 , 𝑥𝑖𝑏) = ((𝑥𝑖𝑡)𝑇𝑥𝑖𝑏 + 1)𝑑
; Gaussian kernel К(𝑥𝑖𝑡, 𝑥𝑖𝑏) = exp (− ‖𝑥𝑖𝑡−𝑥𝑖𝑏‖2𝜎2 ); and sigmoid 

kernel К(𝑥𝑖𝑡 , 𝑥𝑖𝑏) = ((𝑥𝑖𝑡)𝑇𝑥𝑖𝑏 + 𝛾).  
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Following approach similar to that in linear CoCo-ST, the projection vectors in Eq. (15) 

can be obtained as the eigenvectors corresponding to the top 𝑝 largest eigenvalues of the 

generalized eigenvalue problem (𝐾𝑐𝑡𝐻𝑡𝐾𝑡𝑐 − 𝜂𝐾𝑐𝑏𝐻𝑏𝐾𝑏𝑐)Α = Λ𝐾𝑐𝑐Α    

 (16) 

To obtain a stable solution of the eigenvalue problem in Eq. (16), the kernel matrix 𝐾𝑐𝑐 

must be nonsingular. When 𝐾𝑐𝑐 is singular, we can adopt the idea of regularization by adding a 

small constant value 𝜌 to the diagonal of 𝐾𝑐𝑐 as 𝐾𝑐𝑐 + 𝜌𝐼 for any 𝜌 > 0. The matrix 𝐾𝑐𝑐 + 𝜌𝐼 is 

nonsingular, and the projection vectors can be computed as the generalized eigenvectors of  (𝐾𝑐𝑡𝐻𝑡𝐾𝑡𝑐 − 𝜂𝐾𝑐𝑏𝐻𝑏𝐾𝑏𝑐)Α = Λ(𝐾𝑐𝑐 + 𝜌𝐼 )Α   

 (17). 

 

Animal model  

Wild-type mice (strain #009104; n = 12,9S4) were purchased from The Jackson Laboratory and 

housed in colony cages under pathogen-free conditions at The University of Texas MD Anderson 

Cancer Center Research Animal Support Facility. The mice were housed at an ambient 

temperature of 20-26°C and humidity range of 30-70% with a 12-h light-dark cycle. All animal 

experiments were conducted following MD Anderson Institutional Animal Care and Use 

Committee–approved protocols (approval number 00001217-RN03). For carcinogen-induced 

mouse models, a urethane-induced mouse model was used. Specifically, the 12,9S4 wild-type mice 

described above received intraperitoneal injections of 1 mg/g (body weight) urethane three times 

over 8 days when they were 6 weeks old. The mice were killed 7, 14, 20, 30, and 40 weeks after 
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urethane administration, with a 0-week time point for mice that received no treatment. Both normal 

lung and lung tumor tissue samples were collected from the mice for downstream analysis. 

 

Single-cell sequencing and analysis  

Fresh normal lung and lung tumor tissue samples collected from mice were immediately cut into 

pieces and placed in RPMI 1640 medium (Thermo Fisher Scientific) with 10% fetal bovine serum 

(FBS; Gibco). The tissue samples were enzymatically digested using a tumor dissociation mixture 

composed of 1 mg/ml collagenase A (Sigma), 0.4 mg/ml hyaluronidase (Sigma), and 1:5 bovine 

serum albumin fraction V (Thermo Fisher Scientific) according to the manufacturers’ instructions. 

Dissociation of tissue was carried out for 2 h on a rotary shaker at 37°C until all large tissue 

fragments were digested. Next, the dissociated tissues were transferred to conical tube and  

centrifuged at 350g for 5 min. The supernatant was removed, and 1-5 ml of prewarmed trypsin-

EDTA was added to the collagenase/hyaluronidase-dissociated cells, resuspending them. 

Subsequently, 10 ml of cold RPMI 1640 without phenol red supplemented with 2% FBS was added 

and centrifuged at 350g for 5 min. As much of the supernatant as possible was collected, and 5 ml 

of prewarmed 5 U/ml dispase (STEMCELL Technologies) and 50 l of DNase I solution (10 

mg/ml in 0.15 M NaCl; STEMCELL Technologies) were added. The samples were pipetted for 1 

min using a 1-ml micropipettor to further dissociate cell clumps. The cell suspension was diluted 

with an additional 10 ml of cold RPMI 1640 without phenol red supplemented with 2% FBS, and 

the cell suspension was filtered through a 40-m Falcon cell strainer (Thermo Fisher Scientific) 

into a 50-ml tube. The cell suspension was further centrifuged at 450g for 5 min, and the 

supernatant was discarded. The pellet was resuspended in a 1:4 mixture of cold RPMI 1640 without 

phenol red supplemented with 2% FBS and an ammonium chloride solution (STEMCELL 
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Technologies), which was followed by centrifugation at 450g for 5 min and discarding of the 

supernatant. Ten microliters of the cell suspension for each sample was analyzed using an 

automated cell counter (Thermo Fisher Scientific) to determine the number of live cells. 

Throughout the dissociation procedure, cells were kept on ice when possible. The cells were then 

loaded onto a Chromium single-cell controller (10x Genomics) to create single-cell gel beads in 

an emulsion according to the manufacturer's protocol. ScRNA-seq libraries were constructed using 

a Single Cell 5′ Library and Gel Bead Kit v3.1 (10x Genomics) and sequenced using a NovaSeq 

6000 sequencer (Illumina) at the Genomic and RNA Profiling Core at Baylor College of 

Medicine.  

  

Tissue preparation and ST  

Normal and tumor tissue samples from mouse lungs were fixed in 10% formalin at room 

temperature for 24-48 h using a fixative volume 5-10 times greater than that of the tissue volume. 

Fixed tissues were transferred to 70% ethanol for temporary storage at 4°C. Paraffin embedding 

was conducted by the MD Anderson Research Histology Core Laboratory. Formalin-fixed, 

paraffin-embedded blocks were cut into 10-m-thick sections using a precooled RNase-free 

microtome. These sections were then transferred onto Visium Spatial Gene Expression slides (10x 

Genomics), which were pretreated via floating in a water bath at 43°C. Following sectioning, the 

slides were dried at 42°C in a SimpliAmp Thermal Cycler (Thermo Fisher Scientific) for 3 h 

according to the manufacturer's instructions. The slides were placed in a slide mailer, sealed with 

thermoplastic (Parafilm: Thermo Fisher Scientific), and stored overnight in a refrigerator at 4°C. 

The slides were then deparaffinized, fixed, stained with hematoxylin and eosin, and imaged at 5x 

magnification using a DM5500 B microscope (Leica Microsystems). Tile scans of the entire array 
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were acquired using Leica Application Suite X software and merged. Spatial gene expression 

libraries (Visium ST; 10x Genomics) were processed according to the manufacturer’s instructions 

and sequenced using a NovaSeq 6000 sequencer (Illumina). All hematoxylin and eosin staining, 

imaging, library preparation, and sequencing processes were carried out at the Genomic and RNA 

Profiling Core at Baylor College of Medicine.  

  

Data processing 

ScRNA-seq data. Raw base call files were analyzed using Cell Ranger v.3.0.2 software (10x 

Genomics). The mkfastq command was used to generate FASTQ files, and the count command 

was used to generate raw gene-barcode matrices aligned to the GRCh38 Ensembl 93 genome. The 

data were aggregated using the cellranger aggr command, and further downstream analysis was 

conducted in R version 4.1.0 using the Seurat package (v.4.1.1). To ensure our analysis was 

performed using high-quality cells, filtering of cells was conducted by retaining cells that had 

unique feature counts greater than 200 or less than 5000 and had mitochondrial content less than 

15%. After removing doublets, the total cell number was 70,698. 

 

ST data. The ST data sets were processed using Space Ranger software (v.2.0.1; 10x Genomics). 

The spatial sequencing data were aligned to mouse pre-mRNA genome reference version mm10 

(downloaded from the 10x Genomics website) using Space Ranger, and mRNA count matrices 

were generated by adding intronic and exonic reads for each gene in each location. Paired 

histological hematoxylin and eosin stained images of tissues were processed using Space Ranger 

to select locations covered by tissue by aligning prerecorded spot locations with fiducial border 

spots in the images. 
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Data analysis  

ScRNA-seq analysis. The scRNA-seq data were first normalized, and the 2000 most highly 

variable genes in the data were identified using variance-stabilizing transformation implemented 

in the Seurat package. Data were then scaled, and the first 30 principal components were extracted. 

The principal components were further transformed into the UMAP embedding space for which 

clustering analysis was conducted. The original Louvain algorithm was used for modularity 

optimization. The resulting 14 clusters were visualized in a 2D UMAP representation and 

annotated to known biological cell types using canonical marker genes. The following cell types 

were annotated (selected markers are listed in parentheses): endothelial cells (Pecam1, Vwf, Ets1, 

Ace, Eng, Cldn5, and Mcam), epithelial cells (Epcam, Muc1, Cdh1, Krt7, and Krt8), fibroblasts 

(Pdpn, Dcn, Col3a1, Mgp, Col1a1, and Col6a1), macrophages (Apoe, C1qa, C1qb, C1qc, Marco, 

Mrc1, Fabp4, Inhba, Ccl4, Cxcl10, Rsad2, and Herc6), conventional dendritic cells (cDC; H2-Aa, 

Ccr7, Flt3, Fscn1, and Clec9a), proliferating macrophages (Mki67, Tubb5, and Tuba1b), B cells 

(Cd19, Ms4a1, Cd79a, Cd79b, and Blnk), T cells (Trbc2, Cd2, Cd3d, Cd3e, Cd3g, Cd4, Cd8a, 

Cd8b1, Il2ra, and Foxp3), proliferating T cells (Mki67, Tubb5, and Tuba1b), plasmacytoid 

dendritic cells (pDC; Siglech, Ly6c2, and Cd209d), neutrophils (S100a8, S100a9, and Csf3r), 

plasma cells (Sdc1, Mzb1, Xbp1, and Jchain), monocytes (Cd14, Fcgr4, Lst1, and Vcan), and 

natural killer cells (Nkg7, Klrg1, and Ncr1). 

 

ST analysis. The raw expression count matrices for both the background and target ST data sets 

were normalized using variance-stabilizing transformation implemented in the Seurat package. 

The normalized data were then standardized to have zero mean and unit standard deviation. The 
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standardized expression data matrices with 3000 genes were then used as inputs to our CoCo-ST 

method for low-dimensional feature representation. Clustering on the UMAP-embedded learned 

contrastive feature representations was then performed. Further differential gene expression 

analysis was conducted, and spatial domains were annotated based on the differentially expressed 

marker genes.  

 

Pathway analysis  

The most important genes (the 20 genes with the largest weights) on the top five contrastive 

components were identified, and the biological processes associated with these contrastive 

components were examined. Specifically, gene set enrichment analysis was performed with these 

20 genes with the largest weights in the loading matrix using the g:GOSt function in the gprofiler2 

package. In this analysis, all of the input 3000 genes were used as the background, and the default 

options in the g:SCS method in gprofiler2 were used for multiple testing correction. The gene sets 

were downloaded from the Molecular Signatures Database, including the KEGG, Gene Ontology 

biological processes, Gene Ontology cellular components, and Gene Ontology molecular 

functions.  

 

Cell type deconvolution 

Cell type deconvolution in ST enables estimation of cell type composition on each spatial location 

by leveraging a reference scRNA-seq data set. Cell type deconvolution was performed using the 

RCTD23 method implemented in the spacexr R package. ScRNA-seq data for the same mouse lung 

tumor samples (MLP samples) served as the reference data for deconvolution. The reference data 

contained 70,698 cells of multiple immune and malignant types as described in the scRNA-seq 
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analysis section. The RCTD method was run in doublet mode to estimate the reference cell type 

composition on each spatial location. Other parameters were set to the default settings. 

 

Cell-cell interaction 

Cell-cell interaction for the ST data sets was performed using CellChat24. The CellChatDB.mouse 

database of ligand-receptor interactions specifically curated for mice was used to identify 

overexpressed ligand-receptor interactions. The group-level communication probability or 

interaction weights were then computed using the truncated mean method with a 10% truncated 

mean. Subsequently, the communication probability at the signaling pathway level was computed 

by summarizing the communication probabilities of all ligand-receptor interactions associated 

with each signaling pathway. Finally, the cell-cell communication network was aggregated by 

summarizing the overall communication probabilities.  

 

Trajectory inference analysis 

For spatial trajectory analysis of individual tissue samples, the low-dimensional contrastive feature 

representations were used as inputs to the Slingshot algorithm25. Slingshot was applied to the 

contrastive feature representations so that nearby tissue spatial locations with similar gene 

expression would have similar pseudotimes. Because Slingshot requires predefined cluster labels, 

the spatial domain labels from the spatial domain identification analysis were used for Slingshot. 

The normal lung spatial domain was set as the start cluster (beginning of the trajectory or 

pseudotime) with a focus on trajectory inference on tumor and tumor-adjacent spatial domains to 

determine how these locations are connected to one another during tumorigenesis.  
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For the trajectory analysis with combined tissue samples, spots belonging to normal lung, 

adenoma, and adenocarcinoma spatial domains as determined using the contrastive feature 

representations were collected, and Monocle326 was used to infer the trajectory. First, the 

combined data (spots)were processed using the standard Seurat approach, including total count 

normalization, scaling, and PCA analysis. Next, UMAP embedding was determined, which was 

used to learn the trajectory that fits the spots’ UMAP coordinates. A principal graph was then fit 

on the UMAP embedding, and the spots were ordered according to their progress along the learned 

trajectory. To identify genes that varies among spot clusters in the UMAP embedding space, spatial 

autocorrelation analysis (Moran’s I) was performed, and the obtained variable genes were grouped 

into modules by determining UMAP embedding of the genes followed by gene clustering based 

on Louvain community detection analysis.   
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Data availability  

The scRNA-seq and ST data sets analyzed in this study will be made available upon reasonable 

request through a data access agreement with the corresponding authors.  

 

Code availability  

Installation instructions and tutorials, together with the code used for data analysis and generating 

figures, can be found at https://github.com/WuLabMDA/CoCo-ST . 
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Figure Legends 

Fig. 1 | CoCo-ST identifies unique, interesting spatial structures enriched in ST data sets. a, 

Overview of the CoCo-ST workflow. b, A target ST tissue sample containing unique, interesting 

spatial structures annotated by a pathologist and spatial domains/regions identified using the 

different feature representation methods. c, Volcano plot of the most differentially expressed 

genes for the adenoma spatial domain identified by CoCo-ST. d, Volcano plot of the most 

differentially expressed genes for the adenoma spatial domain identified using the compared 

approaches. e, Spatial expression patterns for the most differentially expressed genes (Ctsh, 

Cxcl15, and Slc34a2) for the adenoma spatial domain identified using CoCo-ST. These genes 

had high expression patterns in both the larger and smaller (hotspot) adenoma spatial domains. f, 

Spatial expression pattern for the most differentially expressed gene (Trf) for the adenoma 

spatial domain identified using the compared approaches. This gene had high expression pattern 

only within the larger adenoma spatial domain, with no such pattern observed in the smaller 

(hotspot) region. 

 

Fig. 2 | CoCo-ST’s contrastive components marked interesting spatial structures enriched 

in ST data sets. a, Spatial patterns captured by the first five contrastive components of CoCo-

ST. b, The top 20 genes with the largest weights on the corresponding first five contrastive 

components. Symbols to the right of the bars indicate the signs of the weights. c, Expression 

patterns for the top representative genes for each of the first five contrastive components. d, 

Spatial patterns captured by the first five components of the compared approaches.  
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Supplementary Information 

Extended Data Fig. 1 | Spatial domains identified on all MLP tissue samples using CoCo-

ST’s contrastive components. The similarity graphs for both the background and target ST data 

sets were constructed based on the molecular data sets. 

 

Extended Data Fig. 2 | Differential gene expression analysis of detected spatial domains. a, 

UMAP embedding of the contrastive components determined using CoCo-ST on the target ST 

tissue sample. B, UMAP embedding of spotsshowing the expression of some of the most 

differentially expressed genes in different clusters identified using the contrastive feature 

representations from CoCo-ST. c, Violin plots of the expression levels for the most differentially 

expressed genes for the different spatial domains identified using CoCo-ST. d, Biological 

processes and pathways associated with the 10 most differentially expressed genes for the 

adenoma spatial domain detected using CoCo-ST. e, Violin plots of the expression levels for the 

most differentially expressed genes for the different spatial domains identified using the 

compared feature representation approaches. 

 

Extended Data Fig. 3 | Biological processes and pathways associated with CoCo-ST’s 

contrastive components.  

 

Extended Data Fig. 4 | Spatial domains identified on all MLP tissue samples using CoCo-

ST’s contrastive components. The similarity graphs for both the background and target ST data 

sets were constructed based on spatial locations.  
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Extended Data Fig. 5 | Application of CoCo-ST’s contrastive components to studying cell-

cell interaction at different cancer stages. a, UMAP embedding of the scRNA-seq data set 

used as a reference for cell type deconvolution. b, Spatial domains identified in the  MLP-6 

tissue sample using CoCo-ST’s contrastive components. c, Cell type annotation on each of the 

spatial locations in MLP-6 tissue sample as inferred by the RCTD deconvolution algorithm. d, 

Percentage of different cell types (y-axis) in the different spatial domains (x-axis) detected using 

CoCo-ST. e, Cell-cell interaction weight plot for MLP-6 tissue sample. The thicker the line, the 

stronger the interaction between the cell types. f, Chord plot of the cell-cell interactions via 

canonical WNT signaling. g, Heat map of the communication probabilities for WNT signaling 

from senders (sources) to receivers (targets). h, Heat map of network centrality scores for WNT 

signaling highlighting the major signaling roles of the different cell groups.  

 

Extended Data Fig. 6 | Predicted spatial distributions of major cell types in the MLP-6 

tissue sample.  

 

Extended Data Fig. 7 | Distribution of different cell types in each spatial domain on the 

MLP-6 tissue sample determined using CoCo-ST. The cell type percentages in each spatial 

domain add up to 100%.  

 

Extended Data Fig. 8 | Aggregated cell-cell interaction plots on the combined MLP tissue 

samples containing the adenoma and adenocarcinoma spatial domains. a, Cell-cell 

interaction weight plot for the adenocarcinoma-related MLP tissue samples. b, Simplified cell-

cell interaction plots for a showing signaling sent from each cell group. The thicker the line, the 
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stronger the communication. c, Cell-cell interaction weight plot for the adenoma-related MLP 

tissue samples. d, Simplified cell-cell interaction plots for c showing signaling sent from each 

cell group. The thicker the line, the stronger the communication.  

 

Extended Data Fig. 9 | Application of CoCo-ST’s contrastive components to trajectory 

inference (cancer evolution). a, Spatial trajectory inference based on CoCo-ST’s determined 

contrastive components. The arrows indicate the direction of the trajectory, which points from 

the normal lung spatial domain to the adenoma spatial domain. b, Learned trajectory pseudotime, 

with red- to green-colored regions indicating tissue locations with low and high pseudotime. c, 

UMAP embedding of spots belonging to the combined normal, adenoma, and adenocarcinoma 

spatial domains as determined using CoCo-ST. d, Trajectory inference of the cancer evolution 

from normal tissue to adenoma to adenocarcinoma colored according to their corresponding 

pseudotimes. e, Heat map of gene modules containing differentially co-expressed genes that vary 

across the different stages of cancer as determined from the learned trajectory in d. f, Bar plot of 

the number of differentially co-expressed genes in each module in e.  

 

Extended Data Fig. 10 | Application of CoCo-ST to a mouse brain ST data set. a, Spatial 

domains/regions identified on anterior and posterior mouse brain tissue samples based on CoCo-

ST’s contrastive components. b, Spatial patterns on the anterior mouse brain tissue sample 

captured by the first five contrastive components of CoCo-ST. c, The 20 genes with the largest 

weights on the first five contrastive components in b. Symbols to the right of the bars indicate 

the signs of the weights. d, Expression patterns for some representative genes in c. e, Spatial 

patterns on the posterior mouse brain tissue sample captured by the first five contrastive 
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components of CoCo-ST. f, The 20 genes with the largest weights on the first five contrastive 

components in e. g, Expression patterns for some representative genes in f.  
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Extended Data Fig. 9  



 57 

 

 

 

 

 

 

 

 

 

 

a 

b 

c 

d 

f 

e 

g 
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