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Abstract: The recent rapid development of rotation rate sensor technology opens new opportunities
for their application in more and more fields. In this paper, the potential of rotational sensors for the
modal analysis of full-scale civil engineering structural elements is experimentally examined. For
this purpose, vibrations of two 6-m long beams made of ultra-high performance concrete (UHPC)
were measured using microelectromechanical system (MEMS) rotation rate sensors. The beams were
excited to vibrations using an impact hammer and a dynamic vibration exciter. The results of the
experiment show that by using rotation rate sensors, one can directly obtain derivatives of mode
shapes and deflection shapes. These derivatives of mode shapes, often called “rotational modes”,
bring more information regarding possible local stiffness variations than the traditional transversal
and deflection mode shapes, so their extraction during structural health monitoring is particularly
useful. Previously, the rotational modes could only be obtained indirectly (e.g., by central difference
approximation). Here, with the application of rotation rate sensors, one can obtain rotational modes
and deflection shapes with a higher precision. Furthermore, the average strain rate and dynamic
strain were acquired using the rotation rate sensors. The laboratory experiments demonstrated that
rotation rate sensors were matured enough to be used in the monitoring and modal analyses of
full-scale civil engineering elements (e.g., reinforced concrete beams).

Keywords: modal analysis; rotational mode; gyroscope; rotation rate sensors; UHPC; reinforced
concrete beams; vibration

1. Introduction

Rotational sensors (gyroscopes) measuring rotational velocity are finding their application in
more and more fields. To name only a few, one can mention seismology [1–3], structural health
monitoring (SHM) [4–6], military [7], automotive [8], or in posture control [9,10]. In civil engineering,
microelectromechanical system (MEMS) gyroscopes are getting particular attention because of their
miniaturization and lower cost compared with the other systems [11]. These properties may be
especially useful in the SHM of building structures. These structures are usually complex, with many
places where sensors measuring strain are difficult or even impossible to be mounted on, e.g., on
a surface with many microcracks. The application of rotation measurements in SHM started with
numerical simulations [12–14] and was followed by experiments [4,6,14–16].

An important part of the information on structural behavior is knowledge about the changes in
mode shapes following damage development. To achieve this goal, mode shape extraction methods
where developed [13,17–22]. It is well known that the effects of damage are better reflected in the
modal spatial derivatives than in the modes themselves. For these reasons, derivatives have been the
subject of intensive research [13,17,20,23,24]. Following a nomenclature from previous studies, the
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spatial derivatives of transversal mode shapes are called rotational mode shapes [13,23] and curvature
mode shapes [17].

Consider the transversal vibrations, w(x,t), of a simply supported Euler–Bernoulli beam under
arbitrary excitations, slope of the beam axis r(x, t), and respective curvature κ(x, t). Solving the
eigenproblem of the beam, one can obtain its natural frequencies and modes. In Figure 1, the first
natural mode of the beam is plotted and denoted as 1T, where superscript T denotes the transversal
character of the first natural mode of this beam. Calculating the first spatial derivative of the transversal
mode shape r = w′ with respect to x (slope), one obtains so called first rotational mode shape (1R),
representing the rotations of the beam axis along the first mode. Analogously, one can obtain the
so-called “curvature” mode (1κ), which describes the changes of the curvature along the first mode.
The curvature of the beam can be obtained from its transversal displacements, w = w(x,t), by the
familiar formula of the structural mechanics, as follows:

κ =
w′′(

1 + w′2
) 2

3

(1)

which also holds for the natural modes. However, typically, the curvature mode shape is approximated
by second derivative of the transversal mode shape, κ(x) ≈ w′′ (x) (1κ* mode). The smaller the slope, r,
the closer the approximate curvature, κ∗, to the actual curvature, κ. In fact, for typical deflections of
civil engineering structures, the curvature can be successfully obtained using the κ∗ approximation.
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Because of the earlier lack of effective rotational sensors, indirect methods were used to obtain
the rotational and curvature mode shapes. For this purpose, measurements from acceleration sensors
were used as the inputs for the central difference approximation of the transversal mode shapes. The
rotational modes can be obtained from the translational modes, using the following approximation:

rn
i =
−wn

i−1 + wn
i+1

2h
, (2)

where wn
i is the transversal modal displacement of the n-th mode at the i-th point, as measured by the

translational sensors. The curvature can be approximated by the second central difference, as follows:

κn
i =

wn
i−1 − 2wn

i + wn
i+1

h2 , (3)

The drawbacks of using translational sensors and finite difference formulas are particularly
pronounced in the areas of the beam where translations are smaller, while rotations are higher,
e.g., near the supports or ends of the beam. The problem is magnified in cases of the presence of
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large measurement noise, which is a typical situation when recording the vibrations of reinforced
concrete beams.

Other techniques can also be utilized, e.g., laser measurement techniques [25] or strain-based
methods [23]. Recently, Sung et al. [14] undertook the challenge of applying rotation rate sensors
in flexibility-based SHMs, including elements of modal analysis, without, however, further mode
derivative analyses. The paper includes numerical simulations and small-scale laboratory tests. They
pointed out some advantages of rotation rate measurements in SHM, but also expressed scepticism
in their wider technical usage due to alleged excessive noise in the vibration measurements in real
technical applications.

A similar area to the analysis of rotation and curvature mode shapes is the utilization of rotation
sensors in the slope analyses of beams under flexural vibrations. In recent years, researchers started to
report particular advantages of rotation measurements for SHM purposes. Kokot and Zembaty [12]
found that rotation measurements can enhance the stiffness “reconstruction” of beams and frames.
Al-Jailawi and Rahtamala [6,16] studied gyroscope sensors in transmissibility analyses, and found that
rotation rate sensors are particularly sensitive to damage localization. Zembaty et al. [4] experimentally
studied the application of gyroscopes in the vibration measurements of plexiglass beam indirect strain
sensing. Huras et al. [26] found that rotation measurements are potentially applicable in plastic hinge
monitoring in seismically induced frame structures. Huseynov et al. [27] successfully used rotation
measurements for the SHM purposes of bridge structures.

It is interesting to note that the aforementioned displacement derivatives can also be measured by
an alternate technique of digital shearography [28,29]. For example, Yang et al. obtained the slope
displacement field of turbine blades using shearography [30], while Katunin et al. [31] experimentally
obtained modal rotation fields of a small aluminium plate and used it for damage detection in
combination with wavelet analyses. Shearography has also been successfully used in obtaining
second-order displacement derivatives [32,33]. However, rotation rate sensing can be a better choice in
the areas where shearography has shortcomings, e.g., for the large rigid body motion included in the
vibrations [30] or for structural elements where optical measurements are not possible.

The purpose of this paper is to examine the possibility and the advantages of using modern
gyroscopes in

• direct extraction of the rotational modes (spatial derivatives of translational modes),
• direct slope measurements (rotational deflection shape) during vibration measurements with an

inertial exciter,
• average strain control during vibrations of cracked reinforced concrete rods.

For this purpose, full scale, 6-m long, ultra-high performance concrete (UHPC) beams were
measured in intact and partly damaged states in laboratory conditions. The monitoring of vibrations
of concrete and UHPC beams brings particular challenges to the field of SHM (see, e.g., [34–39]). For
these reasons, the application of rotation rate sensors in the modal extraction and vibration analyses of
these beams can bring particular advantages. Particular attention is paid to compare slopes derived
directly, using rotation measurements and by using derivatives of translational measurements.

2. Materials and Methods

2.1. General Description of the Analysed Beams

In this research, the experiment was conducted on two UHPC beams, as shown in Figure 2,
denoted as beam UHPC1_L and beam UHPC2_L. The beams were reinforced using traditional rebars
and with distributed reinforcement (fibers), following the specific requirements for the UHPC mixture.
In each of beam, a different fiber type and concrete mix was used, which resulted in different mechanical
properties, as shown in Table 1.
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Table 1. Basic mechanical properties of the beams.

Beam Symbol Fibre Type Density (kg/m3)
Compressive

Strength (MPa)
Tensile Strength
in Flexure (MPa)

UHPC1_L Glass 2 301 122 8.60
UHPC2_L Steel 2 625 238 10.13

The main aim of the reported research was to carry out modal extraction from intact and partly
damaged beams. First, the beams were tested in intact states, and next, the damage was inflicted to
the beams supported at their ends using a heavy Instron actuator (Instron, Norwood, MA, USA). The
actuator and supports of the beams were located asymmetrically in order to examine the changes in
the mode shapes introduced by the non-uniform damages of the beams (Figure 3).
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Figure 3. A sketch showing the infliction of damage to the beams using an Instron actuator (photograph
on the right). Dimensions in mm.

After inflicting the damages, the Instron actuator was removed, and the beam was released
from being supported to hanging in the “free–free” boundary conditions for the modal tests. The
free–free conditions were chosen for the diagnostic experimental phase in order to compensate for any
distortions coming from the supports. This was achieved by hanging the beams on two steel springs
located in the individual nodes of their first free–free vibration modes (Figure 4).
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Figure 4. Experimental set-up for the tested beams.

The vibrations of beams were measured using PCB 3711E1110G and PCB 3711B1110G MEMS
accelerometers (PCB Piezotronics, Depew, NY, USA), which were collocated with rotation rate sensors.
For this purpose, the Horizon (Systron Donner Inertial, Concord, CA, USA) and Gladiator (Gladiator
Technologies, Snoqualmie, WA, USA) gyro sensors were applied (Table 2). The respective sensors
were placed at axes located with a 0.75-m spacing. Measurements were conducted using a 12 channel
Data Translation DT9837 (Data Translation, Marlborough, MA, USA) acquisition system. In order to
obtain the precise vibration characteristics of the beams, the measurements were divided into three
(beam UHPC1_L) or two (beam UHPC2_L) stages, where the outmost Gladiator sensors roved along
the beam length, as shown in Figure 5. In each sensor configuration, there were five measurement
points for beam UHPC1_L, and seven measurement points for beam UHPC2_L. This was done to
minimize the number of simultaneously working data channels, limited here to 12. After connecting
the data from each configuration, nine measurement points were obtained in every beam in total. The
rotational sensor positions are shown in Table 3.

Table 2. Sensor properties.

Sensor Name Type Measurement Range Bandwidth Resolution

Horizon HZ1-100-100 MEMS ±100 deg/s 60 Hz 0.0005◦/s
Gladiator G150z MEMS ±100 deg/s 200 Hz 0.004◦/s

Table 3. Sensor position.

Axis 1 2 3 4 5 6 7 8 9

Sensor
Type

UHPC1_L G G G H H H G G G

UHPC2_L H G G G H G G G H

G—Gladiator; H—Horizon rotation rate sensor.
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the theoretical mode shapes computed for the Euler–Bernoulli beam.

The beams were excited using a PCB 086D20 (PCB Piezotronics, Depew, NY, USA) modal hammer
(impact hammer test) and with the Tira Inertial Vibration Test System TV 51165-IN (TIRA GmbH,
Germany, EU) (harmonic excitations test).

2.2. Modal Parameter Extraction Using Impact Hammer

There are many techniques for modal extraction in operational and experimental modal analyses
(see, e.g., [40–42]). In this research, the functions implemented in the MATLAB (Mathworks, Natick,
MA, USA) Signal Processing Toolbox were utilised. Briefly, the procedure was as follows: First, the
translational acceleration, rotation rate, and hammer force measurements were recorded during the
impact test in free–free conditions (beams hanging on steel springs, as shown in Figure 4). Then,
frequency response functions (FRFs) were obtained using the H1 estimator [41], as follows:

H( f ) =
Gyx( f )

Gxx( f )
, (4)

where Gyx( f ) is the single-sided cross spectral density of input x and output y, and Gxx( f ) is the
single-sided auto spectral density of the input. The FRFs were calculated separately for the translational
accelerations and rotational rates. The example FRF is shown in Figure 6.
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Next, the system poles were extracted using FRFs and the least squares complex exponential
(LSCE) method [43]. The LSCE method is an upgrade of the historical 1795 Prony’s method [44], which
allows for including multiple impulse response functions. The system poles were used to calculate the
natural frequencies and damping coefficients. Finally, the mode shape vectors were estimated using
the least squares frequency domain (LSFD) method by solving the following equation:

[Λ]
{
Ap

}
=

{
Hpq(ω)

}
, (5)

where [Λ] is the eigenvalue matrix,
{
Ap

}
is the residue coefficient vector, and

{
Hpq(ω)

}
is the frequency

response. More details about the procedure can be found in the literature [41,45]. The procedure was
repeated for sensor configurations II and III in order to better refine the mode shapes. The flowchart of
this procedure is presented in Figure 7.Sensors 2020, 20, x FOR PEER REVIEW 8 of 18 
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2.3. Inertial Vibration Exciter Tests

The beams were additionally tested using a Tira inertial vibration exciter with a harmonic
excitation signal near resonant frequencies. During the tests, the translational accelerations and rotation
rates were measured in configurations I–III. The translational and rotational steady-state deflection
shapes were estimated as the square root of the peaks in the cross spectral density of the input signal,
as follows:

dn = max
(√

Gn
xx( f )

)
, (6)

dn is the steady state translational or rotational deflection shape in node n.

2.4. Strain Measurements Using Rotation Rate Sensors

During testing with the inertial vibration exciter, an average strain between the measurement axes
(Figure 5 and Table 3) was acquired by two rotation rate sensors. The strains were obtained following
approximate relations between the rotation rate and strain rate [4], briefly repeated below. In particular,
the relation between the curvature and strain at the beam surface equals the following:

κ =
dϑ
dx

=
d2w
dx2 ≈ ±

2εmax

h
(7)

where κ is the curvature, ϑ is the axis rotation, h is the height of the beam, and εmax is the maximum
strain at the beam surface given by following formula

εmax = ±
hdϑ
2dx

(8)

After selecting the finite distance, ∆x, between the respective two rotation rate sensors, and taking
into account the fact that the rotation rate,

.
ϑ, is the measured quantity, the strain rate and strain could

be obtained with the following equations:

.
εmax(t) = ±

h ∆
.
ϑ(t)

2∆x
(9)

εmax(t) = ±
∫

h ∆
.
ϑ(t)

2∆x
dt (10)

2.5. Comparing the Modes

The dynamic modes measured during the diagnostic experiments were compared with each other
using the familiar modal assurance criterion (MAC) [41,46]:

MACrs =

∣∣∣{ψ}Tr
r

{
ψ
}
s

∣∣∣2({
ψ
}Tr
r

{
ψ
}
r

)({
ψ
}Tr
s

{
ψ
}
s

) (11)

where
{
ψ
}

is the mode shape vector, and
{
ψ
}Tr is the transpose of the mode shape vector. The closer to

one the MAC value, the more similar two mode shape vectors are.

3. Results

The tests began from the modal analyses of the two beams in an “intact” state, using the impact
hammer and LSCE method to extract the first three vibration modes of the beams. The extracted modal
parameters are shown in Table 4. The damping ratio is similar for the two beams. Beam UHPC2_L,
despite having a larger mass, also has higher natural frequencies because of its greater stiffness.
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Table 4. Modal parameters for the first three modes (least squares complex exponential (LSCE) method)
in the intact state of the beams.

Mode
Beam UHPC1_L Beam UHPC2_L

fn [Hz] ξ [%] fn [Hz] ξ [%]

1 23.51 0.555 27.06 0.345
2 64.52 0.511 74.18 0.504
3 127.33 0.577 140.66 0.818

Next, the first two mode shapes were extracted for the two beams (Figures 8 and 9, respectively).
The experimental mode shapes were compared with the mode shapes obtained using the finite element
model (FEM) in SAP2000 (Computers and Structures, Walnut Creek, CA, USA) software [47]. In the
FEM, the UHPC beams were modelled by “beam” finite elements, which account for bending and
shear deformations, using the lumped matrix formulation. The beams were modelled with 61 elements.
The maximum element size was 0.1 m. The unified elastic material properties were assumed using
ρ = 2400 kg/m3, E = 43.75 GPa, and ν = 0.2 for beam UHPC1_L, and ρ = 2725 kg/m3, E = 65.35 GPa,
and ν = 0.2 for beam UHPC2_L. The experimental free–free condition was reproduced using spring
boundary FEM elements with values and locations equal to the ones applied in the laboratory. The
FEMs included masses from additional equipment, i.e., an Instron actuator fixture (10.8 kg) and inertial
exciter (39.6 kg). In Figures 8 and 9, additionally, central difference approximation (Equation (1)) of
the rotational modes using measured and FEM translational modes are shown. The translational and
rotational mode shapes were normalized using the Euclidean norm, as follows:

vnorm =
v
||v||

=
v√∑n

k=1|vk|
2

(12)

where vnorm is the either normalised translational or rotational mode shape vector; v is the either
translational or rotational mode shape vector using FEM, experimental modal analysis, or a derivative
of the respective translational mode shape; and vk is the value of the mode shape vector at the k-th node.
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and (2) beam UHPC2_L. Results for the intact beams.

The experimental translational and rotational first mode was in very good agreement with its FEM
model. The MAC values for the translational mode and rotational modes differed by less than 1% for
the two beams (see Tables 5 and 6). The rotational mode obtained with the modal hammer technique
indicates that there was a nonzero rotation in the middle of the beam. This experiment was also
repeated using an inertial vibration exciter. The rotational modes obtained using the central difference
approximation were close to the modes obtained directly, yet some discrepancies were observed,
especially at the end of the beams. They appeared even if the purely numerical FEM translational
mode was used.

Table 5. MAC values for the first rotational mode for the UHPC1_L beam. Intact state.

Direct Hammer Direct FEM Derivative Hammer Derivative FEM

Direct Hammer 1.000 0.999 0.998 0.997

Direct FEM 0.999 1.000 0.999 0.999

Derivative Hammer 0.998 0.999 1.000 1.000

Derivative FEM 0.997 0.999 1.000 1.000

Table 6. MAC values for the first rotational mode for the UHPC2_L beam. Intact state.

Direct Hammer Direct FEM Derivative Hammer Derivative FEM

Direct Hammer 1.000 0.996 0.995 0.994

Direct FEM 0.996 1.000 0.999 0.999

Derivative Hammer 0.995 0.999 1.000 1.000

Derivative FEM 0.994 0.999 1.000 1.000
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The experimental and numerical second mode shapes were still similar, but with slightly lower
MAC values. The translational MAC values were over 0.97, and the rotational values are shown in
Tables 7 and 8. The discrepancies between the directly obtained rotational modes and those using the
central difference approximation were even more visible. The second rotational modes obtained using
gyro sensors differed somewhat from what was expected using the FEM analysis. This was probably
because two different gyro sensors were used, and the bandwidth of the Gladiator sensor was equal
200 Hz and of the Horizon was equal 60 Hz, while the second natural frequency was above 65 Hz.
Table 3 shows a comparison of the gyro sensor positions.

Table 7. MAC values for the second rotational mode for the UHPC1_L beam. Intact state.

Direct Hammer Direct FEM Derivative Hammer Derivative FEM

Direct Hammer 1.000 0.991 0.972 0.986

Direct FEM 0.991 1.000 0.975 0.986

Derivative Hammer 0.972 0.975 1.000 0.995

Derivative FEM 0.986 0.986 0.995 1.000

Table 8. MAC values for the second rotational mode for the UHPC2_L beam. Intact state.

Direct Hammer Direct FEM Derivative Hammer Derivative FEM

Direct Hammer 1.000 0.944 0.833 0.898

Direct FEM 0.944 1.000 0.947 0.986

Derivative Hammer 0.833 0.947 1.000 0.986

Derivative FEM 0.898 0.986 0.986 1.000

After inflicting damage to the beams, the translational and rotational modes were extracted with
the same technique. In Figure 10, sketches of the crack distribution in the beams after a damaging load
stage are shown. In the damaging load stage, plastic hinges started to develop in the beams, and the
maximum inflicted load was equal to 49.8 kN for the UHPC1_L beam and 65.2 kN for the UHPC2_L
beam. The modal parameters obtained in the damaged state are shown in Table 9.
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Table 9. Modal parameters for the first three modes (LSCE method) in the damaged state of the beams.

Mode
Beam UHPC1_L Beam UHPC2_L

fn [Hz] ξ [%] fn [Hz] ξ [%]

1 19.40 1.78 23.56 0.883
2 55.44 1.41 65.11 1.318
3 111.08 1.71 131.45 0.793
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In Figure 11, a comparison of the first modes between the intact and damaged beams is presented.
The difference in the natural modes between the damaged and intact state was more pronounced for
the rotational mode than for the translational mode. The MAC value between the intact and damaged
states equaled 0.9932 and 0.9949 for the translational mode of UHPC1_L and UHPC2_L, respectively.
For the rotational mode, the MAC value equaled 0.9847 and 0.9854 for the UHPC1_L and UHPC2_L
beams, respectively.
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Figure 11. Comparison of the first (a) translational and (b) rotational modes of the intact and damaged
(1) beam UHPC1_L and (2) beam UHPC2_L.

The deflection shapes were also extracted using an inertial vibration exciter. The results for the
actuator working near the first resonant frequency are shown in Figure 12. The presented results are
normalized according to Equation (12). The experimental results were compared using FEM steady
state response analysis. The overall results were similar to the ones obtained using the modal hammer.
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(2) beam UHPC2_L during the inertial vibration exciter tests. Results for the intact beams.

During the tests with the inertial vibration exciter, the feasibility for measuring the average strain
rates and the strains using two rotation rates sensors according to the procedure presented in Section 2.4
was analyzed. The presented results are for the UHPC2_L beam in a free–free condition. The sensors
and inertial exciter were set according to the configuration II scheme shown in Figure 5. The average
strain rates and strains were measured for the area between axis three and axis four using the Gladiator
sensors. The exciter worked with 27.26 Hz. First, the rotation rates in the selected axes were measured
(Figure 13a,b), which allowed for calculating the rotation rate difference between the two sensors,
∆

.
ϑ =

.
ϑ3 −

.
ϑ4 (Figure 13c). Next, the strain rate,

.
εmax, was calculated using Equation (9), with a beam

height of h = 0.20 m, and a distance of ∆x = 0.75 m between the sensors (Figure 13d). The strain
rates were integrated according to Equation (10) (Figure 13e). Such operation resulted in the strains
randomly drifting from a zero value, because of, e.g., sensor noise. In this case, the measurements could
be corrected by using, e.g., a high-pass filter. Here, we restricted the analysis to a short time window
and used a linear detrend function of εcorrected (t = 20–21 s) = detrend ε (t = 20–21 s) (Figure 13f). As
such, the procedure allows for control of the average strains during the vibration measurements.
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Figure 13. Result for the intact UHPC2_L beam induced by the inertial vibration exciter with 27.26 Hz.
(a) Rotation rate at axis three, (b) rotation rate at the axis, (c) difference in rotation rate between axis
three and axis four, (d) average strain rate between axis three and axis four, (e) average strains between
axis three and axis four, and (f) short time window of average strains between axis three and axis four.

4. Discussion and Conclusions

Mode extraction techniques are as old as modal analysis. In the early days, only translational
modes could be directly acquired. The mode derivatives, e.g., rotational modes, could be measured
only indirectly, because of the insufficient accuracy or lack of miniaturization of the rotational sensors.
With the recent rapid development of the MEMS rotation rate sensors, the capacity of the modal
analysis techniques can be expanded to directly obtained derivatives, e.g., the rotational modes needed
in SHM.

In this paper, the experimental results of the application of the rotation rate sensors in the modal
analysis of two 6-m UHPC beams are reported. The first three natural frequencies of the analysed
elements ranged from 19.40 to 140.66 Hz. The results show that the rotation rate sensors can be applied
with success in the modal extraction of full-scale civil engineering structures. Using Gladiator and
Horizon rotation rate sensors, the first two rotational modes were obtained. The rotational modes
from the direct measurements were compared with the rotational modes derived from the acceleration
measurement’s central difference approximation and theoretical FEM results. Both direct and indirect
results were compatible with the FEM theoretical first rotational mode using MAC values >0.990. By
using rotation rate sensors, one could get better information about the first rotational mode in a certain
area of the beam, i.e., at the end and in the middle. For the second natural mode, the direct rotational
mode was in less agreement with the rotational mode from the central difference approximation (MAC
values 0.833–0.972). It can be explained by the second natural frequency exceeding the bandwidth of
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the sensor used in the experiment, and not enough measurement points for translational measurements
to calculate the accurate mode derivative.

Rotational modes were also obtained for the asymmetrically damaged beams. Inflicted damage
resulted in a decrease in the first natural frequencies by 12.9–17.5%. As could be expected, the damage
inflicted to the beams influenced the rotational natural modes to a greater extent (MAC values <0.9854)
than the translational natural modes (MAC values < 0.9947).

Applying rotation rate sensors, the rotational deflection shape tests were obtained from excitations
induced by an inertial vibration exciter (Tira). The obtained deflection shapes are compatible with the
rotational modes obtained from the impact hammer tests.

Following previous experience on small plexiglass beams [4], the two rotation rate sensors were
also used to measure the strain rate for the UHPC beams, spatially averaged at a 0.75 m distance.
Despite the different scale of this experiment, we were able to acquire the strain rates measured on
real-sized UHPC beams during harmonic excitations. The obtained, steady-state strain rates were
equal to

.
εmax = 5× 10−3 s−1, while the steady-state strains were equal to ε = 3× 10−5. The experiments

demonstrated that the measured strain rates could also be used to control the strains during dynamic
tests. It may be useful to limit unwanted cracks in the elements in any type of experiments involving
concrete specimens.

The rotation rate sensors can be used in the modal analyses of full-scale civil engineering structures.
When more effective and cheaper devices are developed, rotation rate sensors may be employed in the
everyday practice of SHM in civil engineering.

Author Contributions: Conceptualization, P.A.B. and Z.Z.; methodology, P.A.B.; software, P.A.B.; validation,
P.A.B.; formal analysis, P.A.B.; investigation, P.A.B., P.B., and B.J.; resources, P.A.B.; data curation, P.A.B.; writing
(original draft preparation), P.A.B.; writing (review and editing), P.A.B. and Z.Z.; visualization, P.A.B.; supervision,
Z.Z.; project administration, P.A.B.; funding acquisition, P.A.B. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was partially funded by the National Science Centre, Poland, grant number
2018/02/X/ST8/02950.

Acknowledgments: The authors appreciate technical support from Tomasz Maleska and Arkadiusz Mordak for
providing equipment for the strength tests.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to
publish the results.

References

1. Zembaty, Z.; Mutke, G.; Nawrocki, D.; Bobra, P. Rotational Ground-Motion Records from Induced Seismic
Events. Seismol. Res. Lett. 2017, 88, 13–22. [CrossRef]

2. Igel, H.; Brokesova, J.; Evans, J.; Zembaty, Z. Preface to the special issue on advances in rotational seismology:
Instrumentation, theory, observations and engineering. J. Seismol. 2012, 16, 571–572. [CrossRef]

3. Jaroszewicz, L.R.; Kurzych, A.; Krajewski, Z.; Dudek, M.; Kowalski, J.K.; Teisseyre, K.P. The Fiber-Optic
Rotational Seismograph—Laboratory Tests and Field Application. Sensors 2019, 19, 2699. [CrossRef]
[PubMed]

4. Zembaty, Z.; Bobra, P.; Bońkowski, P.A.; Kokot, S.; Kuś, J. Strain sensing of beams in flexural vibrations using
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