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A B S T R A C T

Accumulating evidence indicates that the pathological changes
of the endothelium may contribute to the development of car-
diovascular complications in chronic kidney disease (CKD).
Non-traditional risk factors related to CKD are associated with
the incidence of cardiovascular disease, but their role in uraemic
endothelial dysfunction has often been disregarded. In this con-
text, soluble a-Klotho and vitamin D are of importance to
maintain endothelial integrity, but their concentrations decline
in CKD, thereby contributing to the dysfunction of the endo-
thelial lining. These hormonal disturbances are accompanied by
an increment of circulating fibroblast growth factor-23 and
phosphate, both exacerbating endothelial toxicities. Further-
more, impaired renal function leads to an increment of inflam-
matory mediators, reactive oxygen species and uraemic toxins

that further aggravate the endothelial abnormalities and in turn
also inhibit the regeneration of disrupted endothelial lining.
Here, we highlight the distinct endothelial alterations mediated
by the abovementioned non-traditional risk factors as demon-
strated in experimental studies and connect these to pathologi-
cal changes in CKD patients, which are driven by endothelial
disturbances, other than atherosclerosis. In addition, we describe
therapeutic strategies that may promote restoration of endothe-
lial abnormalities by modulating imbalanced mineral homoeo-
stasis and attenuate the impact of uraemic retention molecules,
inflammatory mediators and reactive oxygen species. A clinical
perspective on endothelial dysfunction in CKD may translate
into reduced structural and functional abnormalities of the vessel
wall in CKD, and ultimately improved cardiovascular disease.
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I N T R O D U C T I O N

Cardiovascular complications are more frequent and severe in
patients with chronic kidney disease (CKD) as compared with
the general population [1]. This complex association cannot be
fully explained by the presence of traditional risk factors such as
hypertension, hyperlipidaemia and diabetes. Alternatively,
non-traditional risk factors related to a reduced kidney function
provide some insights into the mechanisms of increased risk of
cardiovascular events in CKD [1, 2]. These CKD-specific fac-
tors, besides proteinuria, include disturbed mineral metabolism
and bone disease, inflammation, oxidative stress and the accu-
mulation of uraemic toxins. Most of these factors are associated
with reduced heart function, vascular stiffness and calcification,
typically and most prominently of the medial layer. When com-
pared with the role of the medial layer, attention to disturbed
endothelial structure and function in CKD lags behind. The
vascular endothelium constitutes a monolayer of endothelial
cells, forming the inner lining of the entire circulatory system.
The preservation of endothelial barrier function is crucial for
the normal functioning of the vascular system and requires
tightly regulated intercellular junctions and endothelial cell ad-
hesion to the basement membrane. From this perspective, en-
dothelial cell dysfunction (ECD) can be viewed as a
compromised regulation of these vital properties and comprises
structural changes in the actin cytoskeleton, reduced prolifera-
tive and migratory capacities, breakdown of endothelial cell–
cell contacts and impairment of the barrier function. This pro-
gressive structural remodelling dampens the proper communi-
cation between endothelial cells and vascular smooth muscle
cells (VSMCs), fundamental for vascular function, resulting in
the earliest detectable changes of atherosclerosis [3]. As men-
tioned, CKD can also drive VSMC dysfunction or vessel struc-
tural alterations without disturbing the endothelial function [4].
However, non-atherosclerotic endothelial disturbances most
likely exist as well in CKD, and are the focus of this review.

Despite strong suggestions that ECD may critically impact
cardiovascular health [5], in the clinical setting of CKD, there is
only limited information indicating whether ECD provides im-
portant prognostic information, or actually causes future car-
diovascular complications [6]. However, the data that are
available strongly suggest that, also in patients with CKD, ECD
contributes to cardiovascular morbidity. In patients with CKD,
impaired endothelial function has been associated with arterial
thickness [6, 7], abnormal left ventricular structure and func-
tion [8], and importantly, excess of cardiovascular mortality in
CKD [9]. However, while these few studies highlight the impor-
tance of vascular dysfunction as a marker for cardiovascular
risk, the potential impact of ECD in the progression of cardio-
vascular complications remains to be elucidated. As a result of
these limitations, there is insufficient knowledge supporting
the concept of whether targeting vascular dysfunction and in
particular ECD in CKD may beneficially impact cardiovascular
disease and clinical outcome.

In view of these considerations, we aim to review available
information on the morphological and functional abnormalities
in the endothelial lining during CKD, and to evaluate how
CKD-related, non-traditional risk factors critically impact en-
dothelial integrity. Finally, we discuss some plausible therapeu-
tic strategies aimed at targeting these CKD-associated
disturbances, to possibly prevent progression of endothelial in-
jury and thereby attenuate cardiovascular disease.

E N D O T H E L I A L D Y S F U N C T I O N D U R I N G C K D

Dysfunctional endothelium in patients with CKD has been
demonstrated in both large and small arteries [10, 11]. Patients
with impaired renal function frequently display some common
adverse endothelial characteristics that provide a better under-
standing of the impact of CKD on this cell type (Figure 1). In
particular, impaired flow-mediated dilation (FMD), reflecting
abnormal endothelium-dependent vasodilatory function, has
been frequently reported in CKD patients, and its impairment
is associated with the severity of renal damage [12, 13]. This
non-invasive approach to assess endothelial function measures
the ability of the artery to respond, by the release of the
endothelium-derived relaxing factor nitric oxide (NO), to the 5-
min occlusion of the branchial artery with a blood pressure cuff
(reactive hyperaemia). Reduced NO bioavailability [14], how-
ever, is a critical feature and characteristic for patients with
CKD [5, 15]. This abnormality is accompanied by a decreased
expression or limited activation of the endothelial NO synthase
due to the presence of renal disease-related toxins contributing
to a reduced vasodilatory capacity [16]. Importantly, FMD pro-
vides crucial information about the vasodilatory status of the
endothelium, but it is not a direct assessment of the production
of vasoactive molecules. A more invasive approach can overcome
this limitation through the infusion of acetylcholine, which dilates
normal coronary arteries in the presence of intact endothelium
by stimulating NO production. In the presence of ECD, however,
acetylcholine may even induce vasoconstriction through a direct
effect on the underlying VSMC. In this regard, the measurement
of endothelial-dependent relaxation after acetylcholine stimula-
tion in CKD animal models reflects a valuable approach to assess
vascular function and test therapeutic strategies [17, 18].

Given the difficulties of assessing the structural changes of
the vascular endothelium, the analysis of soluble factors is
sometimes used as a non-invasive approach to explore the
CKD-induced pathological consequences. During CKD, the en-
dothelium loses its quiescent phenotype and becomes activated
[5], which is exemplified by elevated levels of circulating cell ad-
hesion molecules such as soluble Intercellular Adhesion
Molecule 1 (sICAM-1), Vascular Cell Adhesion Molecule 1
(sVCAM-1), sE-selectin and platelet adhesion molecule von
Willebrand factor (vWf) (as a first step of thrombus formation)
in serum from patients with CKD [19, 20]. Interestingly, the
presence of these ECD biomarkers has been associated with a
defective FMD in CKD, which suggests that these endothelial
structural changes may co-exist with an impaired endothelial
function [20]. In addition, the analysis of circulating endothelial
microparticles (EMPs), released into the extracellular space af-
ter endothelial injury, provides further clinical information of
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the endothelial damage upon CKD [21]. Similarly, as the endo-
thelial activation markers, EMPs levels are associated with loss
of FMD and increased pulse wave velocity in patients with end-
stage renal failure, reinforcing the hypothesis that endothelial
damage results in both morphological and functional altera-
tions [21]. Alternatively, patients with different degrees of im-
paired renal function also display increased levels of circulating
endothelial cells (CECs) themselves [22]. This subpopulation of
cells—originating from the blood vessel wall—is detached due
to endothelial damage and detachment, and reflects ongoing in-
jury. Finally, CKD reduces the number of circulating

endothelial progenitor cells (EPCs), a bone marrow-derived
CEC population that can be recruited to sites of endothelial in-
jury and then mature, playing a major role in vascular repair to
restore endothelial function [23, 24]. In this regard, CKD not
only dampens the availability of circulating EPCs but also
impacts on the normal functioning of EPCs, resulting in abnor-
mal colony formation together with impaired adhesion and in-
corporation, further worsening the repair capacity of the
vascular system [23, 25].

Mechanistically, the enhanced transcription of the above-
mentioned adhesion molecules, vWf or EMPs is preceded by

FIGURE 1: CKD disrupts the endothelial cell lining through different mechanisms. Representative different pathological mechanisms are
highlighted from A to D. (A) Enlargement in the bottom. Activation of the NF-jB results in elevated soluble cell adhesion molecules
characteristic of endothelial cell activation accompanied by the increase of matrix metalloproteinases that disrupt the endothelial cell–cell and
cell–matrix interactions. Rearrangement of F-actin cytoskeleton towards the formation of stress fibers results in changes in endothelial cell
morphology. Uraemia also enhances the release of endothelial cell microparticles and reduces the NO bioavailability. (B) Those mechanisms
result in the contraction of the endothelial cell and disassociation of adjacent cells and base membrane. (C) As a result, endothelial cells detach
reflecting the loss of the endothelial cell lining. (D) In addition, the limited amount of circulating EPCs accompanied by an impaired normal
progenitor function and limited adhesion capacity results in an abnormal recovery of the endothelium against the uraemia-mediated damage.
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activation of the nuclear factor-jB (NF-jB) signalling pathway
[5]. In experimental studies, the most prominent changes ob-
served in endothelial cells exposed to human uraemic serum are
suggested to be mediated by NF-jB signalling, substantiating
its key role in the development of ECD during CKD [26, 27].
However, the harmful effects of uraemic media are not limited
to activation of the NF-jB pathway but extend to NF-jB-
independent structural alterations such as lower expression of
Vimentin and Annexin A2, which are both involved in cell–cell
and cell–matrix interactions [28]. In line with this, it was shown
that uraemia modulates the expression of matrix metalloprotei-
nases in endothelial cells leading to a remodelling of the extra-
cellular matrix, thereby promoting endothelial detachment
from the basement membrane and its subsequent loss [29]. The
importance of the loss of endothelial cell–cell interactions in
CKD was also recently highlighted by our group where we con-
firmed that uraemic plasma from pre-dialysis CKD patients
was impairing the stability of the endothelial barrier function
by reducing the vascular endothelial (VE)–cadherin adherens
junctions on the cell surface [30]. Here, exposure to uraemic
media also resulted in the re-organization of the F-actin cyto-
skeleton towards increased stress fibers formation [30].
Similarly, Maciel et al. [31] recently confirmed that human re-
nal arteries from CKD patients displayed reduced VE–cadherin
and Zona occludens-1 (ZO-1) protein expression and that a
uraemic environment downregulated VE–cadherin and
Vinculin in vitro [31]. These structural alterations make the en-
dothelial barrier more susceptible to disruption upon electric
wound or following exposure to the pro-permeability factor
thrombin [30]. Finally, prolonged exposure to a uraemic envi-
ronment could affect the integrity of the vascular endothelium
leading to enhanced permeability and endothelial cell detach-
ment, as confirmed in a 3/4 nephrectomized rodent model [32].

Taken together, CKD-induced disturbances of the vascular
endothelium are complex and involve a large number of mech-
anisms including impaired cell–cell and cell–matrix interaction,
which contributes to detachment from the vessel wall, increased
endothelial cell activation, lost vasodilating properties and lim-
ited repair capacity of damaged endothelial surfaces, all leading
to loss of endothelial barrier function.

T H E I N F L U E N C E O F S P E C I F I C C K D - R E L A T E D
F A C T O R S O N E N D O T H E L I A L H E A L T H

Recently, many CKD-specific factors such as disturbed mineral
metabolism, accumulation of uraemic retention molecules, in-
flammation and oxidative stress have been identified as possibly
being involved in ECD. Indeed, the vascular pathological fea-
tures observed following exposure to these non-traditional risk
factors in experimental uraemic animal models or cell cultures
resemble many clinical manifestations described in CKD
patients, thus reinforcing that these specific factors may actually
contribute to the pathogenesis of human ECD.

Disturbances in mineral metabolism

Compelling evidence suggests that the unavoidable progres-
sive derangement in mineral homoeostasis due to progressive
kidney failure may trigger or accelerate cardiovascular disease,

at the level of both the medial layer and the intimal layer.
Already in early CKD, the plasma concentrations of the kidney-
derived protein a-Klotho decrease, while fibroblast growth
factor-23 (FGF23) levels increase. The latter is probably respon-
sible for decreased plasma 25 hydroxyvitamin D [25(OH)D]
and 1,25-dihydroxyvitamin D [1,25(OH)2D] concentrations
and all these factors, along with phosphate exposure, contribute
to secondary hyperparathyroidism. The imbalance of each
component worsens with advancing CKD and numerous stud-
ies established associations of these disturbances with cardio-
vascular calcification and heart disease. Experimental evidence,
described below, also demonstrates that a disturbed mineral
homoeostasis contributes to the development of a dysfunctional
endothelium; however, this association is not well established in
CKD patients, possibly due to a lack of clinically available tools
to assess the endothelial function or structure.

a-Klotho. Originally identified as an anti-ageing protein,
a-Klotho is now also recognized as a major player in
mineral homoeostasis. Interestingly, clinical CKD shares many
biochemical and histological features with the phenotype of a-
Klotho-deficient mice, including its cardiovascular manifesta-
tions [33, 34]. The vascular abnormalities in a-Klotho mutant
mice, such as impaired angiogenesis, insufficient endothelium-
derived NO formation and reduced levels of circulatory EPCs,
may contribute to the development of ECD [34]. Membrane-
bound a-Klotho is predominantly expressed in the distal tubule
of the nephron. The mechanisms responsible for a-Klotho defi-
ciency in CKD are not fully understood but are likely to be mul-
tifactorial [35]. Following tubular production and insertion in
the plasma membrane, the ectodomain of membrane a-Klotho
is cleaved from the cell surface by membrane-anchored pro-
teases and released into the circulation, where it is suggested to
be continuously required to maintain vascular health [36]. In
this regard, one of the first vasculo-protective activities de-
scribed for a-Klotho was its role in the maintenance of endothe-
lial homoeostasis [33, 37]. Exposure of human umbilical vein
endothelial cells to a-Klotho increased NO production and in-
duced eNOS phosphorylation and inducible NOS expression
[38]. Along the same line, a-Klotho has been shown to suppress
the expression of the adhesion molecules ICAM and VCAM by
the attenuation of NF-jB signalling pathway upon tumour ne-
crosis factor-a (TNF-a) stimulation [39]. Another mechanism
by which a-Klotho protects the endothelium was demonstrated
by Kusaba et al., who showed that a-Klotho mediated the inter-
nalization of the transient receptor potential canonical 1 and
vascular endothelial growth factor receptor 2 (VEGFR2) com-
plex, thereby preventing hyperpermeability and endothelial ap-
optosis through an increase of calcium influx in endothelial
cells incubated with VEGF [40]. Although extensive research
has already provided much information on the beneficial effects
of a-Klotho on endothelial damage, the relationship between a-
Klotho and vascular dysfunction in patients with CKD remains
poorly established. In CKD patients, lower a-Klotho levels were
found to be an independent biomarker of arterial stiffness and
defective FMD [41], and correlated with circulating von
Willebrand factor levels [42]. However, while a deficiency of se-
rum a-Klotho has been linked to cardiovascular complications
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in some studies [41, 43], this issue is still debated as Seiler et al.
[2] found no relationship between soluble a-Klotho and cardio-
vascular outcomes in a cohort of CKD Stages 2–4 patients.
Taken together, while experimental studies strongly suggest
that a-Klotho preserves endothelial integrity in many different
ways, there currently is no strong clinical evidence for a role of
a-Klotho deficiency in CKD-mediated endothelial injury.

Vitamin D. Vitamin D deficiency, defined as serum
25(OH)D concentrations <20 ng/ml (50 nmol/L), is associated
with both an increased prevalence and incidence of cardiovas-
cular morbidity and mortality in CKD [44, 45]. In the kidney,
25(OH)D is converted by 1a-hydroxylase to its active form
1, 25(OH)2D to exert its effects on distant target tissue [46]. By
binding the vitamin D receptor, 1,25(OH)2D activates both ge-
nomic and non-genomic pathways related to cellular prolifera-
tion and differentiation, and also on the endocrine and immune
system [46]. As a consequence of CKD, there generally is a defi-
ciency of 25(OH)D and a reduced production of active vitamin
D, both contributing to reduced vitamin D actions on target tis-
sues, including the vascular endothelium [45, 46]. Vitamin D
deficiency is associated with decreased FMD in patients with
CKD of different stages [47, 48]. In experimental models of
CKD, active vitamin D analogues restored abnormal expression
of aortic genes and improved endothelial function in a 5/6 ne-
phrectomy rat model [18, 49]. Similarly, active vitamin D also
protected against vascular leakage and endothelial cell detach-
ment in in vivo models of CKD [32]. As a novel and potential
protective mechanism, active vitamin D was shown to improve
cell–cell interaction, disrupted after exposure to human urae-
mic plasma, leading to preservation of the endothelial barrier
function [30]. In patients with CKD Stages 3 and 4, improve-
ment of FMD by active vitamin D under low 25(OH)D circum-
stances has been reported [50]. Similar results were also
observed in dialysis patients with vitamin D deficiency, where
active vitamin D improved FMD of the brachial arteries [51–
53]. In contrast, however, no effect of active vitamin D on bra-
chial artery FMD or biomarkers of inflammation and oxidative
stress was found in patients with advanced CKD and type 2 dia-
betes, and in the majority of clinical trials among diverse popu-
lations vitamin D administration has failed to show an
improvement of endothelial function [54–57]. In addition,
other clinical studies showed no significant effect of oral active
vitamin D on left ventricular mass index in CKD patients (the
PRIMO and OPERA trials) [58, 59] and no reduction of cardio-
vascular events in haemodialysis patients without secondary hy-
perparathyroidism (J-DAVID) [60]. These contradicting
findings urge the search for better positioning the potential role
of vitamin D administration in patients with CKD, especially in
relation to disturbances in endothelial function and structure.

Phosphate and FGF23. CKD impairs phosphate balance,
ultimately resulting in hyperphosphataemia [61]. In clinical
studies, hyperphosphataemia and even high–normal serum
phosphate concentrations represent one component of the in-
creased risk of cardiovascular complications and mortality in
both the general and CKD population [62, 63]. Recently, a
number of studies suggested that phosphate may exert direct

toxic effects on endothelial cells [64]. Specifically, in vitro
experiments with endothelial cells demonstrated that high-
phosphate concentration increases oxidative stress and
decreases NO synthesis via inhibiting phosphorylation of eNOS
[65]. This finding is in line with a clinical study in healthy sub-
jects, which demonstrated that high dietary phosphate loading
impaired flow-mediated vasodilation, indicating acute endothe-
lial dysfunction [65]. In addition, exposure of endothelial cells
to high-phosphate concentration also promoted the formation
of EMPs with impaired capacity of angiogenesis [66, 67] and
downregulated VE–cadherin and reduced ZO-1 protein levels,
which are similar effects as found in endothelial cells exposed to
uraemic media [31]. Importantly, in both healthy and CKD
mice, it was reported that a high-phosphate diet promoted en-
dothelial inflammation and dysfunction, and increased endo-
thelial cell detachment [68].

To compensate for the decreased glomerular filtration of
phosphate in the setting of CKD, FGF23, synthesized by osteo-
cytes/osteoblasts, inhibits tubular reabsorption of phosphate,
thereby restoring its net excretion. Besides phosphate exposure,
other factors such as hyperparathyroidism and exogenous
1,25(OH)2D, calcium loading and inflammation also contribute
to the elevation of plasma FGF23 concentration in CKD [69].
Although FGF23 may contribute to cardiovascular disease by
the disturbance of mineral metabolism, FGF23 itself is indepen-
dently associated with cardiovascular complications in different
stages of CKD [70], and also with impaired vasoreactivity and
increased arterial stiffness in patients with impaired renal func-
tion [70]. Furthermore, experimental ex vivo data suggest that
FGF23 can directly impair endothelium-dependent relaxation
upon acetylcholine stimulation [71]. This effect appeared to be
mediated by the reduction of NO bioavailability due to an accu-
mulation of either asymmetrical dimethyl arginine (ADMA)
[71] or superoxide levels [72]. Remarkably, the presence of a re-
ceptor for FGF23 is not firmly established on endothelial cells,
and therefore the molecular mechanisms that underlie have
remained obscure so far. Overall, further clinical studies are
warranted to delineate the pathological mechanisms linking
phosphate and FGF23 with endothelial cell abnormalities in
CKD patients.

Uraemic toxins

Progression of CKD leads to the accumulation in blood and
tissues of uraemic retention solutes [73]. As a result, the cardiovas-
cular system is constantly exposed to the potentially toxic effects
of a range of uraemic retention solutes inducing, among other
complications, endothelial damage [74]. One well-characterized
uraemic toxin is ADMA, which is known to exert a negative im-
pact on endothelial cell stability in both in vivo and in vitro experi-
mental models [74]. Indeed, ADMA is considered as a circulating
endogenous inhibitor of eNOS [75], and its accumulation has
been associated with ECD in patients with CKD [75, 76]. In CKD
mice, increased serum concentration of ADMA caused attenuated
endothelium-dependent vasodilation of aortic rings by inhibiting
eNOS phosphorylation, by its property of being a competitor of L-
arginine (the precursor of NO) as substrate for eNOS [77].
Furthermore, ADMA induces stress fibers and focal adhesion
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formation in a RhoA and Rho kinase-dependent pathway leading
to a limited endothelial repair [78]. Importantly, ADMA also
impairs the regeneration of injured endothelium by reducing the
differentiation, mobilization and function of EPCs [79].

Formed by complex pathways, the covalently protein-bound
toxins advanced glycation end products (AGEs) are the result
of non-enzymatic glycation and oxidation of proteins, lipids
and nuclear acids, and they accumulate in CKD [80]. In various
cell types, AGEs exert diverse cellular responses via the multili-
gand cell-surface receptor for AGEs (RAGEs) [81]. The activa-
tion of RAGE in endothelial cells in vitro induced expression of
adhesion molecules, increased endothelial permeability, im-
paired NO production and increased reactive oxygen species
(ROS) formation [82]. Moreover, in patients with CKD, de-
creased endothelial reactivity has been correlated with increased
circulating levels of AGEs [83]. Using an in vitro approach, this
study demonstrated that AGEs isolated from serum of patients
with CKD induced suppression of eNOS, and this effect was at-
tenuated after RAGE blockade [83].

Recently, several studies demonstrated that other (non-co-
valently) protein-bound uraemic toxins such as p-cresyl sul-
phate (PCS) and indoxyl sulphate (IS) exert critical toxic
effects on endothelial cells in CKD. In patients with CKD,
PCS is the main circulating form of p-cresol and is indepen-
dently associated with cardiovascular complications [84]. In
addition, markers of endothelial damage such as EMPs are di-
rectly associated with free-serum p-cresol concentrations in
haemodialysis patients [85]. The same study demonstrated
in vitro that PCS induced a dose-dependent increase of shed-
ding EMP, whereas this effect was prevented by inhibition of
Rho kinase [85]. An in vitro study confirmed the role of the
Rho-kinase pathway in PCS-mediated toxicity. Upon expo-
sure to p-cresol, an increased endothelial permeability and
barrier disruption were induced by alterations of VE–cad-
herin membrane distribution [86].

IS is another critical player in the development of vascular
disease and is also associated independently with elevated mor-
tality rate in patients with CKD [87]. IS is associated with wors-
ened FMD and arterial stiffness in CKD patients [88]. This
study also demonstrated that IS impaired the chemotactic mo-
tility and colony-forming ability of EPCs, suggesting that IS
contributes to the pathogenesis of ECD by limiting the vascular

repair capacity [88]. In addition, several in vitro studies showed
that IS can directly disrupt the stability of the endothelial cells
through other molecular pathways. Specifically, IS increased
EMPs release and impaired endothelial wound healing capacity
[89, 90]. Moreover, it promotes endothelial activation by
ROS-induced activation of NF-jB. Similar to p-cresol, cell cul-
ture exposure to IS resulted in endothelial gap formation by
VE–cadherin disassembly and stress fiber formation [91].

Overall, uraemic toxins may impact the vasculature by dis-
rupting the integrity of the endothelial cell barrier, promoting
endothelial activation and weakening its recovery capacity by
impairing the EPCs function. Interestingly, as highlighted in
Figure 2, the deleterious effects induced by uraemic toxins in
experimental research share many characteristics with the en-
dothelial abnormalities present in CKD patients or cell-based
assays with endothelial cells exposed to uraemic media, suggest-
ing that they are important mediators in the development of
CKD-induced ECD in patients.

Oxidative stress and inflammation

Numerous studies have demonstrated that CKD is associ-
ated with increased oxidative stress and inflammation [92, 93].
Oxidative stress can be considered as accumulation of ROS in
parallel with impaired or overwhelmed endogenous antioxidant
mechanisms [94]. ROS are classically defined as partially re-
duced metabolites of oxygen that possess strong oxidizing capa-
bilities [94]. The high production of ROS in CKD may
contribute directly or indirectly to the pathogenesis of the car-
diovascular disease by inducing endothelial injury [95].
Findings in animal models of chronic renal failure confirmed
that enhanced generation of ROS leads to decreased NO bio-
availability and impairment of the normal function of the endo-
thelium [96]. Furthermore, increased levels of oxidative stress
markers are associated with impaired endothelial function in
CKD patients [97]. Moreover, chronic or prolonged ROS pro-
duction is tightly connected to inflammatory processes [98], by
activating transcription factors such as NF-jB, triggering a pro-
inflammatory, pro-adhesion (of leucocytes) and pro-oxidant
phenotype [98]. In addition, the activation of NF-jB pathway
in endothelial cells is also triggered by inflammatory cytokines
such as interleukin-6 and TNFa [99]. These pro-inflammatory
molecules are known to be elevated in patients with CKD and

FIGURE 2: Summary of the impact of different uraemic toxins in high concentrations. Effects of the uraemic toxins ADMA, AGEs, PCS and
IS in endothelial function, circulatory markers, structural changes in the vascular endothelium and in the endothelial repair capacity are
highlighted as follows: patients (red), in vivo animal models (blue) and cell-based assays (green). Dark circles indicate that the study was per-
formed in a CKD setting while no circle shows studies performed by the addition of exogenous uraemic toxin.

Endothelium in CKD 1483



cause ECD [8, 100]. Taken together, the development of a pro-
inflammatory and pro-oxidative state during renal dysfunction
is associated with oxidative stress, vascular NF-jB activation
and inflammation, thus forming a vicious cycle amplifying
ECD.

T H E R A P E U T I C S T R A T E G I E S T O P R O T E C T
T H E E N D O T H E L I U M I N C K D

Detailed knowledge of factors in CKD that induce ECD can
pave the way to endothelial-protective therapeutic strategies,
aiming to ameliorate cardiovascular disease in CKD. Based on
the above, several options emerge and their clinical and experi-
mental evidence are summarized in Table 1. The overarching
approach might be the restoration of mineral metabolism net-
work by correcting hormonal disturbances and counteracting
the potential deleterious influence of uraemic toxins, inflamma-
tory mediators and ROS. Recently, exogenous a-Klotho therapy
has been shown to be effective in attenuating high-phosphate
diet-induced renal and cardiac fibrosis and accelerated renal re-
covery after acute kidney injury in mice [101, 102]. Although
the protective effects of exogenous a-Klotho administration in
uraemia-mediated ECD in animal models remain to be investi-
gated, in vitro data suggest that the endothelial-protective prop-
erties of a-Klotho are worthy of being tested in vivo. In this
context, a-Klotho protein exerts protective effects by reducing
the NF-jB translocation in cultured endothelial cells upon ex-
posure to serum of Stage 5 CKD patients [103]. Moreover, ex-
ogenous a-Klotho attenuates in vitro the endothelial damage
induced by the uraemic toxin IS and modulates the FGF23-
mediated impaired NO synthesis and increased oxidative stress
[104, 105].

As a potential option to restore impaired mineral balance
and protect the endothelium, vitamin D replacement has raised
great expectations to treat cardiovascular complications in
CKD patients. However, as mentioned previously, data regard-
ing the beneficial effects of vitamin D supplementation on car-
diovascular disease including endothelial function are
conflicting. In CKD animal models, active vitamin D treatment
mitigates the impact of uraemia not only in endothelial function
but also in structural alterations [18, 32, 49]. In randomized tri-
als, several active vitamin D analogues lead to favourable
changes on the vascular function in CKD patients of Stages 3–4
undergoing haemodialysis with or without vitamin D deficiency
[50–53]; mean while, other studies reported no improvement in
FMD with patients of advanced CKD [57, 106]. Overall, active

vitamin D may potentially play different roles in protecting the
vascular endothelium during CKD, but further studies are
needed in this area.

Given its potential role in ECD, direct neutralization of the
effects of phosphate and FGF23 may be another therapeutic
option to protect the development of ECD. Options to ac-
complish the reduction of serum phosphate concentrations
include treatment with phosphate binders. As an example,
the phosphate-binder sevelamer hydrochloride was shown to
ameliorate the phosphate-induced ECD in uraemic mice
[68]. Furthermore, in hyperphosphataemic patients with
Stage 4 CKD, sevelamer improved FMD, possibly mediated
by parallel declines in FGF23 levels [107]. In vitro, sevelamer
was effective also in protecting against endothelial activation
upon uraemic media and AGEs exposure [108]. Thus, declin-
ing serum phosphorus concentrations might lead to better
endothelial function and cardiovascular health in CKD
patients. Alternatively, strategies to counteract high serum
FGF23 concentrations such as the application of monoclonal
antibodies has already been tested and shown to be effective
for improving ex vivo vasodilator responses to acetylcholine
in uraemic mice [71]. However, as demonstrated by Shalhoub
et al. [109], the beneficial effects achieved by the neutraliza-
tion of FGF23 signalling can be outbalanced by incrementing
serum phosphate. Thus, inhibiting pathological FGF23-
mediated pathways and lowering phosphate serum concen-
trations simultaneously may be a potential therapeutic strat-
egy to reduce endothelial damage in CKD.

Because of their harmful effects on endothelial cells, reduc-
ing concentrations of uraemic toxins, ROS and inflammatory
cytokines in CKD patients by dialysis may promote endothelial
cell health [110, 111]. Indeed, ECD induced in vitro by serum
from CKD patients led to remodelling of the extracellular ma-
trix and this effect was mitigated in cells treated with serum
from the same patients after haemodialysis therapy [29].
Unfortunately, most protein-bound uraemic retention mole-
cules cannot be removed by dialysis. To overcome this limita-
tion, as an absorbent of the uraemic toxin IS, AST-120 has
shown to be effective to improve vascular relaxation in uraemic
mice [112] and ameliorating the microvascular dysfunction in
haemodialysis patients [113]. Other therapeutic approaches re-
quire components that may counterbalance the deleterious
effects of oxidative stress, inflammation or toxicity, possibly by
using anti-oxidants or inflammatory mediators [74]. Finally,
patients with dialysis-dependent CKD following renal trans-
plantation have improved endothelial function [114, 115].

Table 1. Reported effective treatments against endothelial dysfunction in patients with CKD, in vivo CKD models and cell-based experiments

Treatment CKD patients In vivo CKD Cell-based assays exposed with

Vascular function Vascular function Structural changes Uraemic media FGF23 Phosphate AGEs IS

a-Klotho 103 105 104
Active vitamin D 50–53 18, 49 32 30
Sevelamer 107 68 108 68 108
Anti-FGF23 71
AST-120 113 112 112

Positive effects from the different treatments in the different conditions are highlighted in green.
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These benefits also include the normalization of the functions
of the EPCs, contributing to a better repair [114]. Overall, future
studies should focus on the effective removal of these retention
solutes in uraemic patients in order to attenuate ECD and pro-
mote endothelial repair.

C O N C L U S I O N S

In patients with CKD, ongoing endothelial damage in the vas-
cular system exists and is frequently overlooked. However, en-
dothelial damage is thought to be a central driver of progressive
cardiovascular complications. The pathogenesis of ECD in
patients with renal dysfunction results from an imbalance be-
tween increased endothelial damage and impaired regeneration.
In addition, limited vasoreactivity, in particular vasodilatory
properties, exists. These processes may result from the
progressive loss of the vasculoprotective factors vitamin D and
a-Klotho together with an increment of ECD mediators such as
FGF23, uraemic toxins, ROS and inflammatory cytokines.
Therapeutic strategies aiming at a better endothelial health
should be based on correcting the derangements of the mineral
homoeostasis, removing the retention solutes and limiting oxi-
dative stress.
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