Unusual and Typical Features of a Novel Restorer-of-Fertility Gene of Sugar Beet (Beta vulgaris L.)

Hiroaki Matsuhira,*,1 Hiroyo Kagami,* Masayuki Kurata,* Kazuyoshi Kitazaki,*, ${ }^{*}$ Muneyuki Matsunaga,* Yuko Hamaguchi,* Eiki Hagihara,* Minoru Ueda,* Michiyo Harada,* Aki Muramatsu,* Rika Yui-Kurino,*
Kazunori Taguchi, ${ }^{+}$Hideto Tamagake, ${ }^{\ddagger}$ Tetsuo Mikami,* and Tomohiko Kubo*, ${ }^{*}$
*Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido 060-8589, Japan,
${ }^{\dagger}$ Memuro Upland Farming Research Station, Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido 082-0081, Japan, and ${ }^{\ddagger}$ Central Agricultural Experiment Station, Agriculture Research
Department, Hokkaido Research Organization, Takikawa 073-0013, Japan

Abstract

Male gametogenesis in plants can be impaired by an incompatibility between nuclear and mitochondrial genomes, termed cytoplasmic male sterility (CMS). A sterilizing factor resides in mitochondria, whereas a nuclear factor, Restorer-of-fertility ($R f$), restores male fertility. Although a majority of plant Rf genes are thought to encode a family of RNA-binding proteins called pentatrico-peptide repeat (PPR) proteins, we isolated a novel type of $R f$ from sugar beet. Two BACs and one cosmid clone that constituted a 383 -kbp contig covering the sugar beet $R f 1$ locus were sequenced. Of 41 genes borne by the contig, quadruplicated genes were found to be associated with specific transcripts in Rf1 flower buds. The quadruplicated genes encoded a protein resembling OMA1, a protein known from yeast and mammals to be involved in mitochondrial protein quality control. Construction of transgenic plants revealed that one of the four genes (bvORF20) was capable of restoring partial pollen fertility to CMS sugar beet; the level of restoration was comparable to that evaluated by a crossing experiment. However, the other genes lacked such a capability. A GFP-fusion experiment showed that bVORF20 encoded a mitochondrial protein. The corresponding gene was cloned from rf1rf1 sugar beet and sequenced, and a solitary gene that was similar but not identical to bvORF20 was found. Genetic features exhibited by sugar beet $R f 1$, such as gene clustering and copy-number variation between Rf1 and rf, were reminiscent of PPR-type Rf, suggesting that a common evolutionary mechanism(s) operates on plant $R f s$ irrespective of the translation product.

AS a phenotypic manifestation of nuclear-mitochondrial incompatibility in plants, cytoplasmic male sterility (CMS) has garnered much interest and has been recorded to occur in >140 plant species (Laser and Lersten 1972). CMS is a maternally inherited trait that inactivates male reproductive function in otherwise normal plants (Schnable

[^0]and Wise 1998). A genetic model developed to explain CMS suggests that it involves a nuclear-mitochondrial interaction in which a sterility-inducing factor (S) is generated in mitochondria, and one or more nuclear factors, termed restorers of fertility (Rf), capable of inhibiting the action of S (Hanson and Bentolila 2004). According to this model, plants with the S factor and two nonrestoring nuclear alleles, i.e., [S] $r f r f$, are male sterile (MS), whereas [S]RfRf or [S]Rfrf plants produce functional pollen (Budar et al. 2006; Chase 2007). Plants with N mitochondria lack the S factor and are male fertile irrespective of their nuclear alleles in the $R f$ locus.

Many S factors have been associated with various unique polypeptides encoded by mitochondrial genomes (Pelletier and Budar 2007). In some cases, the evolutionary origin of the S factor is unclear because the mitochondrial ORF that encodes the unique polypeptide (S-ORF) has no homology within the N mitochondrial genome or with any nucleotide
sequences known to date. In other cases, S-ORFs appear to be mosaic of parts of duplicated mitochondrial genes, suggesting that S-ORFs are by-products of mitochondrial genome rearrangement (for reviews, Budar et al. 2004; Kubo and Newton 2008; Kubo et al. 2011).

Nuclear Rfs seem to overcome the action of S factors in different ways, but the mechanisms are obscure. One group of $R f s$ regulates the expression of S-ORFs at the posttranscriptional level (Fujii and Toriyama 2008). Plants having this type of $R f$ accumulated fewer S-ORF polypeptides with or without an altered level of S-ORF transcription. Molecular cloning of such Rfs from petunia (Petunia X hybrida hort. ex Vilm), radish (Raphanus sativus L.), and rice (Oryza sativa L.) revealed that these genes encode a class of proteins sharing a common sequence termed a pentatricopeptide repeat (PPR) (Bentolila et al. 2002; Brown et al. 2003; Desloire et al. 2003; Kazama and Toriyama 2003; Koizuka et al. 2003; Akagi et al. 2004; Komori et al. 2004; Wang et al. 2006; Hu et al. 2012). These proteins constitute a large gene family that is associated with post-transcriptional gene regulation in plant organelles (Schmitz-Linneweber and Small 2008). A genetic association of $R f$ loci with PPR genes also has been reported from other plants such as CMS-S maize (Zea mays L.), sorghum [Sorghum bicolor (L.) Moench] and Mimulus (Klein et al. 2005; Xu et al. 2009; Barr and Fishman 2010; Jordan et al. 2010).
$R f s$ distinct from the PPR type, are known, but the current paucity of knowledge precludes further classification. Three non-PPR-type $R f s$ have been identified to date: maize $R f 2 a$, rice $R f 17$, and rice $R f 2$. Maize $R f 2 a$ was the first $R f$ cloned, and encodes a mitochondrial aldehyde dehydrogenase (Cui et al. 1996). However, the functional relationship between URF13T, a polypeptide encoded by the S-ORF in maize T-type CMS (Dewey et al. 1986), and RF2A proteins is unclear. Rice Rf17 was cloned as an $R f$ for CW-type CMS (Fujii and Toriyama 2009). The reduced expression of $R f 17$ in CW mitochondria compromises MS expression, thereby functionally acting as if Rf17 restored male fertility. It remains unknown whether any direct relationships exist between $R f 17$ and an, as yet, unidentified S-ORF in CW-CMS mitochondria. Genes for glycine-rich proteins have been isolated as rice $R f 2$ for Lead Rice (LD)-type CMS via map-based cloning (Itabashi et al. 2011). Hu et al. (2012) reported that a PPR-type RF protein, a glycine-rich protein, and a transcript encoding S factor are components of a large mitochondrial complex of $400-500 \mathrm{kDa}$ in HongLian (HL)-type CMS in rice.

Given its importance in hybrid seed production, sugar beet CMS has been extensively studied (Boutry et al. 1984; Lind et al. 1991; Hallden et al. 1992; Ducos et al. 2001). CMS mitochondria of sugar beet are characterized by a unique $39-k D a$ polypeptide encoded by an N-terminal extension of atp6 (preSatp6) that is missing in N mitochondria (Yamamoto et al. 2005). A precursor polypeptide consisting of preSATP6 and ATP6 is hypothesized to be cleaved into two separate polypeptides, one being the mature ATP6 polypeptide, and the other a preSATP6 polypeptide which subsequently forms
a $200-\mathrm{kDa}$ oligomer in the mitochondrial membrane. However, following fertility restoration, the amount of the preSATP6 polypeptide remained unchanged (Yamamoto et al. 2005), an observation that led us to postulate the involvement of a non-PPR-type $R f$.

According to a genetic model proposed by Owen (1945), fertility restoration in sugar beet requires two independent genes, X and Z, of which the latter seemed less effective. Genetic mapping of X and Z located these genes on chromosomes III and IV, respectively (Pillen et al. 1993; Schondelmaier and Jung 1997; Hjerdin-Panagopoulos et al. 2002; Bosemark 2006). We previously found that pollen fertility segregated as if it were controlled by a single dominant gene when the sugar beet line NK-198 was used as a pollen parent (Hagihara et al. 2005a), although the level of fertility restoration varied depending on the nuclear genetic background (Hagihara et al. 2005a). The NK-198 Rf was named Rf1 and mapped to a terminal region of chromosome III, suggesting that the Rf1 was an allele of the X locus (Hagihara et al. 2005a). Molecular markers linked to Rf1 were used to isolate BAC clones that covered the Rf1 locus (Hagihara et al. 2005b).

In this study, the nucleotide sequence of a $383-\mathrm{kbp}$ chromosomal region containing the sugar beet Rf1 was determined. From this sequence, we found that an unexpected gene satisfied the following criteria: specific transcription in Rf1 flower buds, partial fertility restoration to transgenic sugar beet (the level of restoration is comparable to that evaluated by a crossing experiment), and mitochondrial localization of the GFP-fused protein. The gene was related to yeast Oma1 known to be involved in quality control of mitochondrial proteins (Kaser et al. 2003). We also found an organizational similarity between sugar beet Rf1 locus and some PPR-type $R f$ loci in terms of gene clustering and copynumber variation between Rf1 and rf1, suggesting that a common evolutionary mechanism(s) operates on plant $R f s$.

Materials and Methods

Plant materials

A restorer line NK-198, three maintainer lines TK-81mm-O, TA-33-O, and NK-219mm-O, and a CMS line NK-219mmCMS used in this study were developed at the Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Japan. Crosses were made by exchanging paper bags over the inflorescences in a greenhouse. Plants were vernalized for 4 months ($5^{\circ}, 24 \mathrm{hr}$ /day) and flowered in the greenhouse. Anther tissues were sampled to examine pollen fertility on the day of anthesis. Pollen fertility was examined by Alexander staining (Alexander 1969).

Isolation of nucleic acids

Total cellular DNA of beet plants was isolated from fresh green leaves by the CTAB-based method described by Doyle and Doyle (1990). DNAs from BAC clones, cosmid clones, and plasmid clones were isolated by an alkaline lysis procedure (Sambrook et al. 1989). Lambda-phage DNA was
isolated by a liquid culture method (Sambrook et al. 1989). Isolated DNA was purified by cesium chloride-ethidium bromide (CsCl-EtBr) equilibrium centrifugation when necessary. Total RNA from sugar beets was isolated according to Chomczynski and Sacchi (1987) or by using the RNeasy Plant Mini kit (Qiagen, Hilden, Germany). Residual DNA in the RNA sample was removed by DNase I (Takara Bio, Ohtsu, Japan) digestion in the presence of 8 mM MgCl 2 .

Subcloning into a cosmid vector

Purified BAC-clone DNA was partially digested with Sau3A I (Takara Bio), then electrophoresed in an agarose gel. DNA fragments of $30-50 \mathrm{kbp}$ were eluted from the gel and partially filled to obtain a 5^{\prime}-GA- 3^{\prime} end (0.5 M Tris- HCl pH 7.5 , 100 mM MgCl 2 , 10 mM dithiothreitol, $80 \mu \mathrm{M}$ dATP, $80 \mu \mathrm{M}$ dGTP, 2 units Klenow fragments, 30 min at room temperature) to prevent self-ligation. The cosmid vector pWE15 (Stratagene, La Jolla, CA) was completely digested with XhoI and then partially filled to obtain a 5^{\prime}-TC-3' end $(0.5 \mathrm{M}$ Tris- $\mathrm{HCl} \mathrm{pH} 7.5,100 \mathrm{mM} \mathrm{MgCl} 2,10 \mathrm{mM}$ dithiothreitol, $80 \mu \mathrm{M}$ dCTP, $80 \mu \mathrm{M}$ dTTP, 2 units Klenow fragments, 30 min at room temperature) to prevent self-ligation. The ligation reaction was carried out using T4 DNA ligase (New England Biolabs, Beverly, MA) in the presence of 10% polyethylene glycol 8000. The ligated DNA sample was precipitated with ethanol and then dissolved in water. Gigapack III Gold (Stratagene) was used for packaging.

Construction of the shotgun library and nucleotide sequencing

Inserts of the lambda-phage clone were amplified with LA-Taq (Takara Bio) according to the instruction manual. Inserts of the cosmid clone were cut out by NotI digestion and recovered from gel slices after electrophoresis. The inserts or whole BACclone DNAs were randomly sheared by sonication and then electrophoresed in an agarose gel. DNA fragments of 1.2-1.5 and $2.0-2.5 \mathrm{kbp}$ were eluted from the gel slices. The ends of DNA fragments were blunted by T4 DNA polymerase (Takara Bio) in the presence of dATP, dTTP, dCTP, and dGTP, and then ligated into the HincII site of pUC19. Plasmid DNA was sequenced using a LIC-4200L (Li-COR, Lincoln, NE) or ABI3130 (Applied Biosystems, Foster City, CA) sequencer.

Bioinformatics

Assembly of the nucleotide sequence was done using a Staden package (Staden 1996) and Sequencher 4.0 (Hitachi Software Engineering, Tokyo). Protein-coding regions were predicted by GENESCAN (Burge and Karlin 1997) (http://genes.mit. edu/GENSCAN.html) with an Arabidopsis matrix and the BLASTX program (http://www.ncbi.nlm.nih.gov/). A homology search for putative amino acid sequences was done using BLASTP on the National Center for Biotechnology Information (NCBI) website (http://www.ncbi.nlm.nih.gov/). Intracellular localizations were predicted using TargetP (Emanuelsson et al. 2000) (http://www.cbs.dtu.dk/services/TargetP/) and Predotar (Small et al. 2004) (http://urgi.versailles.inra.fr/predotar/
predotar.html). A motif search was undertaken using Pfam (Finn et al. 2006) (http://pfam.sanger.ac.uk/). Repeated sequences were searched with Reputer (Kurtz et al. 2001) (http://bibiserv.techfak.uni-bielefeld.de/reputer/). Multiple sequences were aligned using ClustalW (Chenna et al. 2003) (http://clustalw.ddbj.nig.ac.jp/top-j.html). Nucleotide sequences reported in this study are deposited in the DNA Data Bank of Japan (DDBJ)/GenBank/EMBL under accession nos. AB646133 (4F1), AB646134 (5A3), AB646135 (33E19), and AB646136 (no. 10).

PCR and direct sequencing

Total cellular DNA (5-10 ng) was subjected to PCR amplification using LA-Taq (Takara Bio) or GoTaq Green Master mix (Promega, Madison, WI). Total RNA ($2 \mu \mathrm{~g}$) was reverse transcribed with the SuperScript III First-Strand Synthesis system (Invitrogen, Carlsbad, CA). The resultant cDNA was subjected to PCR amplification. Direct sequencing was achieved using an ABI3130 sequencer (Applied Biosystems).

Hybridization

Colony- and plaque-lift filters were prepared using Hybond N+ membranes (GE Healthcare, Amersham Place, UK) according to the instruction manual. For DNA gel blot analysis, a DNA sample ($5 \mu \mathrm{~g}$) was digested with restriction endonucleases purchased from Takara Bio and electrophoresed in a 1% agarose gel. After denaturation and neutralization, DNA fragments were transferred to Hybond N+ membranes according to the instruction manual. For RNA gel blot analysis, $5 \mu \mathrm{~g}$ RNA was electrophoresed in a 1.5\% agarose gel containing 0.66 M formaldehyde and then transferred by capillary action to Hybond N+. The DNA fragment of interest was labeled with ${ }^{32} \mathrm{P}$ using the Megaprime DNA labeling system (GE Healthcare) or with alkaline phosphatase using the AlkPhos Direct DNA labeling system (GE Healthcare). Hybridization was conducted according to the manufacturer's instructions. Signal bands were detected on X-ray films or with an image analyzer (BAS2000; Fuji Photo Film, Tokyo).

Construction of GFP-fusion genes and transient assays

The pTH2 cloning vector, whose NcoI site includes the initiation codon for GFP, was used (Chiu et al. 1996). Gene segments of interest were PCR amplified with a set of primers, one bearing a Sall and the other an NcoI target sequence (see Supporting Information, Table S1) so that the amplified ORF could fuse in-frame with GFP. The resultant PCR fragments were digested with SalI and NcoI and then ligated into pTH2. A fluorescent signal in mitochondria resulted from the expression of an Arabidopsis F1-ATPase δ-subunit-RFP fusion protein expressed from pMt-R, a derivative plasmid of pWs (Arimura and Tsutsumi 2002). A PCR fragment corresponding to the first 58 amino acids of Arabidopsis RuBisCo activase was amplified and then substituted for the Arabidopsis F1ATPase δ-subunit region of pMt-R. The resulting plasmid was designated pCp-R (Kitazaki et al. 2011). Plasmid DNA was ethanol precipitated with gold particles of $1 \mu \mathrm{~m}$ diameter
(Bio-Rad Laboratories) and then introduced into the epidermal cells of onion bulbs or Welsh onion sheaths using a GIEIII IDERA system (Tanaka, Ishikari, Japan). The fluorescent signal was captured with a BX50 microscope system combined with a digital camera (DP70; Olympus, Tokyo).

Generation of transgenic sugar beets

Genomic DNA fragments containing bvORF19, bvORF20, and bvORF21 were PCR amplified from BAC clone 9C23 (see Table S1 for primer information). Using BP Clonase Enzyme mix (Invitrogen), the genomic DNA fragments were cloned into the donor vector, pDONRzeo, according to the manufacturer's instruction manual. After verifying the sequence integrity, the inserted DNA fragments were transferred to the binary vector, pMDC123, encoding the bialaphos-resistance gene as a selectable marker (Curtis and Grossniklaus 2003) by using LR Clonase Enzyme mix (Invitrogen). A $5.3-\mathrm{kbp}$ BglII fragment containing bvORF18 was obtained from cosmid clone 4 F 1 and subcloned into the BamHI site of pBluescript. After verifying the nucleotide sequence, the fragment was excised as a PstI-XbaI fragment and cloned into pMDC123. All the constructs were introduced into Agrobacterium tumefaciens strain LBA4404.

The generation of transgenic sugar beets was accomplished according to an unpublished procedure developed by H. Tamagake (unpublished data). Briefly, leaf explants from aseptic plantlets were laid onto a callus-inducing medium (based on the modified MS medium, where $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and 2-(morpholin-4-yl)ethanesulfonic acid (MES) were adjusted 825.0 mg /liter and $250 \mathrm{mg} /$ liter, respectively), containing $0.25 \mathrm{mg} /$ liter 6-benzyladenine (BA) and $2.5 \mathrm{~g} /$ liter gellan gum. White, friable calli were cultured in a suspension medium (the modified MS medium containing $0.25 \mathrm{mg} / \mathrm{liter} \mathrm{BA}$) for 10 days. After that, calli were co-cultured with Agrobacterium in the suspension medium containing 100 mg /liter acetosyringone for 3-4 days. The calli were washed with the suspension medium containing $100 \mathrm{mg} /$ liter meropenem and $2 \mathrm{mg} /$ liter bialaphos and transferred onto a selection medium (the modified MS medium containing $0.25 \mathrm{mg} / \mathrm{liter}$ BA, $8.0 \mathrm{~g} /$ liter agar, $50 \mathrm{mg} /$ liter meropenem and $100 \mathrm{mg} /$ liter bialaphos). Calli resistant to bialaphos were regenerated into plantlets on a regeneration medium (the modified MS medium containing $1.0 \mathrm{mg} /$ liter BA, $1.0 \mathrm{mg} /$ liter 2,3,5triiodobenzonic acid, $1.0 \mathrm{mg} /$ liter abscisic acid, $8.0 \mathrm{~g} / \mathrm{liter}$ agar, $50 \mathrm{mg} /$ liter meropenem, and $2 \mathrm{mg} /$ liter bialaphos).

Nucleotide sequences of oligonucleotides

Oligonucleotides used in this study are listed in Table S1 and Figure S1.

Results

Nucleotide sequence of the chromosomal region containing sugar beet Rf1

The sugar beet Rf1 had previously been located to a region delimited by two molecular markers, mP-A16 and mCP-L6
(Hagihara et al. 2005b). The region was covered with an array of ordered BAC clones (Hagihara et al. 2005b). To obtain a nucleotide sequence of this region, we selected three of the clones, 5A3, 9C23, and 33E19 (Hagihara et al. 2005b), as sequencing templates. To minimize sequence redundancy, we screened a cosmid clone bridging 5A3 and 33E19, from a sublibrary made from 9C23 by using probes made up of 5A3- and 33E19-BAC ends. As a result, cosmid clone 4 F 1 was selected for sequencing.

We conducted shotgun sequencing of 5A3, 33E19, and 4F1, yielding 3047, 8058, and 164 independent plasmid sequences, respectively. The plasmid sequences were assembled into three sequences of 156,315 ; 201,705; and $36,977 \mathrm{bp}$, respectively. The average coverage was 10.79 for 5A3, 22.64 for 33E19, and 6.2 for 4 F 1 . Overlaps of 4091 bp and 7539 bp occurred between the 4F1 and 5A3 sequences and between the 4 F 1 and 33 E 19 sequences, respectively. Therefore, the assembly of 5A3, 33 E 19 , and 4 F 1 provided a continuous $383,367-\mathrm{bp}$ sequence, with a G + C content of 34.9%. Sequence analysis revealed that target sequences of the five molecular markers (mCP-A54, mP-A16, mCP-K2, mCP-L6, and mCP-L45) that had been mapped to the vicinity of Rf1 (Hagihara et al. 2005b) were included in the assembly in the order predicted by genetic analysis (Figure 1).

Potential protein-coding genes in the sequenced region and their transcription

Sequence analysis of the 383,367-bp region identified three potential transposable elements (TEs) (Figure 1). One TE was homologous to the maize mutator element and its related TEs, and was named bvMULE-1 (Beta vulgaris Mutatorlike element) (Figure S2). The second TE contained two ORFs (Figure S3). The upstream ORF that encoded 752 amino acid residues (ORF-A in Figure S3) had no homology to any entries in public databases, but a Pfam search identified an RNA recognition motif (RRM). The putative translation product of the second ORF (ORF-B, 1297 amino acid residues) had a high homology to reverse transcriptases of plant long interspersed nuclear elements (LINEs), which include an endonuclease/exonuclease/phosphatase family domain and an RNA-dependent DNA polymerase domain. This structure resembles a group of sugar beet LINEs called BNR (Heitkam and Schmidt 2009). The third TE contained a 4701-bp ORF exhibiting a high homology to Ty3-gypsy-type retroelements, and was named bvgypsy-1 (Figure S4).

Aside from the ORFs encoded by the TEs, 41 genes were predicted. These were named bvORF1-bvORF41 (Figure 1 and Table 1). We surveyed the rest of the sequenced region by BLASTX search to detect any homologous entries in the DDBJ/EMBL/GenBank database but found none. To infer the function of the 41 genes, we conducted a BLASTP search against the DDBJ/EMBL/GenBank database using each of their putative translation products as queries. Although 34 queries matched well with known plant proteins, 7 had no homology to any entries (Table 1). We obtained little information on the possible functions of 3 of the 34 queries

Figure 1 Organization of a 383-kbp chromosomal region of NK-198 deduced from two BAC clones and a cosmid clone. Hindlll restriction sites are shown as triangles. Horizontal arrows indicate predicted genes and their orientation; intronic sequences are omitted. Gray arrows denote the absence of any homologous genes in the database, whereas blue and green arrows indicate the presence of homologous genes in other plants with or without functional assignment, respectively. Orange boxes represent transposable elements, and red boxes show their neighboring repeated sequences. Positions of five molecular markers that were described in Hagihara et al. (2005b) are indicated by vertical arrows.
with known homologs, as no detailed studies of their homologous entries have been published. The remaining 31 queries retrieved homologous entries whose functions have been fairly well described. Of these entries, Table 1 lists the best matching putative function from the Arabidopsis genome entries and their description from the The Arabidopsis Information Resource (TAIR) database (http://www. arabidopsis.org/).

Because $R f 1$ is a gene for male-fertility restoration, expression patterns of these genes in anthers helps narrow down the coding region of Rf1. RNA samples from NK-198 anthers, leaves, and roots were subjected to reverse transcription (RT)-PCR analysis. Primers for bvORF12-bvORF35, genes located in the region delimited by genetic markers mP-A16 and mCP-L6 (Hagihara et al. 2005b) (see Figure 1), were designed; a single primer set was expected to amplify bvORF18-bvORF21 because these genes were very similar (Figure S5) (quadruplicated genes). Results of the 21 RTPCR analyses are summarized in Table 1 (see also Figure S1). Transcripts of all genes except bvORF22, bvORF28, bvORF29, and bvORF34 were detected in all organs examined. No amplicon was observed in any organs when the bvORF28- or the bvORF29-specific primer set was used, whereas organ-specific expression was observed in bvORF22 and bvORF34, whose transcript levels were below the detection limit in leaves and roots, respectively.

There was a PPR protein gene in the 383 -kbp region. Transcripts of this gene, $b v O R F 16$, were detected in NK-198 anthers (Table 1). However, because of the amino acid
sequence homology between bvORF16 and at5g42310 (Table 1), which presumably is an ortholog of maize crp1, a regulatory gene of plastids (Barkan et al. 1994; SchmitzLinneweber et al. 2005; Williams-Carrier et al. 2008), it seemed likely that bvORF16 encodes a plastid protein and not a mitochondrial protein. Two programs, TargetP and Predotar, predicted no specific localization for the bvORF16 translation product. We constructed a chimeric GFP gene with 80 N -terminal amino acid residues of bvORF16. The chimeric GFP genes were placed under the control of the 35 S promoter of the cauliflower mosaic virus. We bombarded epidermal cells of Welsh onion sheath with plasmids carrying the chimeric GFP gene and observed fluorescent signals. Surprisingly, each of the localized green signals matched with either mitochondria or plastids that were marked by a mitochondrion-targeting RFP or a plastid-targetingRFP (see Materials and Methods), respectively (Figure 2, A-F). Therefore, bvORF16 encodes a dual-targeted PPR protein. As far as we know, no PPR-type Rf reported to date has exhibited this dual-targeting property (Bentolila et al. 2002; Wang et al. 2006). PPR-type Rfs and PPR-type Rflike ($R F L$) genes tend to cluster with similar genes on chromosomes (Fujii et al. 2011), unlike bvORF16, a single copy gene in the sugar beet genome (Figure S6). The PPRtype Rfs identified to date belong to a subclass of PPR genes (termed P class) and form a single clade with RFL genes in a phylogenetic tree of P-class PPR genes (Fujii et al. 2011). We examined whether bvORF16, which appears to be a P-class PPR gene, belongs to the clade of

Table 1 Characteristics of the genes identified in the 383-kbp region

Name of ORFs	Best matched Arabidopsis entries			Transcripts ${ }^{\text {a }}$		
	Locus name	Description ${ }^{\text {b }}$	E-value	Anthers	Leaves	Roots
bvORF1	At2g04940	Scramblase related	e-80	ND ${ }^{\text {c }}$	ND	ND
bvORF2	At4g33260	Putative cdc20 protein	0	ND	ND	ND
bvORF3	At5g17210	Unknown function	$5 \mathrm{e}-44$	ND	ND	ND
bvORF4	NA ${ }^{\text {d }}$	No hit	NA	ND	ND	ND
bvORF5	At5g57020	N -myristoyltransferase	0	ND	ND	ND
bvORF6	NA	No hit	NA	ND	ND	ND
bvORF7	At5g17170	Enhancer of sos3-1 (ENH1)	$4 \mathrm{e}-26$	ND	ND	ND
bvORF8	At4g19490	Putative homolog of yeast Vps54	e-139	ND	ND	ND
bvORF9	At4g19490	Putative homolog of yeast Vps54	e-64	ND	ND	ND
bvORF10	At3g10520	Class 2 nonsymbiotic hemoglobin	$2 \mathrm{e}-63$	ND	ND	ND
bvORF11	At2g34780	MEE22, EMB1611, etc.	$4 \mathrm{e}-79$	ND	ND	ND
bvORF12	At1g65810	P loop containing nucleoside triphosphate hydrolases superfamily protein	0	+	+	+
bvORF13	At1g65810	P loop containing nucleoside triphosphate hydrolases superfamily protein	0	$+^{e}$	+	+
bvORF14	NA	No hit	NA	+	+	+
bvORF15	At3g03150	Unknown function	$3 \mathrm{e}-15$	+	+	+
bvORF16	At5g42310	Pentatricopeptide repeat (PPR-like) superfamily protein	$4 \mathrm{e}-94$	+	+	+
bvORF17	At3g49010	605 ribosomal protein L13	$8 \mathrm{e}-82$	+	+	+
bvORF18	At5g51740	Peptidase M48 family protein	$6 \mathrm{e}-62$	+	+	+
bvORF19	At5g51740	Peptidase M48 family protein	$4 E-52$	+	+	+
bvORF20	At5g51740	Peptidase M48 family protein	8E-61	+	+	+
bvORF21	At5g51740	Peptidase M48 family protein	6E-62	+	+	+
bvORF22	At3g50170	Unknown function	2E-71	+	- ${ }^{\text {f }}$	+
bvORF23	At5g48620	Disease resistance protein (CC-NBS-LRR' ${ }^{\text {g class) family }}$	e-107	+	+	+
bvORF24	At5g51740	Peptidase M48 family protein	$8 \mathrm{e}-06$	+	+	+
bvORF25	At5g35450	Disease resistance protein (CC-NBS-LRR class) family	e-100	+	+	+
bvORF26	At1g58390	Disease resistance protein (CC-NBS-LRR class) family	e-107	+	+	+
bvORF27	At2g04620	Cation efflux family protein	e-136	+	+	+
bvORF28	NA	No hit	NA	-	-	-
bvORF29	NA	No hit	NA	-	-	-
bvORF30	At5g23450	LCBK1, ATLCBK1, etc. (a sphingosine kinase)	0	+	+	+
bvORF31	At4g27870	Vacuolar iron transporter (VIT) family protein	2e-31	+	+	+
bvORF32	At4g27870	Vacuolar iron transporter (VIT) family protein	$7 \mathrm{e}-35$	+	+	+
bvORF33	At3g02580	Brassinosteroid biosynthetic enzyme		+	+	+
bvORF34	At5g24680	Peptidase C78, ubiquitin fold modifier-specific peptidase 1/2	2e-39	+	+	-
bvORF35	At3g49590	Autophagy-related protein 13	$4 e-96$	+	+	+
bvORF36	At5g24660	RESPONSE TO LOW SULFUR 2 (LSU2)	2e-13	ND	ND	ND
bvORF37	NA	No hit	NA	ND	ND	ND
bvORF38	NA	No hit	NA	ND	ND	ND
bvORF39	At5g24650	Mitochondrial import inner membrane translocase subunit Tim17/Tim22/Tim23 family protein	$5 e-65$	ND	ND	ND
bvORF40	At5g24630	BRASSINOSTEROID-INSENSITIVE4 (a protein that forms part of the topoisomerase VI complex)	$3 e-36$	ND	ND	ND
bvORF41	At5g24620	Pathogenesis-related thaumatin superfamily protein	2e-76	ND	ND	ND

${ }^{a}$ Summary of Figure S1.
${ }^{b}$ Descriptions from TAIR (http://www.arabidopsis.org/).
${ }^{\mathrm{C}}$ No data.
${ }^{d}$ Not applicable.
${ }^{e}$ Detected.
${ }^{f}$ Not detected.
${ }^{g}$ N-terminal coiled-coil domain (CC), central nucleotide-binding site domai (NBS) and C-terminal leucine-rich repeat (LRR).

RF and RFL by phylogenetic analysis (File S2) and found that bvORF16 clustered together with at5g42310 (labeled as At_CRP1 in File S2) but not with any PPR-type RF or RFL proteins. Therefore, bvORF16 is an atypical Rf candidate.

No genes in the 383,367-bp sequence exhibited homology to mitochondrial aldehyde dehydrogenase, glycine-rich protein, or retrograde regulated male sterility protein, which
were encoded by maize Rf 2 a, rice $\mathrm{Rf2}$, or rice $\mathrm{Rf17}$, respectively (Table 1).

The Oma1-Like gene was associated with NK-198-specific transcripts

We previously reported that a 7.0 -kbp HindIII fragment that had been subcloned from 3709 (a BAC clone overlapping with the 5A3, 9C23, and 33E19) detected specific transcripts

Figure 2 Images of fluorescent signals obtained from transient expression tests. (A-F) Images of epidermal cells of Welsh onion sheath. (G and H) Images of epidermal cells of onion bulb scales. Bars, $50 \mu \mathrm{~m}$. A and D are green fluorescence images of bvORF16-GFP; B and H are red fluorescence images of mitochondria-targeted RFP; C is a merged image of A and $B ; E$ is a red fluorescence image of plastid-targeted RFP; F is a merged image of D and $E ; G$ is a green fluorescence image of bvORF20-GFP; and I is a merged image of G and H .
in flower buds of NK-198 but not of the CMS line, TK-81mmMS (i.e., [S]rf1rf1) (Hagihara et al. 2005b). During our sequence analysis, we noticed that the 7.0-kbp HindIII fragment included the coding sequence of one of the quadruplicated genes, bvORF19, that resembled yeast Oma1, a peptidase M48 family protein involved in quality control of mitochondrial membrane proteins (Kaser et al. 2003) (Table 1 and see Files S3, S4, and S5). To see whether NK-198-specific transcripts were homologous to $b v O R F 19$, RNA gel blot analysis was conducted using the 3^{\prime}-UTR sequence of bvORF19 as a probe. Because of high sequence homology among bvORF18-bvORF21, the design of specific hybridization probes for bvORF18, bvORF19, bvORF20, and bvORF21 was infeasible. Therefore, our probe simultaneously detected transcripts of the four genes in NK-198 samples. A strong signal appeared in the lane corresponding to NK-198 flower buds, but was hardly seen elsewhere (Figure 3). This result was consistent with our previous results using the 7.0-kbp HindIII fragment of the NK-198 genome (Hagihara et al. 2005b).

Both RNA gel blot analysis and RT-PCR analysis (see above) revealed that at least one copy of the quadruplicated genes (bvORF18-bvORF21) was expressed in anthers of NK-198, but it remained unclear whether all copies were expressed. Multiple sequence alignment of the bvORF18- to $b v O R F 21-$ coding regions revealed that bvORF18 and bvORF21 were identical at the nucleotide sequence level, and thus could not be distinguished from each other (Figure S5). On the other hand, the sequences from nucleotide ~ 478 to ~ 497 provided unique sequence tags for bvORF19 and bvORF20, due to a microsatellite-like polymorphism and nucleotide
substitutions (Figure S5). Based on this observation, we set up an assay including direct sequencing of RT-PCR products to detect the sequence tags of the expressed copies. Before we conducted the expression assay, the genomic DNA of NK-198 was subjected to PCR amplification, targeting a region encompassing the polymorphic sites (Figure 4) with primers D-Fw and D-RV to obtain a control template. The sequencing electrophoregram of the control template with the sequencing primer Gre is shown in Figure 4. At polymorphic site 1, a C residue occurs in bvORF18 and bvORF21, whereas T and A are found in bvORF19 and bvORF20, respectively. We next PCR amplified cDNA of NK-198 young anthers (i.e., predehiscence) with the primers D-FW and D-RV. An electrophoregram of the RT-PCR products was obtained using the sequencing primer Gre. The highest peak at site 1 was A, followed by C and T. At polymorphic site 2, the peak of T , indicative of bvORF20, was higher than that of the control (Figure 4), although this may not reflect a significant quantitative difference. These data indicated that all copies of bvORF18-bvORF21 were expressed in anthers.

bvORF20 restored partial pollen fertility to CMS sugar beet

If one of the quadruplicated ORFs is the Rf1 gene, we might expect that the ORF in question could restore pollen fertility when transferred to Owen CMS plants. Sugar beet is known to be quite recalcitrant to regeneration following genetic transformation (Skaracis 2005). One of the present authors also found that regeneration in sugar beet was highly genotype

Figure 3 RNA gel blot analysis of the 3'-UTR of bvORF19 hybridized with total RNAs from flower buds (F), leaves (L), and roots (R) of NK-198, and from flower buds of TK-81mm-O. Sizes of signal bands are indicated in kilobases. Images in the bottom row show ethidium-bromide (EtBr-) rRNA after gel electrophoresis.
dependent, and a Japanese breeding line, NK-219mm-CMS, had a good shoot regeneration response (H. Tamagake, unpublished data). To examine whether NK-198 actually acted as a restorer of NK-219mm-CMS, we crossed NK-219mmCMS with NK-198. The F_{1} progeny (11 plants) were all classified as "partial fertile"; nearly all pollen grains appeared to be well developed morphologically but their cytoplasm was scarcely stained with Alexander's dye (Figure 5, A-C). Because this phenotype could be clearly distinguished from the completely sterile phenotype of NK-219mm-CMS plants (almost all microspores were aborted at an early stage of microsporogenesis and the exine was poorly developed), we concluded that NK-198 Rf1 restored partial fertility to the NK-219mm-CMS plants, although NK-198 Rf1 restored almost complete fertility to two other sugar beet lines, TK-81mm-CMS and TK-76mm-CMS (Hagihara et al. 2005a). Notably, the effect of NK-198 Rf1 is influenced by the nuclear genetic background (see the result using sugar beet line I-12CMS(R) in Hagihara et al. 2005a).

To test our hypothesis with transgenic plants, the genomic DNA fragment containing the protein-coding region and its 5^{\prime} upstream (2 to 2.5 kbp in length) and 3^{\prime} downstream regions ($\sim 500 \mathrm{bp}$) of bvORF18, bvORF19, bvORF20, or bvORF21 were separately inserted into binary vectors. The resultant constructs were named pBVORF18, pBVORF19, pBVORF20, and pBVORF21, respectively. These constructs were subsequently introduced into NK-219mm-CMS calli by Agrobacteriummediated transformation. The calli resistant to bialaphos herbicide, a phenotype conferred by the selectable marker on the T-DNA, were transferred to a regeneration medium. The regenerated sugar beet plants contained the bialaphos-resistance gene as shown by PCR analysis using primers BAR5 and BAR6 (data not shown).

We obtained 10 independent transgenic sugar beet plants transformed with pBVORF20, of which 8 exhibited partial

Figure 4 Polymorphic sites in the PCR targets of the quadruplicated genes in NK-198 and electrophoregrams obtained by direct sequencing. The original electrophoregrams were converted to complementary images on the sequencing platform (ABI3130). Red, green, and black lines indicate the signal peaks of adenine, thymine, and cytosine, respectively. Numbers of nucleotides correspond to the sequence alignment shown in Figure S5.
fertility (Figure 5G). This partial-fertile phenotype was indistinguishable from that of the F_{1} progenies of NK-219mmCMS \times NK-198 (Figure 5C). To ascertain the cosegregation of fertility restoration with the transgene, a transgenic plant carrying pBVORF20 was pollinated with the TA-33-O line, which had a maintainer genotype. The $14 \mathrm{~F}_{1}$ plants were either male sterile (8 plants) or partial fertile (6 plants) (Figures S7 and S8). The bialaphos-resistance gene was found to cosegregate with the partial-fertility phenotype (Figure S8).

By contrast, three, nine, and eight transgenic plants were obtained carrying the pBVORF18, pBVORF19, and pBVORF21 constructs, respectively, and they all exhibited complete male sterility, not partial fertility (Figure 5, E, F, and H). These experiments strongly indicated that Rf1 most likely corresponded to bvORF20.

Intracellular localization of bvORF20

The TargetP and Predotar programs predicted that bvORF20 proteins would be localized in mitochondria (scores: TargetP, 0.847; Predotar, 0.85). We constructed chimeric GFP genes with 55 N -terminal amino acid residues of bvORF20 at their 5^{\prime} ends. The plasmid carrying the chimeric GFP genes was bombarded into epidermal cells of onion bulbs. The green fluorescent signals matched well with the red signals from the mitochondrial marker construct, pMt-R, which was cobombarded (Figure 2, G-I), confirming that bvORF20 encodes a mitochondrial protein.

Organization of the rf1 allele

Alteration(s) in nucleotide sequence was expected in the rf1 allele. Using a probe of the 3^{\prime}-UTR sequence of bvORF19,

Figure 5 Photographs of anther contents from transgenic and control sugar beets. A-H are images of Alexander's staining. Bars, $20 \mu \mathrm{~m}$. (A) Anther contents of a maintainer line, NK-219mm-O. (B) Anther contents of a CMS line, NK-219mm-CMS. (C) Anther contents of an F_{1} plant (NK$219 \mathrm{~mm}-\mathrm{CMS} \times \mathrm{NK}-198$). (D) Anther contents of a transgenic sugar beet transformed with the pMDC123 vector. (E-H) Anther contents of transgenic sugar beets transformed with pBVORF18-pBVORF21, respectively.
which is highly conserved among bvORF18-bvORF21, a lambda-phage genomic library of a maintainer line, TK$81 \mathrm{~mm}-\mathrm{O}$ (Matsuhira et al. 2007), was screened, and five recombinant phages were obtained. Restriction mapping of the five clones using EcoRI and XbaI enabled us to assemble these clones into a contig of $\sim 30 \mathrm{kbp}$ (Figure 6). Gene mapping of bvORF17, bvORF20, and bvORF22 on the physical map was achieved by DNA gel blot analysis, and recombinant phage no. 10 was identified as containing all mapped genes. The insert in recombinant phage no. 10 was subjected to shotgun sequencing. A continuous $16,037-\mathrm{bp}$ region was obtained after assembling 55 independent plasmid clones and subsequent correction of any ambiguities by sequencing PCR fragments encompassing the regions in question. In the $16,037-\mathrm{bp}$ region, we found three homologous genes to bvORF17, bvORF20, and bvORF22, but none of the $B N R$ copies (Figure 6). The order and orientation of the three ORFs was preserved between TK-81mm-O and NK-198, but the bvORF20-like gene was single copy (here-

Figure 6 Physical map of the chromosomal region containing bvORF17, bvORF20L, and bvORF22 of TK-81mm-O. Sizes of restriction fragments are shown in kilobase pairs. Five recombinant phage clones are indicated. Gene organization deduced from the nucleotide sequence of clone no. 10 is indicated below with a bar. Colors and directions of the horizontal arrows have the same meanings as in Figure 1.
after named bvORF20L). To examine the copy number of bvORF20L, the conserved 3^{\prime}-UTR sequence was hybridized to total cellular DNA of TK-81mm-O. The number and size of the signal band was congruent with the sequence data ($7.9,7.0,5.9$, and 1.9 kbp for NK-198 and 5.9 kbp for TK$81 \mathrm{~mm}-$ O) (Figure 7). A comparison of the amino acid sequences predicted from bvORF20L and its counterparts in NK-198 is shown in Figure S9. bvORF20L is similar to the copies of the quadruplicated genes in NK-198 but not identical to any one of them (see Figure S5 for comparison of nucleotide sequences). Homologies at the amino acid sequence level were 83-85\% (vs. bvORF18, bvORF19, $b v O R F 20$, and $b v O R F 21$). A detailed organizational comparison of this genomic region between TK-81mm-O and NK198 will be presented elsewhere.

Discussion

The nucleotide sequence of a $383-\mathrm{kbp}$ chromosomal region containing the Rf1 locus of sugar beet was determined. Forty-one potential genes were found in this region. On this basis the gene density was calculated to be $9.4 \mathrm{kbp} /$ gene, which appeared quite rich, given that the sugar beet's entire genome is 758 Mbp (Arumuganathan and Earle 1991). This gene density would suggest a total number of sugar beet genes of more than 80,000, an apparent overestimation compared to the total gene numbers of other dicots such as Arabidopsis $(25,498)$, black cottonwood (Populus trichocarpa Torr. \& A.Gray; 45,555), and grapevine (Vitis vinifera L.; 30,434) (The Arabidopsis Genome Initiative 2000; Tuskan et al. 2006; Jaillon et al. 2007). Recently, Dohm et al. (2012) reported that a maximum average distance of $30-40 \mathrm{kbp}$ between genes in the sugar beet genome could be assumed according to their physical mapping study. On the other hand, three TEs identified in this study occupied

Figure 7 DNA gel blot analysis of the 3'-UTR of bvORF19 hybridized with total cellular DNA from NK-198 (lane 1) and TK-81mm-O (lane 2). Hindlll restriction endonuclease was used. Size markers are shown on the right (in kilobase pairs).
a total of 6% of the sequenced region, which is much less than in other sugar beet chromosomal regions (up to 41.6\%) (Schulte et al. 2006).

The $383-\mathrm{kbp}$ region that was sequenced in this study contained neither typical PPR-type Rf gene nor genes related to $R f$ genes from other plants such as maize $R f 2 a$, rice $R f 17$, or rice Rf2 (Cui et al. 1996; Fujii and Toriyama 2009; Itabashi et al. 2011). This finding suggests that fertility restoration in sugar beet CMS involves a novel mechanism. This interpretation is consistent with the previous observation that mitochondrial gene expression in sugar beet is apparently unchanged after fertility restoration (Yamamoto et al. 2005).

On the other hand, we found that introduction of $b v O R F 20$ as a transgene restored partial fertility to NK-219mm-CMS. A comparable level of fertility restoration was observed in F_{1} plants of NK-219mm-CMS \times NK-198. Although three other ORFs homologous to bvORF20 were encoded in the Rf1 locus, none was capable of restoring male fertility. Therefore, despite their similarity in amino acid sequences, it is unlikely that these three ORFs play a major role in fertility restoration. Compared to bvORF20, the amino acid sequence homology in bvORF18, bvORF19, or bvORF21 is 88-99\%. It is possible that one or more of the differences in amino acid sequences is involved in the inability to restore pollen fertility. Additionally, bvORF20L, a bvORF20-related gene found in $r f 1 r f 1$ sugar beet, encoded an uninterrupted ORF. Homology of the bvORF20L amino acid sequence to bvORF20 was 83%, and the amount of bvORF20L transcripts was greatly reduced compared to Rf1 sugar beet. Either or both of the structural or transcriptional alterations might render $b v O R F 20 L$ an $r f 1$ allele.

As far as we know, bvORF20 homologs (Oma1 group in File S5) are conserved in eukaryotes as single copy genes. For example, the yeast homolog Oma1 is involved in the quality control of mitochondrial membrane proteins with more or less similar activity as that of the matrix AAA pro-
tease (Kaser et al. 2003). In mammals, Oma1 functions as a membrane potential-dependent protease, one of whose substrates is OPA1, a GTPase involved in mitochondrial fusion (Ehses et al. 2009; Head et al. 2009). However, bvORF20 appears to lack protease activity because its Zn^{2+}-binding motif in the peptidase M48 domain is His-Gln-Val-Gly-His instead of the conserved His-Glu-x-x-His (Figure S9 and Files S3, S4, and S5). The Glu-to-Gln substitution in this motif was shown to abolish protease activity in yeast Oma1 (Kaser et al. 2003). According to our database search, ORFs homologous to yeast Oma1 preserve the His-Glu-x-x-His motif (File S4). These observations lead us to hypothesize that the function of bvORF20 may not be a protease. On the other hand, if the possible molecular chaperone-like properties of yeast OMA1 (Kaser et al. 2003) are conserved in bvORF20, the bvORF20 protein might interact directly with preSATP6. This protein-protein complex might alter the higher order structure of preSATP6 to make it inactive. Molecular analysis of bvORF20 function is underway.

Concerning the evolution of plant $R f$, the tandem gene cluster of bvORF18, bvORF19, bvORF20, and bvORF21 is reminiscent of the organization of the $R f$ loci of petunia, radish, and rice, whose translation products are PPR proteins (Bentolila et al. 2002; Brown et al. 2003; Desloire et al. 2003; Kazama and Toriyama 2003; Koizuka et al. 2003; Akagi et al. 2004; Komori et al. 2004). The evolutionary significance of such gene clusters may lie in the increased allelic diversity (Touzet and Budar 2004). We should point out an additional similarity that, in both PPR-type $R f$ loci and the sugar beet Rf1 locus, not all copies but one or several of these are capable of restoring fertility. Therefore, it is possible that a common mechanism has played an important role in the evolution of plant $R f s$. We are currently investigating the organizational diversity of Rf1 in B. vulgaris plants to see how these genes have evolved.

Acknowledgments

We thank the DNA Sequencing Facility of the Research Faculty of Agriculture, Hokkaido University, for technical assistance. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; a grant from the Program for Promotion of Basic Research Activities for Innovative Biosciences, Japan; and the Program for Promotion of Basic and Applied Research for Innovations in BioOriented Industry.

Literature Cited

Akagi, H., A. Nakamura, Y. Yokozeki-Misono, A. Inagaki, H. Takahashi et al., 2004 Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondriatargeting PPR protein. Theor. Appl. Genet. 108: 1449-1457.
Alexander, M. P., 1969 Differential staining of aborted and nonaborted pollen. Stain Technol. 44: 117-122.

Arimura, S., and N. Tsutsumi, 2002 A dynamin-like protein (ADL2b), rather than FtsZ, is involved in Arabidopsis mitochondrial division. Proc. Natl. Acad. Sci. USA 99: 57275731.

Arabidopsis Genome Initiative, 2000 Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815.
Arumuganathan, K., and E. D. Earle, 1991 Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208218.

Barkan, A., M. Walker, M. Nolasco, and D. Johnson, 1994 A nuclear mutation in maize blocks the processing and translation of several chloroplast messenger-RNAs and provides evidence for the differential translation of alternative messenger-RNA forms. EMBO J. 13: 3170-3181.
Barr, C. M., and L. Fishman, 2010 The nuclear component of a cytonuclear hybrid incompatibility in Mimulus maps to a cluster of pentatricopeptide repeat genes. Genetics 184: 455-465.
Bentolila, S., A. A. Alfonso, and M. R. Hanson, 2002 A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. USA 99: 1088710892.

Bosemark, N. O., 2006 Genetics and breeding, pp. 50-88 in Sugar Beet, edited by A. P. Draycott. Blackwell Publishing, Oxford.
Boutry, M., A. M. Faber, M. Charbonnier, and M. Briquet, 1984 Microanalysis of plant mitochondrial protein-synthesis products: detection of variant polypeptides associated with cytoplasmic male-sterility. Plant Mol. Biol. 3: 445-452.
Brown, G. G., N. Formanova, H. Jin, R. Wargachuk, C. Dendy et al., 2003 The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 35: 262-272.
Budar, F., R. Delourme, and G. Pelletier, 2004 Male sterility, pp. 43-64 in Biotechnology in Agriculture and Forestry: Brassica, edited by E. C. Pua and C. J. Douglas. Springer-Verlag, Berlin.
Budar, F., P. Touzet, and G. Pelletier, 2006 Cytoplasmic male sterility, pp. 147-180 in Flowering and Its Manipulation, edited by C. Ainsworth. Blackwell Publishing, Oxford.

Burge, C., and S. Karlin, 1997 Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268: 78-94.
Chase, C. D., 2007 Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 23: 81-90.
Chenna, R., H. Sugawara, T. Koike, R. Lopez, T. J. Gibson et al., 2003 Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31: 3497-3500.
Chiu, W., Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi et al., 1996 Engineering GFP as a vital reporter in plants. Curr. Biol. 6: 325-330.
Chomczynski, P., and N. Sacchi, 1987 Single-step method of RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162: 156-159.
Cui, X. Q., R. P. Wise, and P. S. Schnable, 1996 The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science 272: 1334-1336.
Curtis, M. D., and U. Grossniklaus, 2003 A Gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133: 462-469.
Desloire, S., H. Gherbi, W. Laloui, S. Marhadour, V. Clouet et al., 2003 Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 4: 588-594.
Dewey, R. E., C. S. Levings III, and D. H. Timothy, 1986 Novel recombination in the maize mitochondrial genome produce a unique transcriptional unit in the Texas male-sterile cytoplasm. Cell 44: 439-449.

Dohm, J. C., C. Lange, D. Holtgrawe, T. R. Sorensen, D. Borchardt et al., 2012 Paleohexaploid ancestory for Caryophyllales inferred from extensive gene-based physical and genetic mapping of the sugar beet genome (Beta vulgaris). Plant J. 70: 528-540.
Doyle, J. J., and J. L. Doyle, 1990 Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
Ducos, E., P. Touzet, P. Saumitou-Laprade, P. Vernet, and J. Cuguen, 2001 Nuclear effect on mitochondrial protein expression of the CMS Owen cytoplasm in sugar beet. Theor. Appl. Genet. 102: 1299-1304.
Ehses, S., I. Raschke, G. Mancuso, A. Bernacchia, S. Geimer et al., 2009 Regulation of OPA1 processing and mitochondrial fusion by m-AAA protease isoenzymes and OMA1. J. Cell Biol. 187: 1023-1036.
Emanuelsson, O., H. Nielsen, S. Brunak, and G. von Heijne, 2000 Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 300: 10051016.

Finn, R. D., J. Mistry, B. Schuster-Bockler, S. Griffiths-Jones, V. Hollich et al., 2006 Pfam: clans, web tools and services. Nucleic Acids Res. 34: D247-D251.
Fujii, S., and K. Toriyama, 2008 Genome barriers between nuclei and mitochondria exemplified by cytoplasmic male sterility. Plant Cell Physiol. 49: 1484-1494.
Fujii, S., and K. Toriyama, 2009 Suppressed expression of RET-ROGRADE-REGULATED MALE STERILITY restores pollen fertility in cytoplasmic male sterile rice plants. Proc. Natl. Acad. Sci. USA 106: 9513-9518.
Fujii, S., C. S. Bond, and I. D. Small, 2011 Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc. Natl. Acad. Sci. USA 108: 1723-1728.
Hagihara, E., N. Itchoda, Y. Habu, S. Iida, T. Mikami et al., 2005a Molecular mapping of a fertility restorer gene for Owen cytoplasmic male sterility in sugar beet. Theor. Appl. Genet. 111: 250-255.
Hagihara, E., H. Matsuhira, M. Ueda, T. Mikami, and T. Kubo, 2005b Sugar beet BAC library construction and assembly of a contig spanning Rf1, a restorer-of-fertility gene for Owen cytoplasmic male sterility. Mol. Genet. Genomics 274: 316323.

Hallden, C., C. Lind, and I. M. Moller, 1992 Variation in mitochondrial translation products in fertile and cytoplasmic malesterile sugar-beets. Theor. Appl. Genet. 85: 139-145.
Hanson, M. R., and S. Bentolila, 2004 Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16: S154-S169.
Head, B., L. Griparic, M. Amiri, S. Gandre-Babbe, and A. M. van der Bliek, 2009 Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J. Cell Biol. 187: 959-966.
Heitkam, T., and T. Schmidt, 2009 BNR - a LINE family from Beta vulgaris - contains a RRM domain in open reading frame 1 and defines a L1 sub-clade present in diverse plant genomes. Plant J. 59: 872-882.
Hjerdin-Panagopoulos, A., T. Kraft, I. M. Rading, S. Tuvesson, and N. O. Nilsson, 2002 Three QTL regions for restoration of Owen CMS in sugar beet. Crop Sci. 42: 540-544.
Hu, J., K. Wang, W. Huang, G. Liu, J. Wang et al., 2012 The rice pentatricopeptide repeat protein RF5 restores fertility in HongLian cytoplasmic male-sterile lines via a complex with the glycinerich protein GRP162. Plant Cell 24: 109-122.
Itabashi, E., N. Iwata, S. Fujii, T. Kazama, and K. Toriyama, 2011 The fertility restorer gene, Rf2, for Lead Rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycinerich protein. Plant J. 65: 359-367.

Jaillon, O., J. M. Aury, B. Noel, A. Policriti, C. Clepet et al., 2007 The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449: 463-467.
Jordan, D. R., E. S. Mace, R. G. Henzell, P. E. Klein, and R. R. Klein, 2010 Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench.]. Theor. Appl. Genet. 120: 1279-1287.
Kaser, M., M. Kambacheld, B. Kisters-Woike, and T. Langer, 2003 Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J. Biol. Chem. 278: 46414-46423.
Kazama, T., and K. Toriyama, 2003 A pentatricopeptide repeatcontaining gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett. 544: 99-102.
Kitazaki, K., T. Kubo, H. Kagami, T. Matsumoto, A. Fujita et al., 2011 A horizontally transferred tRNA ${ }^{\text {Cys }}$ gene in the sugar beet mitochondrial genome: evidence that the gene is present in diverse angiosperms and its transcript is aminoacylated. Plant J. 68: 262-272.

Klein, R. R., P. E. Klein, J. E. Mullet, P. Minx, W. L. Rooney et al., 2005 Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor. Appl. Genet. 111: 994-1012.
Koizuka, N., R. Imai, H. Fujimoto, T. Hayakawa, Y. Kimura et al., 2003 Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmic male-sterile Kosena radish. Plant J. 34: 407-415.
Komori, T., S. Ohta, N. Murai, Y. Takakura, Y. Kuraya et al., 2004 Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J. 37: 315-325.
Kubo, T., and K. J. Newton, 2008 Angiosperm mitochondrial genomes and mutations. Mitochondrion 8: 5-14.
Kubo, T., K. Kitazaki, M. Matsunaga, H. Kagami, and T. Mikami, 2011 Male sterility-inducing mitochondrial genomes: How do they differ? Crit. Rev. Plant Sci. 30: 378-400.
Kurtz, S., J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye et al., 2001 REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29: 4633-4642.
Laser, K. D., and N. R. Lersten, 1972 Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot. Rev. 38: 425-454.
Lind, C., C. Hallden, and I. M. Moller, 1991 Protein synthesis in mitochondria purified from roots, leaves and flowers of sugar beet. Physiol. Plant. 83: 7-16.
Matsuhira, H., H. Shinada, R. Yui-Kurino, N. Hamato, M. Umeda et al., 2007 An anther-specific lipid transfer protein gene in sugar beet: its expression is strongly reduced in male-sterile plants with Owen cytoplasm. Physiol. Plant. 129: 407-414.
Owen, F. V., 1945 Cytoplasmically inherited male-sterility in sugar beets. J. Agric. Res. 71: 423-440.
Pelletier, G., and F. Budar, 2007 The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr. Opin. Biotechnol. 18: 121-125.
Pillen, K., G. Steinrücken, R. G. Hermann, and C. Jung, 1993 An extended linkage map of sugar beet (Beta vulgaris L.) including
nine putative lethal genes and the restorer gene X. Plant Breed. 111: 265-272.
Sambrook, J., E. F. Fritsch, and T. Maniatis, 1989 Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Schmitz-Linneweber, C., R. Williams-Carrier, and A. Barkan, 2005 RNA immunoprecipitation and microarray analysis show a chloroplast pentatricopeptide repeat protein to be associated with the 5^{\prime} region of mRNAs whose translation it activates. Plant Cell 17: 2791-2804.
Schmitz-Linneweber, C., and I. Small, 2008 Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci. 13: 663-670.
Schnable, P. S., and R. P. Wise, 1998 The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3: 175-180.
Schondelmaier, J., and C. Jung, 1997 Chromosomal assignment of the nine linkage groups of sugar beet (Beta vulgaris L.) using primary trisomics. Theor. Appl. Genet. 95: 590-596.
Schulte, D., D. G. Cai, M. Kleine, L. J. Fan, S. Wang et al., 2006 A complete physical map of a wild beet (Beta procumbens) translocation in sugar beet. Mol. Genet. Genomics 275: 504-511.
Skaracis, G. N., 2005 In vitro culture technique, pp. 247-255 in Genetics and Breeding of Sugar Beet, edited by E. Biancardi, L. G. Campbell, G. N. Skaracis, and M. de Biaggi. Science Publishers, Plymouth, UK.
Small, I., N. Peeters, F. Legeai, and C. Lurin, 2004 Predotar: a tool for rapidly screening proteomes for N -terminal targeting sequences. Proteomics 4: 1581-1590.
Staden, R., 1996 The Staden sequence analysis package. Mol. Biotechnol. 5: 233-241.
Touzet, P., and F. Budar, 2004 Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci. 9: 568-570.
Tuskan, G. A., S. Difazio, S. Jansson, J. Bohlmann, I. Grigoriev et al., 2006 The genome of black cottonwood, Populus trichocarpa (Torr. \& Gray). Science 313: 1596-1604.
Wang, Z., Y. Zou, X. Li, Q. Zhang, L. Chen et al., 2006 Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18: 676-687.
Williams-Carrier, R., T. Kroeger, and A. Barkan, 2008 Sequencespecific binding of a chloroplast pentatricopeptide repeat protein to its native group II intron ligand. RNA 14: 1930-1941.
Xu, X. B., Z. X. Liu, D. F. Zhang, Y. Liu, W. B. Song et al., 2009 Isolation and analysis of Rice Rf1-orthologus PPR genes co-segregating with Rf3 in maize. Plant Mol. Biol. Rep. 27: 511517.

Yamamoto, M. P., T. Kubo, and T. Mikami, 2005 The 5'-leader sequence of sugar beet mitochondrial atp6 encodes a novel polypeptide that is characteristic of Owen cytoplasmic male sterility. Mol. Genet. Genomics 273: 342-349.

Communicating editor: S. Poethig

GENETICS

Supporting Information

Unusual and Typical Features of a Novel Restorer-of-Fertility Gene of Sugar Beet (Beta vulgaris L.)

Hiroaki Matsuhira, Hiroyo Kagami, Masayuki Kurata, Kazuyoshi Kitazaki, Muneyuki Matsunaga, Yuko Hamaguchi, Eiki Hagihara, Minoru Ueda, Michiyo Harada, Aki Muramatsu, Rika Yui-Kurino,

Kazunori Taguchi, Hideto Tamagake, Tetsuo Mikami, and Tomohiko Kubo

TABLE S1 Primers used in this study

Purposes	Name of primers	Nucleotide sequences
cDNA sequencing of bvORF18/19/20/21	D-Fw	5'-TGCACCCAGTAGTTGTGCCA-3'
	D-Rv	5'-GCAAGAGAGGATGCCTTAAG-3'
	Gre	5'-GATGCGCGATAATTGTAGCC-3'
Generating hybridization probe of bvORF19 3' UTR	3'-FW	5'-AGCTTGCAAAGCCACTGGGCGA-3'
	3'-RV	5'-GGAACCAAATTAGATTGAATTAACAAGTGG-3'
bvORF16-GFP construction	GFP-ORF16-FW	5'-CCGTCGACATGAAATGGAGCTGCGTTG-3'
	GFP-ORF16-RV	5'-GGCCATGGCAGATAGTTCTTTTCCAATTGG-3'
bvORF20-GFP construction	GFP-ORF20-FW	5'-GGGTCGACATGGCATGGTACAGTAAATTC-3'
	GFP-ORF20-RV	5'-GGCCATGGATTTTGCAGACCCAAATAACCC-3'
Amplification of bvORF19 for transgene construction	attB1-ORF19 prom	5'-AAAAAGCAGGCTTTAGATCTGCCGTTGCACAACG-3'
	orf19-genomic 3' rv	5'-AGAAAGCTGGGTGTATCTGGGACCTGGATTGAG-3'
Amplification of bvORF20 for transgene construction	attB1-ORF20 prom	5'-AAAAAGCAGGCTGTAACAGAGGGTTCAAATTGCGG-3'
	orf20-genomic3'rv	5'-AGAAAGCTGGGTGGTCCTGGATTGAGGGTTAAC-3'
Amplification of bvORF21 for transgene construction	attB1-ORF21 prom	5'-AAAAAGCAGGCTGAACCTGAACTGAACTTATTGG-3'
	orf21-genomic3'rv	5'-AGAAAGCTGGGTTACCTGGGTCCTGGATTAAG-3'
Detection of bialaphos-resistance gene	BAR5	5'-CGAGACAAGCACGGTCAACTTC-3'
	BAR6	5'-AAACCCACGTCATGCCAGTTC-3'

FIGURE S1.- RT-PCR analysis of 21 bvORFs. Names of target ORFs, annealing temperatures, extension times, nucleotide sequences of primers, and sizes of PCR products are shown. RNA samples were subjected to reverse transcription with (+) or without (-) reverse transcriptase. Integrity of the PCR reaction was confirmed by control experiments using genomic DNA as templates (C).

CACTTTTGAGCAACTCACAATTTTATATATACATTACAAGTAATTAAAAATAAAGTATTA 100440 TATGGGTAACTTATACATTGATAAGGGTAACTAATAAGATAATTTGAGCAACTAATGTTT 100380 TTATATGTACATAACAAGTAAATAATAACACACGTTACATTGACTTGATTACACAAAGGA 100320 TAACTTATACATTGATAAAGACAACTAATAAGATAAGTTGAGCAACTAAAGATTTTACAT 100260 TGACTTGGTTAGATAAAGGATAACTTATAGATAGATAAAGGTAACTAATAAGATAATTTG 100200 AGCAACTAACAATTTTATATATACATTACAAGTAATTAAAATACAAAAAGTAAAGTATTA 100140 TATGGATAATTAAAAAAAAAAAGTAAAATATTATATGAGGAACTATGCAAATTCCTACTA 100080 ATGTACATTGACTTGGTTCAGTTAAACTTGTTGAAACATGTAATCTTGTAATCCTAGTGG 100020 AGTAATCTATTTACTTTTAGATTAACTTAAGCATAGTTTGGGATGGCCTATATGATGTTA 99960 ATAAGACATCACAACTAATCTCCAACGTTGTTTATATTAATGTGCATGTCATATGAAAAT 99900 GTCATAGACAAGTTCCAATAAGTCTAGATATGTCAAATTTCAGTTTACTAAATTATTATT 99840 GATTTATGTTCTTGTTGTTCCAGTAATCTACAATAGAATGGAAGATGAAGAATTTGCTCC 99780 AACTCCTTGCATTGATGCAACTCCAACTCCTTGTGTTGATACAACTCCAACTAATGCTAC 99720 TCAAACTTCTAATGCTCAAACAACAAGATCCACATTCACTCCTCGTCCATGCTACACACC 99660 TAGAGGTTCAAAAGAATGGATCCCTTGCTGCCCTCCTGAGTTAAAACCTACTGTGGGTAT 99600 $\begin{array}{lllllllllllllllllllll}\mathrm{R} & \mathrm{G} & \mathrm{S} & \mathrm{K} & \mathrm{E} & \mathrm{W} & \mathrm{I} & \mathrm{P} & \mathrm{C} & \mathrm{C} & \mathrm{P} & \mathrm{P} & \mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{P} & \mathrm{T} & \mathrm{V} & \mathrm{G} & \mathrm{M}\end{array}$

GCCTTTTGATTCTCTTGTTGATGGTATTGAGTTTTATAAAGCTTATGCTCGGTTTTGTGG 99540 $\begin{array}{llllllllllllllllllll}P & F & \mathrm{D} & \mathrm{S} & \mathrm{L} & \mathrm{V} & \mathrm{D} & \mathrm{G} & \mathrm{I} & \mathrm{E} & \mathrm{F} & \mathrm{Y} & \mathrm{K} & \mathrm{A} & \mathrm{Y} & \mathrm{A} & \mathrm{R} & \mathrm{F} & \mathrm{C} & \mathrm{G}\end{array}$

TTTTGTGGAAAGATTGGCTACTGAGAAAAAAGATAAGGATGGTCATGTTTACTTGAAGTA 99480

$$
\begin{array}{lllllllllllllllllllll}
\mathrm{F} & \mathrm{~V} & \mathrm{E} & \mathrm{R} & \mathrm{~L} & \mathrm{~A} & \mathrm{~T} & \mathrm{E} & \mathrm{~K} & \mathrm{~K} & \mathrm{D} & \mathrm{~K} & \mathrm{D} & \mathrm{G} & \mathrm{H} & \mathrm{~V} & \mathrm{Y} & \mathrm{~L} & \mathrm{~K} & \mathrm{Y}
\end{array}
$$

TATTTATTGTAATAAACAAGGATTTAAAGAAGATGGTGAGAGTAAAGCAAAGAGTAAACC 99420

TATAACATGCTCTAGTTCTCGTAAAAGAAGTGTAAATCGTGCTGGTTGTCAAGCAAGGAT 99360

AGGTTTGAGAAAACGTAGTGATGGAAAATTCATGGTATATCTTTTTCATGAATCGCATAA 99300
$\begin{array}{llllllllllllllllllll}G & L & R & K & R & S & D & G & K & F & M & V & Y & L & F & H & E & S & H & N\end{array}$

CCATGTATTTGCCACTCCCAAAAGCATGCATTTTCTTAAAAATTCTCGAAACTTGACTCT 99240

TGCTCACAAGAAGTTCATATTTGATAATTCAAGATTGAATGTTGGACCAAACAAATCTTT 99180

TAGATTGATAAAAGAGCATGTAGGAGGATATGAGAATGTAGGGGCGTCATTGGTTGATTT 99120

AAATAATTTCAAAGAAAAGGCAACTAGTAGTGGTGGAGGGTTTTTCTTTGACTATTGTGG 99000 $\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{N} & \mathrm{F} & \mathrm{K} & \mathrm{E} & \mathrm{K} & \mathrm{A} & \mathrm{T} & \mathrm{S} & \mathrm{S} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{F} & \mathrm{F} & \mathrm{F} & \mathrm{D} & \mathrm{Y} & \mathrm{C} & \mathrm{G}\end{array}$ D

ATGAAAATCGACATTTGACTAGAGTTTTTTGGGCGGATGCCATTAGTAGGAAAAACTATT 98940 *
$\begin{array}{lllllllllllllllllllll}\mathrm{E} & \mathrm{N} & \mathrm{R} & \mathrm{H} & \mathrm{L} & \mathrm{T} & \mathrm{R} & \mathrm{V} & \mathrm{F} & \mathrm{W} & \mathrm{A} & \mathrm{D} & \mathrm{A} & \mathrm{I} & \mathrm{S} & \mathrm{R} & \mathrm{K} & \mathrm{N} & \mathrm{Y} & \mathrm{S}\end{array}$

CTCTTTTTGGTGATATGGTATCATTTGATACAACTTTTGATACCAATAAATATTGTATGG 98880
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{F} & \mathrm{G} & \mathrm{D} & \mathrm{M} & \mathrm{V} & \mathrm{S} & \mathrm{F} & \mathrm{D} & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{D} & \mathrm{T} & \mathrm{N} & \mathrm{K} & \mathrm{Y} & \mathrm{C} & \mathrm{M} & \mathrm{V}\end{array}$

TTCTTGCCCCATTTACTGGAGTTGATCATCATGGAAAATGTGTTACTTTTGGTATGGGCC 98820
$\begin{array}{llllllllllllllllllll}\text { L } & \text { A } & \mathrm{P} & \mathrm{F} & \mathrm{T} & \mathrm{G} & \mathrm{V} & \mathrm{D} & \mathrm{H} & \mathrm{H} & \mathrm{G} & \mathrm{K} & \mathrm{C} & \mathrm{V} & \mathrm{T} & \mathrm{F} & \mathrm{G} & \mathrm{M} & \mathrm{G} & \mathrm{L}\end{array}$

TACTTGCAAAGGAAGATATAGAATCTTTCGTTTGGTTGTTTGAATGTTTTTTAAAAGCTA 98760

TGGGTAATTGTCAACCTACTTGTCTCATTACTGATCAAGATGCAGCAATGAAACAAGCAA 98700

TTGAAAAAGTTTTCTTTAAGACAATTCATAGACTTTGCGTGTGGCATATCATGAAAAAAG 98640

TGCCGGTAAAAGTAGGTCCAGATATGTGTAGAACAACGAAGTTTCTTGAGAAATTGAATG 98580
$\begin{array}{llllllllllllllllllll}\mathrm{P} & \mathrm{V} & \mathrm{K} & \mathrm{V} & \mathrm{G} & \mathrm{P} & \mathrm{D} & \mathrm{M} & \mathrm{C} & \mathrm{R} & \mathrm{T} & \mathrm{T} & \mathrm{K} & \mathrm{F} & \mathrm{L} & \mathrm{E} & \mathrm{K} & \mathrm{L} & \mathrm{N} & \mathrm{A}\end{array}$

CTGTTGTTTGGGATAGAGACCTTGAGCCAGATGAATTTGACAAAGGGTGGAATTCTGTGA 98520
$\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{V} & \mathrm{W} & \mathrm{D} & \mathrm{R} & \mathrm{D} & \mathrm{L} & \mathrm{E} & \mathrm{P} & \mathrm{D} & \mathrm{E} & \mathrm{F} & \mathrm{D} & \mathrm{K} & \mathrm{G} & \mathrm{W} & \mathrm{N} & \mathrm{S} & \mathrm{V} & \mathrm{M}\end{array}$

TGCGTGAATTTGGCTTAGAAGATGATGGGTGGTTTACTGATATGTTTAACATAAGACATA 98460
$\begin{array}{lllllllllllllllllllll}R & E & F & G & L & E & D & D & G & W & F & T & D & M & F & N & I & R & H & M\end{array}$

TGTGGATCCCTTCTTACTTTCGAAATCTTTTCATGGGTGGTATTTTGAGGTCCACACAGA 98400
$\begin{array}{llllllllllllllllllll}\mathrm{W} & \mathrm{I} & \mathrm{P} & \mathrm{S} & \mathrm{Y} & \mathrm{F} & \mathrm{R} & \mathrm{N} & \mathrm{L} & \mathrm{F} & \mathrm{M} & \mathrm{G} & \mathrm{G} & \mathrm{I} & \mathrm{L} & \mathrm{R} & \mathrm{S} & \mathrm{T} & \mathrm{Q} & \mathrm{I}\end{array}$

TTTCAGAGTCTGAGAACAACTTTTTCACTTTGTTTACAAATGCAAATCTTCTTCTAGTTG 98340
$\begin{array}{llllllllllllllllllll}\text { S } & \mathrm{E} & \mathrm{S} & \mathrm{E} & \mathrm{N} & \mathrm{N} & \mathrm{F} & \mathrm{F} & \mathrm{T} & \mathrm{L} & \mathrm{F} & \mathrm{T} & \mathrm{N} & \mathrm{A} & \mathrm{N} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{V} & \mathrm{E}\end{array}$
САТСТСТTGTTTACACACACAATATGTTCTACAAATTTCAGAGAGAGTTTCAAAATGCAA 98160

TTTTTAATTGTGGGGTTTACAAAGTACAAATAGAGGAAGCTGTTGAGGAGTTTGAAGTTG 98100
$\begin{array}{llllllllllllllllllll}\mathrm{F} & \mathrm{N} & \mathrm{C} & \mathrm{G} & \mathrm{V} & \mathrm{Y} & \mathrm{K} & \mathrm{V} & \mathrm{Q} & \mathrm{I} & \mathrm{E} & \mathrm{E} & \mathrm{A} & \mathrm{V} & \mathrm{E} & \mathrm{E} & \mathrm{F} & \mathrm{E} & \mathrm{V} & \mathrm{A}\end{array}$
CAGATAATACAAGGAAGAAAACATATCATGTGACTTTTATTCCTGATTCTCATGATTGTT 98040
$\begin{array}{lllllllllllllllllllll}\mathrm{D} & \mathrm{N} & \mathrm{T} & \mathrm{R} & \mathrm{K} & \mathrm{K} & \mathrm{T} & \mathrm{Y} & \mathrm{H} & \mathrm{V} & \mathrm{T} & \mathrm{F} & \mathrm{I} & \mathrm{P} & \mathrm{D} & \mathrm{S} & \mathrm{H} & \mathrm{D} & \mathrm{C} & \mathrm{F}\end{array}$
TTTGCTCTTGTAAGATGTTTGAATCCATGGGAATATTATGTCGGCATGTGCTTTTTGTGA 97980
$\begin{array}{lllllllllllllllllllll}\text { C } & \mathrm{S} & \mathrm{C} & \mathrm{K} & \mathrm{M} & \mathrm{F} & \mathrm{E} & \mathrm{S} & \mathrm{M} & \mathrm{G} & \mathrm{I} & \mathrm{L} & \mathrm{C} & \mathrm{R} & \mathrm{H} & \mathrm{V} & \mathrm{L} & \mathrm{F} & \mathrm{V} & \mathrm{I}\end{array}$
TAAAAGGGAAGTTTTTGACTGAAATTCCAGAGCAACATATATTGCATCGGTGGACTAAAG 97920

ATGCTTCAAAAAAGCCCATTTTCGACTTTTGTGAGGACTTTGATGGTATAGAAATAAATA 97860

AGAAGAAAAAAGTTGTTGGGGATCTTTGGTCGAAATTCTTCTCATGTGTAAGCCTTGTTG 97800
$\begin{array}{llllllllllllllllllll}\mathrm{K} & \mathrm{K} & \mathrm{K} & \mathrm{V} & \mathrm{V} & \mathrm{G} & \mathrm{D} & \mathrm{L} & \mathrm{W} & \mathrm{S} & \mathrm{K} & \mathrm{F} & \mathrm{F} & \mathrm{S} & \mathrm{C} & \mathrm{V} & \mathrm{S} & \mathrm{L} & \mathrm{V} & \mathrm{E}\end{array}$

AAAATAACACAGACCATCTTGAGTTATTATTGGAAAGGTTATCTGCTTTTGAGGAGGAAA 97740

$$
\begin{array}{lllllllllllllllllllll}
\mathrm{N} & \mathrm{~N} & \mathrm{~T} & \mathrm{D} & \mathrm{H} & \mathrm{~L} & \mathrm{E} & \mathrm{~L} & \mathrm{~L} & \mathrm{~L} & \mathrm{E} & \mathrm{R} & \mathrm{~L} & \mathrm{~S} & \mathrm{~A} & \mathrm{~F} & \mathrm{E} & \mathrm{E} & \mathrm{E} & \mathrm{M}
\end{array}
$$

TGAAACCTGGAAAAGAAAATGTTGAGCAACAATCTAAAGACAAGCATATTGAGTTGTTCG 97680

TTGGTTCTAATATAGTATCAGGTGGTATACTTCCTCCAAACAAGTCTTCAAACAAAGGAA 97620

GTGGTACGGGAAAGAGAAAGAAAAGTGATCAAGAGATAGCCATTGAAGCAAGCAACAAAA 97560

FIGURE S2.- Nucleotide sequence of $b v M U L E-1$. Numbers of nucleotide residues are coordinated with those of BAC clone 5A3. Two open reading frames that exhibit sequence homology to transposases are indicated with putative translation products. The $115-\mathrm{bp}$ and $111-\mathrm{bp}$ repeated sequences are indicated by single and double lines, respectively.
СTCATGACGTCAAGATCTCAAGTCTATAAAAAAAAATTGTTTTAAATAAGTCAACCTTTG 11926
TGCTGTACGTCTTCTTATTTTGAGTCTACCTTTTGATTATTTCTGATTGAGTTAAGCTTTG 11866
TATGTATGTTCTCTTCTATTGAGTTTTATTTATTTATGACTTGTTTAGTAGGTTACTTA 11806
ACACACATCATAAGTAGTCATTGCATTTGTAATAGCAATCTTAGGTAGAGAGAGAATGCC 11686
TAGAGAGAGAGAGAGAGAAAAACTCTGGAGCGAGCGAAGAGAAGGAGAATGGACAATGGT 11626
M V>ORF-A
AAGAAGGAGACACCCCCAAGCCAGTAAACCACAACCTAGAGCCTTGAGAACAGCCTTCAT 11566
$\begin{array}{lllllllllllllllllllll}\mathrm{R} & \mathrm{R} & \mathrm{R} & \mathrm{H} & \mathrm{P} & \mathrm{Q} & \mathrm{A} & \mathrm{S} & \mathrm{K} & \mathrm{P} & \mathrm{Q} & \mathrm{P} & \mathrm{R} & \mathrm{A} & \mathrm{L} & \mathrm{R} & \mathrm{T} & \mathrm{A} & \mathrm{F} & \mathrm{I}\end{array}$
RNA recognition motif (pfam accession PF00076)
AGATTTCCTTCCTCCCAATATTGATACCCAAACAATCCACAACATATTCAGTAGATATGG 11506

D	F	L	P	P	N	I	D	T	Q	T	I	H	N	I	F	S	R	Y	G

D	L	E	D	L	V	I	P	A	K	L	R	K	N	C	G	H	K	Y	A

АТТСАТТАААТТТTTСТССАТGAATGCTTTACTCAATGCGATTAAGCAGGAGAATGGAAG 11386

| F | I | K | F | F | S | M | N | A | L | L | N | A | I | K | Q | E | N | G | R |
| :--- |

AAGAATGGGAAATTTTTTGATGCGAGTTAACCCTGCAAAATATGACAAACAAGACCCTCC

11326$\begin{array}{lllllllllllllllllllll}\mathrm{R} & \mathrm{M} & \mathrm{G} & \mathrm{N} & \mathrm{F} & \mathrm{L} & \mathrm{M} & \mathrm{R} & \mathrm{V} & \mathrm{N} & \mathrm{P} & \mathrm{A} & \mathrm{K} & \mathrm{Y} & \mathrm{D} & \mathrm{K} & \mathrm{Q} & \mathrm{D} & \mathrm{P} & \mathrm{P}\end{array}$
CСATAAAAACCACTTTCCAAATCCTAAACCAAATCACAGACAGCCTCAAAAAAACCCGGT 11266
$\begin{array}{lllllllllllllllllllll}H & K & N & H & F & P & N & P & K & P & N & H & R & Q & P & Q & K & N & P & V\end{array}$
ACAATATCATCCAGCTTGGAGAGACCACCGATCGTATAAGGATGTCTCGAACCCAAACCA 11206
$\begin{array}{llllllllllllllllllll}\text { Q } & \mathrm{Y} & \mathrm{H} & \mathrm{P} & \mathrm{A} & \mathrm{W} & \mathrm{R} & \mathrm{D} & \mathrm{H} & \mathrm{R} & \mathrm{S} & \mathrm{Y} & \mathrm{K} & \mathrm{D} & \mathrm{V} & \mathrm{S} & \mathrm{N} & \mathrm{P} & \mathrm{N} & \mathrm{Q}\end{array}$
AATACCAATCCACACTGATGTTCCACCAATCAATCCCTCAACCAAACCTAATACCCGGAA 11146
$\begin{array}{llllllllllllllllllll}\mathrm{I} & \mathrm{P} & \mathrm{I} & \mathrm{H} & \mathrm{T} & \mathrm{D} & \mathrm{V} & \mathrm{P} & \mathrm{P} & \mathrm{I} & \mathrm{N} & \mathrm{P} & \mathrm{S} & \mathrm{T} & \mathrm{K} & \mathrm{P} & \mathrm{N} & \mathrm{T} & \mathrm{R} & \mathrm{K}\end{array}$
ACCACCTCATCAAACGAATTTATCCTCTTCACCTATAGAATCAATCATCCCTAACCAAAT 11086

ССTTGAACCTCTCAGTACTGACATTGTGAAAGAAATGACAAAGCACCGTAGGATGAGTTC 11026
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{E} & \mathrm{P} & \mathrm{L} & \mathrm{S} & \mathrm{T} & \mathrm{D} & \mathrm{I} & \mathrm{V} & \mathrm{K} & \mathrm{E} & \mathrm{M} & \mathrm{T} & \mathrm{K} & \mathrm{H} & \mathrm{R} & \mathrm{R} & \mathrm{M} & \mathrm{S} & \mathrm{S}\end{array}$

TCCAGGAATCTCGGACATTGGAGTTAATAATGAGACAATCATTACTTCGCCTACCAAAGC 10186TAGTGCCAAGGTCTCTCCCAATGCAAAACAAAAACCTCCCATATACCCTAAACCTCCCAA 10126
$\begin{array}{llllllllllllllllllll}\mathrm{S} & \mathrm{A} & \mathrm{K} & \mathrm{V} & \mathrm{S} & \mathrm{P} & \mathrm{N} & \mathrm{A} & \mathrm{K} & \mathrm{Q} & \mathrm{K} & \mathrm{P} & \mathrm{P} & \mathrm{I} & \mathrm{Y} & \mathrm{P} & \mathrm{K} & \mathrm{P} & \mathrm{P} & \mathrm{K}\end{array}$
AACTCAACTGAACTTTAATACCCCACCACGTTCCCCAAGTCTGCTTTGCATTGGGAACTT 10066
$\begin{array}{lllllllllllllllllllll}\mathrm{T} & \mathrm{Q} & \mathrm{L} & \mathrm{N} & \mathrm{F} & \mathrm{N} & \mathrm{T} & \mathrm{P} & \mathrm{P} & \mathrm{R} & \mathrm{S} & \mathrm{P} & \mathrm{S} & \mathrm{L} & \mathrm{L} & \mathrm{C} & \mathrm{I} & \mathrm{G} & \mathrm{N} & \mathrm{L}\end{array}$
AAATCAACAAAAGTCCTCCTCCCAACCACTTGAACTCCAAAAAGCCCCACCTTCACCATC 10006
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{Q} & \mathrm{Q} & \mathrm{K} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{Q} & \mathrm{P} & \mathrm{L} & \mathrm{E} & \mathrm{L} & \mathrm{Q} & \mathrm{K} & \mathrm{A} & \mathrm{P} & \mathrm{P} & \mathrm{S} & \mathrm{P} & \mathrm{S}\end{array}$
GAAAACCTTACCCTTCCCTCCAACAACGAAACTGGGCTCACCTTTTAGCCCTGATCCAAC 9946
$\begin{array}{llllllllllllllllllll}\mathrm{K} & \mathrm{T} & \mathrm{L} & \mathrm{P} & \mathrm{F} & \mathrm{P} & \mathrm{P} & \mathrm{T} & \mathrm{T} & \mathrm{K} & \mathrm{L} & \mathrm{G} & \mathrm{S} & \mathrm{P} & \mathrm{F} & \mathrm{S} & \mathrm{P} & \mathrm{D} & \mathrm{P} & \mathrm{T}\end{array}$
СТТТАААТАТААТААТССССССАТСТСССААААТААТАТААТСАGСССААТАА 9886
$\begin{array}{lllllllllllllllllllll}\mathrm{F} & \mathrm{K} & \mathrm{Y} & \mathrm{N} & \mathrm{N} & \mathrm{P} & \mathrm{P} & \mathrm{I} & \mathrm{S} & \mathrm{Q} & \mathrm{N} & \mathrm{N} & \mathrm{I} & \mathrm{I} & \mathrm{S} & \mathrm{P} & \mathrm{I} & \mathrm{S} & \mathrm{P} & \mathrm{L}\end{array}$
GGTCCCCAAACCTGCCCAAAATACACAAAACTCCCCTAGTTCTACAAGTCGAAACTCTCC 9826
$\begin{array}{llllllllllllllllllll}\mathrm{V} & \mathrm{P} & \mathrm{K} & \mathrm{P} & \mathrm{A} & \mathrm{Q} & \mathrm{N} & \mathrm{T} & \mathrm{Q} & \mathrm{N} & \mathrm{S} & \mathrm{P} & \mathrm{S} & \mathrm{S} & \mathrm{T} & \mathrm{S} & \mathrm{R} & \mathrm{N} & \mathrm{S} & \mathrm{P}\end{array}$
TTTAAAGCCCAGCCTCAATGACCAAAGCTTTССТТАСТАСААТССТСТGATCСАСАСТGA 9766
$\begin{array}{lllllllllllllllllllll}\mathrm{L} & \mathrm{K} & \mathrm{P} & \mathrm{S} & \mathrm{L} & \mathrm{N} & \mathrm{D} & \mathrm{Q} & \mathrm{S} & \mathrm{F} & \mathrm{P} & \mathrm{Y} & \mathrm{Y} & \mathrm{N} & \mathrm{P} & \mathrm{L} & \mathrm{I} & \mathrm{H} & \mathrm{T} & \mathrm{D}\end{array}$
TAATTCCTTTGGCCCGCTACTAAGGAAAGCCCAATCAAAATCCCAAACTAAGACACTCTC 9706

АТССТСТССТTCGACGTCCAGCCCTTCTATCCCCCCCGGTTTTGAAGACTTCCTTCCTCC 9646
$\begin{array}{llllllllllllllllllll}\mathrm{S} & \mathrm{S} & \mathrm{P} & \mathrm{S} & \mathrm{T} & \mathrm{S} & \mathrm{S} & \mathrm{P} & \mathrm{S} & \mathrm{I} & \mathrm{P} & \mathrm{P} & \mathrm{G} & \mathrm{F} & \mathrm{E} & \mathrm{D} & \mathrm{F} & \mathrm{L} & \mathrm{P} & \mathrm{P}\end{array}$
СССТСТGAAAGCCCATCATGAAAAAAGGAGATTACAAAAACGACTGAAGAAAAATAAAGC 9586
$\begin{array}{lllllllllllllllllllll}\text { P } & \mathrm{L} & \mathrm{K} & \mathrm{A} & \mathrm{H} & \mathrm{H} & \mathrm{E} & \mathrm{K} & \mathrm{R} & \mathrm{R} & \mathrm{L} & \mathrm{Q} & \mathrm{K} & \mathrm{R} & \mathrm{L} & \mathrm{K} & \mathrm{K} & \mathrm{N} & \mathrm{K} & \mathrm{A}\end{array}$
САААААССGССТСТССТССТССТССТССААТСССССАССТСТТССТСССТСТСССТСССС 9526
$\begin{array}{llllllllllllllllllll}\mathrm{K} & \mathrm{N} & \mathrm{R} & \mathrm{L} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{S} & \mathrm{N} & \mathrm{P} & \mathrm{P} & \mathrm{P} & \mathrm{L} & \mathrm{P} & \mathrm{P} & \mathrm{S} & \mathrm{P} & \mathrm{S} & \mathrm{P}\end{array}$
AAACCCGAAAACATCTCATGAGAACACTGCCTCGGAAATTATTGAATTAGGCTTGCAACT 9466
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{P} & \mathrm{K} & \mathrm{T} & \mathrm{S} & \mathrm{H} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{A} & \mathrm{S} & \mathrm{E} & \mathrm{I} & \mathrm{I} & \mathrm{E} & \mathrm{L} & \mathrm{G} & \mathrm{L} & \mathrm{Q} & \mathrm{L}\end{array}$

AGGAATGAAATTCAATGGTGAACTATCAGATCTACAAGACAAAATTGTTGGAATTTTGTC
 $$
\begin{array}{lllllllllllllllllllll} \text { G } & \mathrm{M} & \mathrm{~K} & \mathrm{~F} & \mathrm{~N} & \mathrm{G} & \mathrm{E} & \mathrm{~L} & \mathrm{~S} & \mathrm{D} & \mathrm{~L} & \mathrm{Q} & \mathrm{D} & \mathrm{~K} & \mathrm{I} & \mathrm{~V} & \mathrm{G} & \mathrm{I} & \mathrm{~L} & \mathrm{~S} \end{array}
$$

ACGCCAGGAGCAGGACTGGCTTTCCAATGTATAAGTACATCTTATACTCTCAATAAATTG
 9346

$\begin{array}{lllllllllll}R & Q & E & Q & D & W & L & S & N & V & *\end{array}$

TTCCATGTTAATCTCGTGGAATGTCAGGGGCCTCGGAGCATGGCCTAAAAGAAATGTTCT 9286
CAAAAAGTTACTACTCCTTCATGACCCCATGATAGTATTCATCCAAGAATCCAAACTGGA 9226
ATGTATTCCTTCTAAATTGCAAAAATCAATTTGGTGTGATGATGACCTCAGCCTCTGTAT 9166
CAGTCCATCAAACGGATCCTCTGGAGGATTAATCTCCCTATGGAGACCCTCAAAATTTCA 9106
TCTGGTTTCCAGTAGAATCGAATCACAATGGATCGCAATGGAAGGAATGGTGGTGAGGGA 9046

$$
\begin{array}{lccccccc}
M & E & G & M & V & V & R & E \\
>O R F & -B & & & & &
\end{array}
$$

AAATTTTCAATGCCTTCTCATAAATATTTATAACTCCTGTGATGCTTCGACTAGATCAGA
8986

Endonuclease/exonuclease/phosphatase family (pfam accession PF03372) CACATGGAACCATATAGAGGATTTTTGCAGAAACTCACACTTACCTCTTCTAATAGCGGG 8926

| T | W | N | H | I | E | D | F | C | R | N | S | H | L | P | L | L | I | A | G |
| :--- |

GGATTTCAATGAGGTACTATCTTCCCAAGATCGAGGCAGCCGGATAATAGATGAAACTAG | D | F | N | E | V | L | S | S | Q | D | R | G | S | R | I | I | D | E | T | S |
| :--- |

TGCCGGAAAATTCAGGCAATTCATAACCAACCTTCATCTTACTGAAATCACACCCTCCAA

A	G	K	F	R	Q	F	I	T	N	L	H	L	T	E	I	T	P	S	N

G	Y	F	T	W	F	R	G	Q	S	K	S	K	L	D	R	I	L	V	Q

ACCAGATTGGATTCTGAAATTCTCATTCCTTAATGCCTCCATCCTCAAAAGGAGTATCTC

P	D	W	I	L	K	F	S	F	L	N	A	S	I	L	K	R	S	I	S

ATTTCTTGACATGTGGCTCACCCACAAGGATTGCCTGATCCTTACTAGGAAAGTATGGGA 8566

$$
\begin{array}{lllllllllllllllllllll}
\mathrm{F} & \mathrm{~L} & \mathrm{D} & \mathrm{M} & \mathrm{~W} & \mathrm{~L} & \mathrm{~T} & \mathrm{H} & \mathrm{~K} & \mathrm{D} & \mathrm{C} & \mathrm{~L} & \mathrm{I} & \mathrm{~L} & \mathrm{~T} & \mathrm{R} & \mathrm{~K} & \mathrm{~V} & \mathrm{~W} & \mathrm{E}
\end{array}
$$

AGATTCGAAGGGATTCACAATTTCAGAGAAGTTTAAAGCTGTCAGAAAAGAGTTGAAAGT 8506

$\begin{array}{lllllllllllllllllllll}\text { S } & \mathrm{I} & \mathrm{G} & \mathrm{G} & \mathrm{R} & \mathrm{L} & \mathrm{T} & \mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{A} & \mathrm{S} & \mathrm{L} & \mathrm{S} & \mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{I} & \mathrm{Y} & \mathrm{F}\end{array}$
CATGTCCTTATATCCTATGCCACAAGGAGTTATAGAAAAAATTAATAAAATTCAGAGAAG 6886

CTTTCTTTGGAGTGGTGGTATGGATAAAAGGGCTCTATCTATGGTGAAGTGGGAATATGT 6826
$\begin{array}{llllllllllllllllllll}\text { F } & \mathrm{L} & \mathrm{W} & \mathrm{S} & \mathrm{G} & \mathrm{G} & \mathrm{M} & \mathrm{D} & \mathrm{K} & \mathrm{R} & \mathrm{A} & \mathrm{L} & \mathrm{S} & \mathrm{M} & \mathrm{V} & \mathrm{K} & \mathrm{W} & \mathrm{E} & \mathrm{Y} & \mathrm{V}\end{array}$
CCAGCTTCCAAAAGCGTTGGGAGGCTTAAATGTGAGTAACCTTCTGATTAGAAATTTGGG 6766

GСTССТTTGTAAGTGGGTGTGGAGGTATTTTTCAGAACCAGATTCGCTATGGAGACTATC 6706
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{L} & \mathrm{C} & \mathrm{K} & \mathrm{W} & \mathrm{V} & \mathrm{W} & \mathrm{R} & \mathrm{Y} & \mathrm{F} & \mathrm{S} & \mathrm{E} & \mathrm{P} & \mathrm{D} & \mathrm{S} & \mathrm{L} & \mathrm{W} & \mathrm{R} & \mathrm{L} & \mathrm{S}\end{array}$
AATTAAAGCCAAATATAAATACCAGGCGCAAATGAATATGGCTGACATTGCTCCAATAAG 6646
$\begin{array}{lllllllllllllllllllll}\mathrm{I} & \mathrm{K} & \mathrm{A} & \mathrm{K} & \mathrm{Y} & \mathrm{K} & \mathrm{Y} & \mathrm{Q} & \mathrm{A} & \mathrm{Q} & \mathrm{M} & \mathrm{N} & \mathrm{M} & \mathrm{A} & \mathrm{D} & \mathrm{I} & \mathrm{A} & \mathrm{P} & \mathrm{I} & \mathrm{R}\end{array}$
ATCAGGTGGTCCTTGGAGACATCTTTGCAACCATCTCCTAAAACACCAAGCAACAAATGA 6586
$\begin{array}{lllllllllllllllllllll}\text { S } & \text { G } & \mathrm{G} & \mathrm{P} & \mathrm{W} & \mathrm{R} & \mathrm{H} & \mathrm{L} & \mathrm{C} & \mathrm{N} & \mathrm{H} & \mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{H} & \mathrm{Q} & \mathrm{A} & \mathrm{T} & \mathrm{N} & \mathrm{E}\end{array}$
AСТТСТGAAACAAGGTACCAGGAAAAGAATAGGGAATGGGGAGAATACCTTATTTTGGCA 6526
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{L} & \mathrm{K} & \mathrm{Q} & \mathrm{G} & \mathrm{T} & \mathrm{R} & \mathrm{K} & \mathrm{R} & \mathrm{I} & \mathrm{G} & \mathrm{N} & \mathrm{G} & \mathrm{E} & \mathrm{N} & \mathrm{T} & \mathrm{L} & \mathrm{F} & \mathrm{W} & \mathrm{H}\end{array}$
TGACTCTTGGCTGGGCAATTTGCCTCTGAAATTAACCTTCCCAAGACTCTTCCTAATCTC 6466
$\begin{array}{llllllllllllllllllll}\mathrm{D} & \mathrm{S} & \mathrm{W} & \mathrm{L} & \mathrm{G} & \mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{L} & \mathrm{K} & \mathrm{L} & \mathrm{T} & \mathrm{F} & \mathrm{P} & \mathrm{R} & \mathrm{L} & \mathrm{F} & \mathrm{L} & \mathrm{I} & \mathrm{S}\end{array}$
AGTTTTACCCATGGCTTCAGTAGCGGAGATGGGTTCTTGGGTGAATTTGGAATGGAAATG 6406
$\begin{array}{lllllllllllllllllllll}\mathrm{V} & \mathrm{L} & \mathrm{P} & \mathrm{M} & \mathrm{A} & \mathrm{S} & \mathrm{V} & \mathrm{A} & \mathrm{E} & \mathrm{M} & \mathrm{G} & \mathrm{S} & \mathrm{W} & \mathrm{V} & \mathrm{N} & \mathrm{L} & \mathrm{E} & \mathrm{W} & \mathrm{K} & \mathrm{W}\end{array}$
GAATTTGCCATGGTCCAGAGAATTCAGAAAGAGAGACCGCATTGAATGGGAGCAGCTCCA6346
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{W} & \mathrm{S} & \mathrm{R} & \mathrm{E} & \mathrm{F} & \mathrm{R} & \mathrm{K} & \mathrm{R} & \mathrm{D} & \mathrm{R} & \mathrm{I} & \mathrm{E} & \mathrm{W} & \mathrm{E} & \mathrm{Q} & \mathrm{L} & \mathrm{Q}\end{array}$
ACCTTCCCTCCAGCAAATCTCAGTCCGCCTCAATGAATCAGATGAGTTAATATGGAACTT 6286
$\begin{array}{llllllllllllllllllll}\mathrm{P} & \mathrm{S} & \mathrm{L} & \mathrm{Q} & \mathrm{Q} & \mathrm{I} & \mathrm{S} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{N} & \mathrm{E} & \mathrm{S} & \mathrm{D} & \mathrm{E} & \mathrm{L} & \mathrm{I} & \mathrm{W} & \mathrm{N} & \mathrm{F}\end{array}$
TAGTATGGCTGGTAATTTCTCAGTTCGCTCCTTCTATGAAGAACTTCACAAGCGCTCGAA6226
$\begin{array}{llllllllllllllllllll}\mathrm{S} & \mathrm{M} & \mathrm{A} & \mathrm{G} & \mathrm{N} & \mathrm{F} & \mathrm{S} & \mathrm{V} & \mathrm{R} & \mathrm{S} & \mathrm{F} & \mathrm{Y} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{H} & \mathrm{K} & \mathrm{R} & \mathrm{S} & \mathrm{K}\end{array}$
GCCCTGTCTAGAAAATCTCCCTCAAAAGATATGGAAAGGACTTGTTCCCTTCCGAATAGA 6166
$\begin{array}{lllllllllllllllllllll}\mathrm{P} & \mathrm{C} & \mathrm{L} & \mathrm{E} & \mathrm{N} & \mathrm{L} & \mathrm{P} & \mathrm{Q} & \mathrm{K} & \mathrm{I} & \mathrm{W} & \mathrm{K} & \mathrm{G} & \mathrm{L} & \mathrm{V} & \mathrm{P} & \mathrm{F} & \mathrm{R} & \mathrm{I} & \mathrm{E}\end{array}$
AАTCTTCACTTGGTTATCAGTGCTAGAGAGAATCAATACTAAGAAGAAACTAGCTTCTCT

I	F	T	W	L	S	V	L	E	R	I	N	T	K	K	K	L	A	S	L

GAACATTATCCCACCCGCTGAGGTGGGTTGCTCATTATGTAGTTTGGAGCCTGAGGATAT 6046
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{I} & \mathrm{I} & \mathrm{P} & \mathrm{P} & \mathrm{A} & \mathrm{E} & \mathrm{V} & \mathrm{G} & \mathrm{C} & \mathrm{S} & \mathrm{L} & \mathrm{C} & \mathrm{S} & \mathrm{L} & \mathrm{E} & \mathrm{P} & \mathrm{E} & \mathrm{D} & \mathrm{I}\end{array}$
TTCGCACCTCTTTTTGTTTTGCCCCTTCTCAATGGAGATTTGGGCTTGGTGGTGGGACCT 5986

TTGGAACCTATCTTGGGTATGGCCAAAATCTCTAAATCTTGCCCTCTCTCAATGGAATTG 5926
$\begin{array}{lllllllllllllllllllll}\mathrm{W} & \mathrm{N} & \mathrm{L} & \mathrm{S} & \mathrm{W} & \mathrm{V} & \mathrm{W} & \mathrm{P} & \mathrm{K} & \mathrm{S} & \mathrm{L} & \mathrm{N} & \mathrm{L} & \mathrm{A} & \mathrm{L} & \mathrm{S} & \mathrm{Q} & \mathrm{W} & \mathrm{N} & \mathrm{C}\end{array}$
CCCAAGGAAGGAAAAATTATTCAAAAAAATCTGGCTGGCAGCATTCATTGTGATTATCTG 5866
$\begin{array}{lllllllllllllllllllll}\mathrm{P} & \mathrm{R} & \mathrm{K} & \mathrm{E} & \mathrm{K} & \mathrm{L} & \mathrm{F} & \mathrm{K} & \mathrm{K} & \mathrm{I} & \mathrm{W} & \mathrm{L} & \mathrm{A} & \mathrm{A} & \mathrm{F} & \mathrm{I} & \mathrm{V} & \mathrm{I} & \mathrm{I} & \mathrm{W}\end{array}$
GTCAATCTGGAGAGAACGCAATGAGAGAATTTTCAATAAGAAAGAATCATCAGTTTCAGA 5806
$\begin{array}{llllllllllllllllllll}\text { S } & \mathrm{I} & \mathrm{W} & \mathrm{R} & \mathrm{E} & \mathrm{R} & \mathrm{N} & \mathrm{E} & \mathrm{R} & \mathrm{I} & \mathrm{F} & \mathrm{N} & \mathrm{K} & \mathrm{K} & \mathrm{E} & \mathrm{S} & \mathrm{S} & \mathrm{V} & \mathrm{S} & \mathrm{E}\end{array}$
ААТСАААААССТСАТTСТTGTCCGTTTATGTTGGTGGATGAAGCCTTGGAACCTCTCCTT 5746
$\begin{array}{llllllllllllllllllll}\text { I } & \mathrm{K} & \mathrm{N} & \mathrm{L} & \mathrm{I} & \mathrm{L} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{C} & \mathrm{W} & \mathrm{W} & \mathrm{M} & \mathrm{K} & \mathrm{P} & \mathrm{W} & \mathrm{N} & \mathrm{L} & \mathrm{S} & \mathrm{F}\end{array}$
CCCGTACACAATTGAAGAAGTCATCAGAATCCCACAATGTCTCTTATGGGGTAGCGCTGT 5686

GCCTCGAAGAAGTAAAACCTCCCATCTCCCCCCTCTAATTCAGCTCAGATCTAACCCCCC 5626
$\begin{array}{lllllllllllllllllllll}\mathrm{P} & \mathrm{R} & \mathrm{R} & \mathrm{S} & \mathrm{K} & \mathrm{T} & \mathrm{S} & \mathrm{H} & \mathrm{L} & \mathrm{P} & \mathrm{P} & \mathrm{L} & \mathrm{I} & \mathrm{Q} & \mathrm{L} & \mathrm{R} & \mathrm{S} & \mathrm{N} & \mathrm{P} & \mathrm{P}\end{array}$
TGACCCTTGTCTCAAGTGGATGGTGGGTTTCACCCCGTTCTCGCCAAAAGAAGGTGCTAG 5566
$\begin{array}{lllllllllllllllllllll}\text { D } & \mathrm{P} & \mathrm{C} & \mathrm{L} & \mathrm{K} & \mathrm{W} & \mathrm{M} & \mathrm{V} & \mathrm{G} & \mathrm{F} & \mathrm{T} & \mathrm{P} & \mathrm{F} & \mathrm{S} & \mathrm{P} & \mathrm{K} & \mathrm{E} & \mathrm{G} & \mathrm{A} & \mathrm{R}\end{array}$
AGCAGGAGGCATTTTTGGAGGCTTCCTCAGAGATGAAGTGGGTGTGATCTTATGCTCCTT 5506
$\begin{array}{llllllllllllllllllll}\text { A } & \mathrm{G} & \mathrm{G} & \mathrm{I} & \mathrm{F} & \mathrm{G} & \mathrm{G} & \mathrm{F} & \mathrm{L} & \mathrm{R} & \mathrm{D} & \mathrm{E} & \mathrm{V} & \mathrm{G} & \mathrm{V} & \mathrm{I} & \mathrm{L} & \mathrm{C} & \mathrm{S} & \mathrm{F}\end{array}$
СTCCTGCCCTTTTCCGCCAATGGGTATTAATGAAGTTGCAGTGATTGCAATTCACCGAGC 5446
$\begin{array}{lllllllllllllllllllll}\mathrm{S} & \mathrm{C} & \mathrm{P} & \mathrm{F} & \mathrm{P} & \mathrm{P} & \mathrm{M} & \mathrm{G} & \mathrm{I} & \mathrm{N} & \mathrm{E} & \mathrm{V} & \mathrm{A} & \mathrm{V} & \mathrm{I} & \mathrm{A} & \mathrm{I} & \mathrm{H} & \mathrm{R} & \mathrm{A}\end{array}$
TCTGCAAATCTCTCTCAGTGTGCAAAATCTAAAAGACCGAGAAATCTCAATTTTCTCTGA 5386
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{Q} & \mathrm{I} & \mathrm{S} & \mathrm{L} & \mathrm{S} & \mathrm{V} & \mathrm{Q} & \mathrm{N} & \mathrm{L} & \mathrm{K} & \mathrm{D} & \mathrm{R} & \mathrm{E} & \mathrm{I} & \mathrm{S} & \mathrm{I} & \mathrm{F} & \mathrm{S} & \mathrm{E}\end{array}$

FIGURE S3.- Nucleotide sequence of the $B N R$-like element identified in this study. Numbers of nucleotide residues are coordinated with those of BAC clone 33E19. Each pair of palindromic sequences is indicated by single, double, or dotted lines. Putative domains are boxed and shown with pfam descriptions.
TGAGTTTTTCATACTTCAGAACAGTGTGTAATATCCCAAATTTTTATAACTATTTTATAA 79114
AATTAATTTTGTTATAATAAGATTTTATATATATATAATTCTGAAAAATAAAGTAAAATC 79054
ATAATAAATCAGATTTTTATGAAACTGTTTTTATGTATTAAATCAGATTTTTTTTTAAAA 78994
GAAATTTCGAAATCAAAATTTTGAAATTAAATCAGATTTTTATCTTTTGAAGAAAAAAAA 78934
AATTGGAATTTGATTTTCAGATTTTTCGTCCAAAACGAAAAATAGAGAGAAAAGAAAATT 78874
CTGAAATTATAATTTGAGTTGGTTTTGGAAAAGGATTAGATTTTTGTAAATACTTATCTT 78814
TTAGTGAAACCCTAGATTTACATATATATATATATACCCCCAAAACACCAAAAAAATTCT 78754
CACGTAATACACTTTCTTCATCTTTTTGGTAAGTTTTAAATTTCAGATCTAAAATCACCA 78694
TTGTTGTGTTTGAAGGTTTCAACAAAAAAAAAAAAAACTTTTAAAATCCGATGACTTGGT 78634
CGGAGTCCGGCGTCGGTTTTCTTCTTCTCTTCTTCTTCTGTTTTCTTCTTTCTTCTTCCT 78574
TСTTССТТСТTСТTTСТTСТTTCTATTTCTTCCTTCCTCTTTCTTATTTCATTTGGCTTI 78514
GCGTGCGATGCTTCACAGTACCTCCAAGATTTGATGTTTTTAAAATAAAAAAAGAAAAAA 78454
AAAAAAAGAAAAAGGAATTACATGTGCATTAAAGTCCACGAGAGATTAGACTTACTGTAA 78394
CATGAAAGTTGAAAAAAAATTTCAAGAAAAAATTTCCTTTCAATCTGTGACGACGCTGTC 78334
ACGTTTTTTTTCAAGTAAAAGCTTTTTAATTTTTTTTTCTTTTCAACCTTGGTTATTTAA 78274
CTTTGTCAACTATTAAGTATTAACCTTGTAAGCTTTGATTAATTTTTCTTTCGGAATATT 78214
ATATTAAGTGACTAACATTAGGTAATATTATTTGTTGTAGACGGAAACTTCGTAGAAGGC 78154
GATTTTTAGTTGATATTGCTATACTTGGGACGCGTTTGAGGTAATTCACAATGTCCATCA 78094
ACAACTAGAATCCCGTTAGGAATTGTATGTGCTATGTGTAATGCATGTGGTTATGTGATT 78034
CTATATTTATGTTAGATGTATATTATGTGACAGGAATCGTATAGTACTTTCTATGACTAA 77974
AATTATTATTATTATTATTACTATAGTACTATTATCCCTGCGTATAATATATATGTATCT 77914
ACTGGTATTGTTGTTATGAATTTGGATTTATAATGTACCTAATTATACCATCGTATTAAA 77854
ATTATGCTAATATTGACAATGTACTTAATGGGTATAACTAGTGTGTTAATGATGTAGCGA 77794
ACGGTATTATAAGTTGACATATATTGTAACTCTATGAGGCTCTAATGATGGATATATTGG 77734
TTACTACGAATTATGGACGTTGATTAGTATTAAGTGGCTAAGTTGTGAAAAATATTATTT 77674
GAACTAAAGATGTTCCTGCTAATGTTAATGTGATGTTTGATGTGTCACAACTTTTAAAAA 77614
TCTATTAATCACGTAAAGTGGAAATTGAGGGAATTATCCTGTGGATTTGGATCCTCCATA 77554
GGTGATGAACAGTACTTGATTTTATTATGATACAACTCTTTATTGTCTTCCTCCTAATAC 77494
TATTGGTGCGCATTGCGGATACCCATTAGATTAGTGAGGGGTGTGCACACTAGGGACGCA 77434
CTGCAAAACGATATTGGCCATTGCTCTTAATTTATTGGGTGACGACCCATGTTGAAGTAG 77374
GTGGTTACTGGGATTAGTCCCGGCCTACTGACGTTCGATTCСССТСTAATAATTAAATGT 77314GACGTTGTGTGCATCATATAAACTTGGAGTATATAAATTGATTAAGTGTGTTATGTACTT 77254GTTTGTATTACGTTATACTTGTCTGCATTGTATTATATTTGTATGTATGTTATAAAAATT 77194ATTTTTAAAATACAACTATTATTATTATTATTTTACGGGATGGAGTTGTAATTACTTAGC 77134TTTCGCTAATTTTTGTGTTTTTGTTTTTCTTTGCTCTTTTCCTATTTATATTGTGCAGGT 77074TGGTGAAAGGGACTACGTTGCAGGAATGAGTGAATTTATAGTTTTTAAGTTCACCTAGGT 77014TAATAAACACTACAGTACTGCCATTTGAGATTGTTTAGTTTTGTTTTGGTATAAAGTAGA 76954CAACTCAGTTTGGTTTATTTTGATATTTTGGTTTGTGAGTAAAATTTTTATTTCTAATAA 76894TTAGCCTTGCATTTATTTTGAACAATAGATGCGGCGGTAACACCCTAAAGGTTTGGTCAG 76834ATATTTTAATGAAAAGTGAATATTTTATAAAGTTTTAGAACCAAAGTTTTGGGGTGTTAC 76774

AAATTGGTATTCAGAGCTTAGGTTATAATAAATAAATATAAATTAGGAGTTAATAAAATT 76714 TGTTAAATAATTAAGAGTCTAAGATTAAATTAAGTAATAAGCATTAAAATAAATTGTGAG 76654 AGTGGGATCGAAAAGGGTTTATGTGCCTTAATGTGAAAGCACTTATTTCAGGTGCTTATT 76594 AATTGTTTCTTTTCGTTCTTGTATGTTTAGATGTTGTAACTACAAGAAAATGTTGTGCTC 76534 GGATGACCGACCATAGGATTTAGAGATTTATATTAAGGTCCGTATACGAAGTTATTTAGT 76474 AGTATTGAAAATTCTCTAAGTTCCTATTTATGTGTTTTAATTATGAATCTTATTACTTGA 76414 СTATTTGAGTTGATTAGAGTTTAAGTTCTTGTTATAATTATTGCTTACTTGTCAAATTGA 76354 TGTTATGTGGAAGCATGCAAAGGTTGTCTTGAAATGTATGTTATGATGAAATATAGTTTG 76294 GTTGAGTCATGAAATTTTCTTATGATGAAAGTTTGTATTGAGTAAATAAAACGATGTGCA 76234

AGACCATGTATGGGTGAATAGATGTAGTAATACCAATGCTGATGTGCAGGAATTGTATGC 76174

$$
\begin{array}{lllllllll}
\mathrm{M} & \mathrm{~L} & \mathrm{M} & \mathrm{C} & \mathrm{R} & \mathrm{~N} & \mathrm{C} & \mathrm{M} & \mathrm{Q}
\end{array}
$$

AAACCTATCAAGTATACACTAGATCTCGTAGGAGGACTTTTGAACAAATGGCTGAAACCC 76114
$\begin{array}{llllllllllllllllllll}T & Y & Q & V & Y & T & R & S & R & R & R & T & F & E & Q & M & A & E & T & P\end{array}$

CTGAACAACTACTTGAGAGATTGAGATCTCTTGAACAACTTTCGCAACGTATGGGTTTAG 76054
$\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{O} & \mathrm{L} & \mathrm{L} & \mathrm{E} & \mathrm{R} & \mathrm{L} & \mathrm{R} & \mathrm{S} & \mathrm{L} & \mathrm{E} & \mathrm{Q} & \mathrm{L} & \mathrm{S} & \mathrm{O} & \mathrm{R} & \mathrm{M} & \mathrm{G} & \mathrm{L} & \mathrm{V}\end{array}$

TGTTACAAAACCAATTAGGAAATAATGGTGGAGAGGACCCACAAGCTGCTATGGCAAAGA 75994

AGTTAGCAACCCTTAAACCTCCAATCTTTGTAGGAAAGGAAGACCCCTTACTCTTAGAGA 75934
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{A} & \mathrm{T} & \mathrm{L} & \mathrm{K} & \mathrm{P} & \mathrm{P} & \mathrm{I} & \mathrm{F} & \mathrm{V} & \mathrm{G} & \mathrm{K} & \mathrm{E} & \mathrm{D} & \mathrm{P} & \mathrm{L} & \mathrm{L} & \mathrm{L} & \mathrm{E} & \mathrm{N}\end{array}$

ACTGGCTAAGAGACTTTGATAAGTTATTCACTGCTACTGGGACACCTGAAGCTCAAAAAG 75874
$\begin{array}{llllllllllllllllllll}\mathrm{W} & \mathrm{L} & \mathrm{R} & \mathrm{D} & \mathrm{F} & \mathrm{D} & \mathrm{K} & \mathrm{L} & \mathrm{F} & \mathrm{T} & \mathrm{A} & \mathrm{T} & \mathrm{G} & \mathrm{T} & \mathrm{P} & \mathrm{E} & \mathrm{A} & \mathrm{Q} & \mathrm{K} & \mathrm{V}\end{array}$

| I | V | R | A | Q | E | N | F | N | W | N | A | F | K | V | A | I | K | D | R |
| :--- |

GATTTTTCCCTGAACATATTAGGAGGCAGAAATACAATGAGTTCACTAGATTTAACCAGG 75694

F	F	P	E	H	I	R	R	Q	K	Y	N	E	F	T	R	F	N	Q	G

GAGGTACTATGTCTGTGCAAGAGTATGCCCAAAAGTTCAATGAGTTAGCTAGATTTTGCC 75634

G	T	M	S	V	Q	E	Y	A	Q	K	F	N	E	L	A	R	F	C	P

| N | V | V | P | D | E | R | A | K | A | Q | K | F | E | D | G | L | A | F | R |
| :--- |

GAATTCAGACCAGACTTGGGGGAGCAACTTCTGCAACTTTTCAGGAAGCTTATGCTAAGG 75514
$\begin{array}{llllllllllllllllllll}I & \mathrm{Q} & \mathrm{T} & \mathrm{R} & \mathrm{L} & \mathrm{G} & \mathrm{G} & \mathrm{A} & \mathrm{T} & \mathrm{S} & \mathrm{A} & \mathrm{T} & \mathrm{F} & \mathrm{Q} & \mathrm{E} & \mathrm{A} & \mathrm{Y} & \mathrm{A} & \mathrm{K} & \mathrm{A}\end{array}$

CTTCTAATATTGAGAGGATTTTGAGGCGTGAAGAGGAAGTTATGGGGAGGAATAAGAGAA 75454

AAGACCCACCTAGCAACCAAAATGACCATGGAAATGACAAGAAACCTCGATATGGGGGTA 75394
$\begin{array}{llllllllllllllllllll}\mathrm{D} & \mathrm{P} & \mathrm{P} & \mathrm{S} & \mathrm{N} & \mathrm{Q} & \mathrm{N} & \mathrm{D} & \mathrm{H} & \mathrm{G} & \mathrm{N} & \mathrm{D} & \mathrm{K} & \mathrm{K} & \mathrm{P} & \mathrm{R} & \mathrm{Y} & \mathrm{G} & \mathrm{G} & \mathrm{N}\end{array}$

ACAATAATAATGGGGGCAATAATCACACTAATGGTGGTGGTAATTATCAAGGGAATCGTA 75334
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{G} & \mathrm{G} & \mathrm{N} & \mathrm{N} & \mathrm{H} & \mathrm{T} & \mathrm{N} & \mathrm{G} & \mathrm{G} & \mathrm{G} & \mathrm{N} & \mathrm{Y} & \mathrm{Q} & \mathrm{G} & \mathrm{N} & \mathrm{R} & \mathrm{S}\end{array}$

GCAACTACCAAGGTCAGGGGAGATCAAACCAGCAAGGATCCCGTACCCAGAACCCTACTT 75274
$\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{Y} & \mathrm{Q} & \mathrm{G} & \mathrm{Q} & \mathrm{G} & \mathrm{R} & \mathrm{S} & \mathrm{N} & \mathrm{Q} & \mathrm{Q} & \mathrm{G} & \mathrm{S} & \mathrm{R} & \mathrm{T} & \mathrm{Q} & \mathrm{N} & \mathrm{P} & \mathrm{T} & \mathrm{C}\end{array}$

GTAGAAAGTGTAACAAAAGCCACCCAGGATTTACCTGTCAAGGAGACCCAATAACTTGTT 75214

Zinc knuckle (pfam accession PFO0098)
ATGCTTGTGGAGAGAAAGGGCATAAGGCTAATCAGTGTCCCAAGCGTCAGAATAATGGAC 75154

AAAATGGAAACAATGGGGGAAATAGGAATGGTCATGGGCCTAATCAGAACCAGAATAACA 75094
$\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{G} & \mathrm{N} & \mathrm{N} & \mathrm{G} & \mathrm{G} & \mathrm{N} & \mathrm{R} & \mathrm{N} & \mathrm{G} & \mathrm{H} & \mathrm{G} & \mathrm{P} & \mathrm{N} & \mathrm{Q} & \mathrm{N} & \mathrm{Q} & \mathrm{N} & \mathrm{N} & \mathrm{N}\end{array}$

ATAACCGTCССТАСАAСAACAACAACTCTCAAGGTCAAACTTCGAATGCTCAAGGGGGGA 75034
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{R} & \mathrm{P} & \mathrm{Y} & \mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{N} & \mathrm{S} & \mathrm{Q} & \mathrm{G} & \mathrm{Q} & \mathrm{T} & \mathrm{S} & \mathrm{N} & \mathrm{A} & \mathrm{Q} & \mathrm{G} & \mathrm{G} & \mathrm{N}\end{array}$

ACAATACTCAGCATAATGGTCAGAATAACAATCGAGCAAATGGAGGAAACAACAATCAGA 74974

ACGGCAATGGAAATGGTGCTCGAGGCAACAATGGAAGAATCTATGTTATGAACCAGAATG 74914
$\begin{array}{llllllllllllllllllll}\mathrm{G} & \mathrm{N} & \mathrm{G} & \mathrm{N} & \mathrm{G} & \mathrm{A} & \mathrm{R} & \mathrm{G} & \mathrm{N} & \mathrm{N} & \mathrm{G} & \mathrm{R} & \mathrm{I} & \mathrm{Y} & \mathrm{V} & \mathrm{M} & \mathrm{N} & \mathrm{Q} & \mathrm{N} & \mathrm{E}\end{array}$ Retroviral aspartyl protease (pfam accession PF08284) AAGCAGACACCAACGCCAATGTTGTGACGGGTACTTTCCTCGTAAACTCTAACCCTGCTT 74854

A	D	T	N	A	N	V	V	T	G	T	F	L	V	N	S	N	P	A	Y

ACTTGCTTTTTGATTCTGGGGCGTCTCATTCTTTCATAGCTAGTTCATTTGTTGAAAAGT 74794

L	L	F	D	S	G	A	S	H	S	F	I	A	S	S	F	V	E	K	L

TAGGTCTAAAACCCTCAATCTTGTGTCAAACTTTCATTACAATACCTTCAGGAGAAGTAG 74734

G	L	K	P	S	I	L	C	Q	T	F	I	T	I	P	S	G	E	V	V

TTCCTTGTAGTTCTCTATACCAAGACATACCCATTACCATATTAGGATCTGATTTGCCGG 74674

P	C	S	S	L	Y	Q	D	I	P	I	T	I	L	G	S	D	L	P	A

CTGATCTTATTCAGTTTGACCTACCCGACTTTGATGTAATATTGGGAATGGATTGGCTTG 74614

D	L	I	Q	F	D	L	P	D	F	D	V	I	L	G	M	D	W	L	A

K	Y	R	A	R	I	E	C	H	T	Q	K	V	S	L	R	G	P	K	G

GAAATAGAATATCCTATCAAGGAATTGTTTCTAAACCTGGAGTCAGTATTGTGTCAGCCA 74494 $\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{R} & \mathrm{I} & \mathrm{S} & \mathrm{Y} & \mathrm{Q} & \mathrm{G} & \mathrm{I} & \mathrm{V} & \mathrm{S} & \mathrm{K} & \mathrm{P} & \mathrm{G} & \mathrm{V} & \mathrm{S} & \mathrm{I} & \mathrm{V} & \mathrm{S} & \mathrm{A} & \mathrm{M}\end{array}$

TGTCATTCAAAACCTATATTAGGAAGGGCTACCCCATATACTTGTGCCATGTGAAGGATG 74434
$\begin{array}{lllllllllllllllllllll}\mathrm{S} & \mathrm{F} & \mathrm{K} & \mathrm{T} & \mathrm{Y} & \mathrm{I} & \mathrm{R} & \mathrm{K} & \mathrm{G} & \mathrm{Y} & \mathrm{P} & \mathrm{I} & \mathrm{Y} & \mathrm{L} & \mathrm{C} & \mathrm{H} & \mathrm{V} & \mathrm{K} & \mathrm{D} & \mathrm{V}\end{array}$

TGAGTGTGGAGGATGGAGAGATATCTCAAATACCTGTGGTGAGTGAGTTCCAAGATGTTT 74374
$\begin{array}{llllllllllllllllllll}\mathrm{S} & \mathrm{V} & \mathrm{E} & \mathrm{D} & \mathrm{G} & \mathrm{E} & \mathrm{I} & \mathrm{S} & \mathrm{Q} & \mathrm{I} & \mathrm{P} & \mathrm{V} & \mathrm{V} & \mathrm{S} & \mathrm{E} & \mathrm{F} & \mathrm{Q} & \mathrm{D} & \mathrm{V} & \mathrm{F}\end{array}$

TTCCAGAAGAAATTCCAGGGATGCCGCCAGTGAGAGAAATGGATTTTAAGATTGACCTAG 74314

TGCCTGGAACTGGAGCTATTTCTAAGGCACCATATAGGATGGCACCTGCAGAGATGCAAG 74254

AGTTGAAAGTGCAATTGGAGGAATTATTGGAGAAAGGGTACATTAGGCCAAGTGTTTCAC 74194
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{K} & \mathrm{V} & \mathrm{Q} & \mathrm{L} & \mathrm{E} & \mathrm{E} & \mathrm{L} & \mathrm{L} & \mathrm{E} & \mathrm{K} & \mathrm{G} & \mathrm{Y} & \mathrm{I} & \mathrm{R} & \mathrm{P} & \mathrm{S} & \mathrm{V} & \mathrm{S} & \mathrm{P}\end{array}$

CTTGGGGAGCACCAGTGTTATTTGTTCGAAAGAAGGATGGAACCTTGAGGTTGTGTATTG 74134
W $\quad \mathrm{G} \quad \mathrm{A} \quad \mathrm{P} \quad \mathrm{V} \quad \mathrm{L} \quad \mathrm{F}$
RNA-dependent DNA polymerase (pfam accession PF00078)
ATTACAGAGAGTTGAATAATGTCACAATAAAGAATAAGTACCCATTGCCTAGGATTGAGG 74074

Y	R	E	L	N	N	V	T	I	K	N	K	Y	P	L	P	R	I	E	D

ATTTATTTGATCAACTTAAGGGTGCTGGAATTTTCTCTAAGATTGATTTGAGGTCTGGGT 74014

L	F	D	Q	L	K	G	A	G	I	F	S	K	I	D	L	R	S	G	Y

ATCACCAATTGAGAATTTCGGAGGAAGATATACCAAAAACAGCTTTTCGTACGAGGTATG 73954

H	Q	L	R	I	S	E	E	D	I	P	K	T	A	F	R	T	R	Y	G

GGCATTATGAGTTCACAGTGATGCCATTTGGACTTACTAATGCACCTGCAGCATTTATGG 73894

H	Y	E	F	T	V	M	P	F	G	L	T	N	A	P	A	A	F	M	D

ATCTTATGAATAGAACATTTCAGCCGTATTTAGATAGATTTGTGGTGGTGTTCATAGATG 73834

| L | M | N | R | T | F | Q | P | Y | L | D | R | F | V | V | V | F | I | D | D |
| :--- |

ATATATTGGTGTATTCGAAGGATAAAGAAGAGCATGAAGGTCATTTAAGGAAAGTTTTGG 73774

I	L	V	Y	S	K	D	K	E	E	H	E	G	H	L	R	K	V	L	E

AGATACTTCGAGAGAAAAGGTTGTATGCTAAGTTATCAAAATGTGAGTTTTGGCTTGAGA 73714

I	L	R	E	K	R	L	Y	A	K	L	S	K	C	E	F	W	L	E	K

AAGTTGCATTTTTAGGTCATGTGATTTCGAAGGAAGGTGTTGCTGTAGATCCATCAAAGA 73654

TACAAGCAGTAACAGAATGGGTGAGACCTAGTAATGTGACTGAGATTAGAAGTTTCTTAG 73594
$\begin{array}{llllllllllllllllllll}\text { Q } & \mathrm{A} & \mathrm{V} & \mathrm{T} & \mathrm{E} & \mathrm{W} & \mathrm{V} & \mathrm{R} & \mathrm{P} & \mathrm{S} & \mathrm{N} & \mathrm{V} & \mathrm{T} & \mathrm{E} & \mathrm{I} & \mathrm{R} & \mathrm{S} & \mathrm{F} & \mathrm{L} & \mathrm{G}\end{array}$

GACTTGCTGGCTACTATAGGAGGTTTGTGCAAGATTTCTCAAAAGTAGCTCAACCTTTGA 73534
$\begin{array}{llllllllllllllllllll}\mathrm{L} & \mathrm{A} & \mathrm{G} & \mathrm{Y} & \mathrm{Y} & \mathrm{R} & \mathrm{R} & \mathrm{F} & \mathrm{V} & \mathrm{Q} & \mathrm{D} & \mathrm{F} & \mathrm{S} & \mathrm{K} & \mathrm{V} & \mathrm{A} & \mathrm{Q} & \mathrm{P} & \mathrm{L} & \mathrm{T}\end{array}$

CAAATTTGATGAAGAAAACAACTCGATTTCAGTGGGATGAGAGGTGTGAGAAAGCTTTTC 73474
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{L} & \mathrm{M} & \mathrm{K} & \mathrm{K} & \mathrm{T} & \mathrm{T} & \mathrm{R} & \mathrm{F} & \mathrm{Q} & \mathrm{W} & \mathrm{D} & \mathrm{E} & \mathrm{R} & \mathrm{C} & \mathrm{E} & \mathrm{K} & \mathrm{A} & \mathrm{F} & \mathrm{Q}\end{array}$

AGGAATTGAAGCAAAGACTTACTTCAGCACCAGTTTTGACATTACCATCTGGATTAGAAG 73414
$\begin{array}{llllllllllllllllllll}\mathrm{E} & \mathrm{L} & \mathrm{K} & \mathrm{Q} & \mathrm{R} & \mathrm{L} & \mathrm{T} & \mathrm{S} & \mathrm{A} & \mathrm{P} & \mathrm{V} & \mathrm{L} & \mathrm{T} & \mathrm{L} & \mathrm{P} & \mathrm{S} & \mathrm{G} & \mathrm{L} & \mathrm{E} & \mathrm{G}\end{array}$

GTTTTGAGGTGTATAGTGACGCTTCTAAGAATGGGTTAGGATGTGTATTGATGCAACATA 73354
$\begin{array}{lllllllllllllllllllll}\text { F } & \mathrm{E} & \mathrm{V} & \mathrm{Y} & \mathrm{S} & \mathrm{D} & \mathrm{A} & \mathrm{S} & \mathrm{K} & \mathrm{N} & \mathrm{G} & \mathrm{L} & \mathrm{G} & \mathrm{C} & \mathrm{V} & \mathrm{L} & \mathrm{M} & \mathrm{Q} & \mathrm{H} & \mathrm{S}\end{array}$

GTAAGGTGGTAGCATATGCTTCGAGACAACTTAAGCCTTATGAACAGAATTACCCTACTC 73294
$\begin{array}{lllllllllllllllllllll}\mathrm{K} & \mathrm{V} & \mathrm{V} & \mathrm{A} & \mathrm{Y} & \mathrm{A} & \mathrm{S} & \mathrm{R} & \mathrm{Q} & \mathrm{L} & \mathrm{K} & \mathrm{P} & \mathrm{Y} & \mathrm{E} & \mathrm{Q} & \mathrm{N} & \mathrm{Y} & \mathrm{P} & \mathrm{T} & \mathrm{H}\end{array}$
$\begin{array}{llllllllllllllllllll}\text { D } & \mathrm{L} & \mathrm{E} & \mathrm{L} & \text { A } & \text { A } & \mathrm{V} & \mathrm{V} & \mathrm{F} & \text { A } & \mathrm{L} & \mathrm{K} & \mathrm{I} & \mathrm{W} & \mathrm{R} & \mathrm{H} & \mathrm{Y} & \mathrm{L} & \mathrm{Y} & \mathrm{G}\end{array}$

GTGTGTCATGTAAGATTTTCACTGATCATAAAAGTCTGAAATATATATTTACTCAGAAGG 73174
$\begin{array}{llllllllllllllllllll}\mathrm{V} & \mathrm{S} & \mathrm{C} & \mathrm{K} & \mathrm{I} & \mathrm{F} & \mathrm{T} & \mathrm{D} & \mathrm{H} & \mathrm{K} & \mathrm{S} & \mathrm{L} & \mathrm{K} & \mathrm{Y} & \mathrm{I} & \mathrm{F} & \mathrm{T} & \mathrm{Q} & \mathrm{K} & \mathrm{E}\end{array}$

AGTTGAACATGAGACAGAGGAGATGGCTTGAACTTATTAAGGATTATGATTTAGAGATTT 73114

TGTATCATGAGGGTAAAGCGAATAAAGTTGCTGATGCATTGAGTAGGAAGACTAGTCATT 73054
$\begin{array}{lllllllllllllllllllll}\text { Y } & \mathrm{H} & \mathrm{E} & \mathrm{G} & \mathrm{K} & \mathrm{A} & \mathrm{N} & \mathrm{K} & \mathrm{V} & \mathrm{A} & \mathrm{D} & \mathrm{A} & \mathrm{L} & \mathrm{S} & \mathrm{R} & \mathrm{K} & \mathrm{T} & \mathrm{S} & \mathrm{H} & \mathrm{S}\end{array}$

CGATGAACATGATGGTGTTATCTGAGAGATTGTGTGAAGATTTCAGGAGCATGAGTTTAG 72994

$\begin{array}{llllllllllllllllllll}M & \mathrm{~N} & \mathrm{M} & \mathrm{M} & \mathrm{V} & \mathrm{L} & \mathrm{S} & \mathrm{E} & \mathrm{R} & \mathrm{L} & \mathrm{C} & \mathrm{E} & \mathrm{D} & \mathrm{F} & \mathrm{R} & \mathrm{S} & \mathrm{M} & \mathrm{S} & \mathrm{L} & \mathrm{E}\end{array}$

AAGTCATGGAGCAAGGGCAAGTGGAAGCTCAATTGAATGCACTATGCGTGCAACCCACCT 72934
$\begin{array}{llllllllllllllllllll}V & M & E & Q & G & Q & V & E & A & Q & L & N & A & L & C & V & Q & P & T & L\end{array}$

TATTCGATGAGATTCGAGAGAAGCAAAGTAGTGATGAGTGGATGGTGAAGATAAAGAAAA 72874

TGAAAGAAGATGGAGTTGTCATCGAGTTTGACATTGATGAAAATGGTGTTGTGAAGTACA 72814
$\begin{array}{llllllllllllllllllll}\mathrm{K} & \mathrm{E} & \mathrm{D} & \mathrm{G} & \mathrm{V} & \mathrm{V} & \mathrm{I} & \mathrm{E} & \mathrm{F} & \mathrm{D} & \mathrm{I} & \mathrm{D} & \mathrm{E} & \mathrm{N} & \mathrm{G} & \mathrm{V} & \mathrm{V} & \mathrm{K} & \mathrm{Y} & \mathrm{K}\end{array}$

AGGGAAGATGGTGTGTTCCTAAGGATGAGGAGTTAAAAAGAAAGATTTTGGAAGAAGCTC 72754

ATAATACTCCATATTCTGTGCATCCTGGAGGAGATAAACTTTATAAGGATTTGAAGCAGC 72694
$\begin{array}{llllllllllllllllllll}\mathrm{N} & \mathrm{T} & \mathrm{P} & \mathrm{Y} & \mathrm{S} & \mathrm{V} & \mathrm{H} & \mathrm{P} & \mathrm{G} & \mathrm{G} & \mathrm{D} & \mathrm{K} & \mathrm{L} & \mathrm{Y} & \mathrm{K} & \mathrm{D} & \mathrm{L} & \mathrm{K} & \mathrm{Q} & \mathrm{H}\end{array}$

ATTTTTGGTGGAAAAACATGAAACGTGAAGTGGCAGAGTTTGTTGCAAAGTGTTTGACGT 72634
$\begin{array}{lllllllllllllllllllll}\text { F } & \mathrm{W} & \mathrm{W} & \mathrm{K} & \mathrm{N} & \mathrm{M} & \mathrm{K} & \mathrm{R} & \mathrm{E} & \mathrm{V} & \mathrm{A} & \mathrm{E} & \mathrm{F} & \mathrm{V} & \mathrm{A} & \mathrm{K} & \mathrm{C} & \mathrm{L} & \mathrm{T} & \mathrm{C}\end{array}$

GTCAGAAAGTGAAGATTCAGCATATGAGACCTGGTGGAATGATGCAACCTTTAGAAGTGC 72574
$\begin{array}{lllllllllllllllllllll}\mathrm{Q} & \mathrm{K} & \mathrm{V} & \mathrm{K} & \mathrm{I} & \mathrm{Q} & \mathrm{H} & \mathrm{M} & \mathrm{R} & \mathrm{P} & \mathrm{G} & \mathrm{G} & \mathrm{M} & \mathrm{M} & \mathrm{Q} & \mathrm{P} & \mathrm{L} & \mathrm{E} & \mathrm{V} & \mathrm{P}\end{array}$ Integrase core domain (pfam accession PFO0665) CGAGTTGGAAATGGGAGTCTATTTCAATGGATTTTGTGATGGGATTACCACTTACTAAGT 72514

S	W	K	W	E	S	I	S	M	D	F	V	M	G	L	P	L	T	K	S

| A | K | N | A | I | W | V | I | V | D | R | L | T | K | S | A | R | F | I | A |
| :--- |

CAATGAAGGATACATGGAGTATGCAACAGTTGGCTAGTGCATATGTGCGAGAGGTTGTTA 72394

M	K	D	T	W	S	M	Q	Q	L	A	S	A	Y	V	R	E	V	V	R

GACTGCATGGAATACCAAAGGATATCGTTTCAGATAGAGACTCGAGATTTTTGTCCAAGT 72334

L	H	G	I	P	K	D	I	V	S	D	R	D	S	R	F	L	S	K	F

TTTGGGGGAGGTTACAACAAGCCTTTGGGACATTGCTCAAATTTAGTACAGCTTTCCACC 72274

W	G	R	L	Q	Q	A	F	G	T	L	L	K	F	S	T	A	F	H	P

CTGCAACAGATGGACAGACAGAGAGAACAATTCAAACATTGGAGGATATGTTGAGAGCAT 72214

| A | T | D | G | Q | T | E | R | T | I | Q | T | L | E | D | M | L | R | A | C |
| :--- |

GTGTGATAGACTTTGGAGGATCTTGGGATGATTATTTGCCAACTATAGAGTTTTCGTATA 72154 $\begin{array}{llllllllllllllllllll}\mathrm{V} & \mathrm{I} & \mathrm{D} & \mathrm{F} & \mathrm{G} & \mathrm{G} & \mathrm{S} & \mathrm{W} & \mathrm{D} & \mathrm{D} & \mathrm{Y} & \mathrm{L} & \mathrm{P} & \mathrm{T} & \mathrm{I} & \mathrm{E} & \mathrm{F} & \mathrm{S} & \mathrm{Y} & \mathrm{N}\end{array}$

ACAACAGTTATCACTCAAGCATAAAGATGGCACCGTATGAAGCATTGTATGGGCGAAAAT 72094
$\begin{array}{lllllllllllllllllllll}\mathrm{N} & \mathrm{S} & \mathrm{Y} & \mathrm{H} & \mathrm{S} & \mathrm{S} & \mathrm{I} & \mathrm{K} & \mathrm{M} & \mathrm{A} & \mathrm{P} & \mathrm{Y} & \mathrm{E} & \mathrm{A} & \mathrm{L} & \mathrm{Y} & \mathrm{G} & \mathrm{R} & \mathrm{K} & \mathrm{C}\end{array}$

GTAGGAGTCCTTTGTGTTGGAGTGACATAAGTGAGACGATGACTTTAGGGCCTGAGATGA 72034
$\begin{array}{llllllllllllllllllll}\mathrm{R} & \mathrm{S} & \mathrm{P} & \mathrm{L} & \mathrm{C} & \mathrm{W} & \mathrm{S} & \mathrm{D} & \mathrm{I} & \mathrm{S} & \mathrm{E} & \mathrm{T} & \mathrm{M} & \mathrm{T} & \mathrm{L} & \mathrm{G} & \mathrm{P} & \mathrm{E} & \mathrm{M} & \mathrm{I}\end{array}$

TTGAAGAAACAACGAAACAAGTTAGGCTTATTCAGGAGCACATGAGGGCAGCTCAAGATA 71974 $\begin{array}{lllllllllllllllllllll}\mathrm{E} & \mathrm{E} & \mathrm{T} & \mathrm{T} & \mathrm{K} & \mathrm{Q} & \mathrm{V} & \mathrm{R} & \mathrm{L} & \mathrm{I} & \mathrm{Q} & \mathrm{E} & \mathrm{H} & \mathrm{M} & \mathrm{R} & \mathrm{A} & \mathrm{A} & \mathrm{Q} & \mathrm{D} & \mathrm{R}\end{array}$

GACAAAAGGCTTACGCAGATCAGAATAGAAGGGAGATGGAATTTGAGGTTGGGGAGAAGG 71914
$\begin{array}{lllllllllllllllllllll}\text { Q } & \mathrm{K} & \mathrm{A} & \mathrm{Y} & \mathrm{A} & \mathrm{D} & \mathrm{Q} & \mathrm{N} & \mathrm{R} & \mathrm{R} & \mathrm{E} & \mathrm{M} & \mathrm{E} & \mathrm{F} & \mathrm{E} & \mathrm{V} & \mathrm{G} & \mathrm{E} & \mathrm{K} & \mathrm{A}\end{array}$

CTTTGCTAAAAGTGTCACCAACAAAGGGGGTCATGAGATTTGGTAGGAAAGGAAAGTTGA 71854

GTCCACGTTACATTGGACCATATGAGATCTTGGAACGAATTGGGAAAGTAGCCTATAGAT 71794
$\begin{array}{llllllllllllllllllll}\mathrm{P} & \mathrm{R} & \mathrm{Y} & \mathrm{I} & \mathrm{G} & \mathrm{P} & \mathrm{Y} & \mathrm{E} & \mathrm{I} & \mathrm{L} & \mathrm{E} & \mathrm{R} & \mathrm{I} & \mathrm{G} & \mathrm{K} & \mathrm{V} & \mathrm{A} & \mathrm{Y} & \mathrm{R} & \mathrm{L}\end{array}$

TAGCCTTACCAATGGAGTTAGCTAATGTCCATAACGTCTTTCATGTGTCTCAACTTCGAA 71734

AATATGTCCATGATCCTACCCATATCATTCAACCTGAAACCATTGAACTAGATGAAACCT 71674 $\begin{array}{llllllllllllllllllll}\mathrm{Y} & \mathrm{V} & \mathrm{H} & \mathrm{D} & \mathrm{P} & \mathrm{T} & \mathrm{H} & \mathrm{I} & \mathrm{I} & \mathrm{Q} & \mathrm{P} & \mathrm{E} & \mathrm{T} & \mathrm{I} & \mathrm{E} & \mathrm{L} & \mathrm{D} & \mathrm{E} & \mathrm{T} & \mathrm{L}\end{array}$

TATCCTTTGAGCAACGCCCAGTTAGGATTCTTGATACCAAAACGAGAAGTACCCGGAACA 71614
$\begin{array}{llllllllllllllllllll}\mathrm{S} & \mathrm{F} & \mathrm{E} & \mathrm{Q} & \mathrm{R} & \mathrm{P} & \mathrm{V} & \mathrm{R} & \mathrm{I} & \mathrm{L} & \mathrm{D} & \mathrm{T} & \mathrm{K} & \mathrm{T} & \mathrm{R} & \mathrm{S} & \mathrm{T} & \mathrm{R} & \mathrm{N} & \mathrm{K}\end{array}$
Chromo domain (pfam accession PF00385)
AGGCGGTAAAACTAGTCAAGGTGTTATGGTCAAGTCAAACTTCTGAAGAGGCTACTTGGG 71554

A	V	K	L	V	K	V	L	W	S	S	Q	T	S	E	E	A	T	W	E

AAGCCGAAGATGATATGAAAAACCGATATCCCGAACTTTCCCAGCAGGTACGCTTGAGTT 71494

| A | E | D | D | M | K | N | R | Y | P | E | L | S | Q | Q | V | R | L | S | F |
| :--- |

TCGGGGACGAAACTCTTTAAGGGGGGTAGAATGTGATACTAACTTTTTGTTTGTATATTA 71434
G D E T L *

GTAGCGAGCGATAACGTTAAAGTTCGAGGACGAACTTTCTTTTAAGGGAGAGTAGATGTA 71374
ATATCCCAAATTTTTATAACTATTTTATAAAATTAATTTTGTTATAATAAGATTTTATAT 71314
ATATATAATTCTGAAAAATAAAGTAAAATCATAATAAATCAGATTTTTATGAAACTGTTT 71254
TTATGTATTAAATCAGATTTTTTTTTAAAAGAAATTTCGAAATCAAAATTTTGAAATTAA 71194
ATCAGATTTTTATCTTTTGAAGAAAAAAAAAATTGGAATTTGATTTTCAGATTTTTCGTC 71134
CAAAACGAAAAATAGAGAGAAAAGAAAATTCTGAAATTATAATTTGAGTTGGTTTTGGAA 71074
AAGGATTAGATTTTTGTAAATACTTATCTTTTAGTGAAACCCTAGATTTACATATATATA 71014
TATATACCCCCAAAACACCAAAAAAATTCTCACGTAATACACTTTCTTCATCTTTTTGGT 70954
AAGTTTTAAATTTCAGATCTAAAATCACCATTGTTGTGTTTGAAGGTTTCAACAAAAAAA 70894 AAAAAAACTTTTAAAATCCGATGACTTGGTCGGAGTCCGGCGTCGGTTTTCTTCTTCTCT 70834
 TCCTTCCTCTTTCTTATTTCATTTGGCTTTGCGTGCGATGCTTCACAGTACCTCCAAGAT 70714 TTGATGTTTTTAAAATAAAAAAAGAAAAAAAAAAAAAGAAAAAGGAATTACATGTGCATT 70654 AAAGTCCACGAGAGATTAGACTTACTGTAACATGAAAGTTGAAAAAAAATTTCAAGAAAA 70594 AATTTCCTTTCAATCTGTGACGACGCTGTCACGTTTTTTTTCAAGTAAAAGCTTTTTAAT 70534 TTTTTTTTCTTTTCAACCTTGGTTATTTAACTTTGTCAACTATTAAGTATTAACCTTGTA 70474 AGCTTTGATTAATTTTTCTTTCGGAATATTATATTAAGTGACTAACATTAGGTAATATTA 70414 TTTGTTGTAGACGGAAACTTCGTAGAAGGCGATTTTTAGTTGATATTGCTATACTTGGGA 70354 CGCGTTTGAGGTAATTCACAATGTCCATCAACAACTAGAATCCCGTTAGGAATTGTATGT 70294 GCTATGTGTAATGCATGTGGTTATGTGATTCTATATTTATGTTAGATGTATATTATGTGA 70234 CAGGAATCGTATAGTACTTTCTATGACTAAAATTATTATTATTATTATTACTATAGTACT 70174 ATTATCCCTGCGTATAATATATATGTATCTACTGGTATTGTTGTTATGAATTTGGATTTA 70114 TAATGTACCTAATTATACCATCGTATTAAAATTATGCTAATATTGACAATGTACTTAATG 70054 GGTATAACTAGTGTGTTAATGATGTAGCGAACGGTATTATAAGTTGACATATATTGTAAC 69994 TCTATGAGGCTCTAATGATGGATATATTGGTTACTACGAATTATGGACGTTGATTAGTAT 69934

TAAGTGGCTAAGTTGTGAAAAATATTATTTGAACTAAAGATGTTCCTGCTAATGTTAATG 69874
 TGATGTTTGATGTGTCACAACTTTTAAAAATCTATTAATCACGTAAAGTGGAAATTGAGG 69814
 GAATTATCCTGTGGATTTGGATCCTCCATAGGTGATGAACAGTACTTGATTTTATTATGA 69754
 TACAACTCTTTATTGTCTTССТССТАATACTATTGGTGCGCATTGCGGATACCCATTAGA 69694

FIGURE S4.- Nucleotide sequence of bvgypsy-1. Numbers of nucleotide residues are coordinated with those of BAC clone 33E19. The open reading frame is indicated with its putative translation product. The 1684-bp repeated sequences are underlined. Putative domains are boxed and shown with pfam descriptions.

ORF18	ATGGCGTGGTACAGAAATTCAAGGTTTGTCTACAATGCTTTAAAACTCAACTTGCGTTCC	60
ORF19	ATGGCGTGGTACAGAAATTCAAGGTTTGTCTACAATGCTTTAAAACTCAACTTGCGTTCC	60
ORF20	ATGGCGTGGTACAGAAATTCAAGGTTTGTCTACAATGCTTTAAAACTCAACTTGCGTTCC	60
ORF21	ATGGCGTGGTACAGAAATTCAAGGTTTGTCTACAATGCTTTAAAACTCAACTTGCGTTCC	60
TK81-0	ATGGCGTGGTACAGAAATTCAAGGTTTGTCTACAATGCTTTAAAACTCAACTTGCGTTCC	60

ORF18	AAAACATTTGGTACTATTCCAACTCCAAGAGTTCATTCGAATTCCTCATCTTTGTTTTAC	120
ORF19	AAAACATTTGGTACTATTCCAACTCCAAGAGTTCATTCGAATTCCTCATCTTTGTTTTAC	120
ORF20	AAAACATTTGGTACTATTCCAACTCCAAGAGTTCATTCGAATTCCTCATCTTTGTTTTAC	120
ORF21	AAAACATTTGGTACTATTCCAACTCCAAGAGTTCATTCGAATTCCTCATCTTTGTTTTAC	120
TK81-0	AAAACATTTGGTACTATTCCAACTCCAAGAGTTCATTCGAATTCCTCATCTTTGTTTTAC	120

ORF18	AATCAATCTACTAATAAGTGTAGTGGGTTATTTGGGTCTGCAAAATCTGGGTATTTTAAT	180
ORF19	AATCAATCTACTAATAAGTGTAGTGGGTTATTTGGGTCTGCAAAATCTGGGTATTTTAAT	180
ORF20	AATCAATCTACTAATAAGTGTAGTGGGTTATTTGGGTCTGCAAAATCTGGGTATTTTAAT	180
ORF21	AATCAATCTACTAATAAGTGTAGTGGGTTATTTGGGTCTGCAAAATCTGGGTATTTTAAT	180
TK81-0	AATCAATCTACTAA---GTGTAGTGGGTTATTTGGGTCTGCAAAATCTGGGTATTTTAAT	177

ORF18	GGGTTTAAACATCATCAAGAGATTAGCTCTTTCTCTGGTTTTGCAAGGAGAAATTATCAT	240
ORF19	GGGTTTAAACATCATCAAGAGATTAGCTCTTTCTCTGGTTTTGCAAGGAGAAATTATCAT	240
ORF20	GGGTTTAAACATCATCAAGAGATTAGCTCTTTCTCTGGTTTTGCAAGGAGAAATTATCAT	240
ORF21	GGGTTTAAACATCATCAAGAGATTAGCTCTTTCTCTGGTTTTGCAAGGAGAAATTATCAT	240
TK81-0	GGGTTTAAACATCATCAAGAGATTAGCTCTTTCTCTGGTTTTGCAAGGAGAAACTATCAT	237

ORF18	GGTGATAAAACCGAAGTAAGTGTTGAATCATGGCTGGAAAAATTCCTTGTTCCAATTGGA	300
ORF19	GGTGATAAAACCGAAGTAAGTGCTGAATCATTGCTGGAAAAATTACTTCTTC---TTGCA	297
ORF20	GGTGATAAAACCGAAGTAAGTGTTGAATCATGGCTGGAAAAATTCCTTGTTCCAATTGGA	300
ORF21	GGTGATAAAACCGAAGTAAGTGTTGAATCATGGCTGGAAAAATTCCTTGTTCCAATTGGA	300
TK81-0	GGTGTTAAAACCGAAGTAAGTGTTGAATTTCGGGTGGAAAAATTACTTCTTGGAATTGCA	297

| ORF18 | C---------TAATCTTGACTTTTGGTATACTTGGTTACCCTCATGTGCACCCAGTAGTT | 351 |
| :--- | :--- | :--- | :--- |
| ORF19 | GTTGCAC---TAATCTTGA-----------TTGCTTACCGTCATGTGCACCCAGTAGTT | 342 |
| ORF20 | C---------TAATCTTGACTTTTGGTATACTTGGTTACCCTCATGTGCACCCAGTAGTT | 351 |
| ORF21 | C---------TAATCTTGACTTTTGGTATACTTGGTTACCCTCATGTGCACCCAGTAGTT | 351 |
| TK81-0 | C-------TAATAATCTCGCATTCTGGTATGATTGCTTTCTTTTATTTGCACCCAGTAGTT | 351 |

ORF18	GTGCCATATACAGGAAGGAAGCATTATGTGCTTATGTCAACAACTCGTGAGAATGAAATT	411
ORF19	GTGCCATATACAGGAAGGAAGCATTATGTGCTTATGTCAACAACTCGTGAGAATGAAAAT	402
ORF20	GTGCCATATACAGGAAGGAAGCATTATGTGCTTATGTCAACAACTCGTGAGAATGAAATT	411
ORF21	GTGCCATATACAGGAAGGAAGCATTATGTGCTTATGTCAACAACTCGTGAGAATGAAATT	411
TK81-0	GTGCCATATACAGGAAGGAAGCATTATGTGATTTTGTCAACAACTCATGAGAATGAAAAT	411
	D-Fw	
ORF18	GGAGAAGTTGAGAAGCGGAAAATACAACCTGCTACACACCCTGATACTGATAGGGTTAGG	471
ORF19	GGAGAAGTTGAGAAGCGGAAAATACAACCTGCTACACACCCTGATACTGAGAGGGTTAGG	462
ORF20	GGAGAAGTTGAGAAGCGGAAAATACAACCTGCTACACACCCTGATACTGATAGGGTTAGG	471
ORF21	GGAGAAGTTGAGAAGCGGAAAATACAACCTGCTACACACCCTGATACTGATAGGGTTAGG	471
TK81-0	GGAGAATTTGAGAAGCGGAAAATACAACCTGCTACACACCCTGATACTGAGAGGGTTAGG	471

ORF18	TCAATATTCCAACACATTCTTGAATCACTGGAAAGAGAGATTAATCACCATGAACTCGAA	531
ORF19	TCTATATTCCAACACATTATTGAATCACTGGAAAGAGAGATTAATCACCATGAACTCGAA	522
ORF20	TCAATATTCCAACACATTCTTGAATCACTGGAAAGAGAGATTAATCACCATGAACTCGAA	531
ORF21	TCAATATTCCAACACATTCTTGAATCACTGGAAAGAGAGATTAATCACCATGAACTCGAA	531
TK81-O	TCTATATTCCAACACATTCTTGAATCACTGGAAAGAGAGATTAATCACCATGAACTCGAA	531

ORF18	СTCGAACTCGAA------AGAGATGAAACTTTCAAGGAGAAAACCATTTGGAAGGAGGAG	585
ORF19	CTCGAA------------AGAGATGAAACTTTCAAGGAGAAAACCATTTGGAAGGAGGAG	570
ORF20	CTCGAA------------AGAGATGAAACTTTCAAGGAGAAAACCATTTTGGAAGGAGGAG	579
ORF21	СTCGAACTCGAA------AGAGATGAAACTTTCAAGGAGAAAACCATTTTGGAAGGAGGAG	585
тк81-0	СTCGAACTCGAACTCGAAAGAGATGAAACTTTCAAGGAGAAAACCATTTTGGAAGGAGGAG	59

ORF18	ACAGTTGATGATAAAGATAGTAGGAAGAAGCATAGTGGGGCTAAGATAACTACTAACCAT	645
ORF19	ACAGTTGATGATAAAGATAGTAGGAAGAAGCATAGTGGGGCTAAGATAACTACTAACCAT	630
ORF20	ACAGTTGATGATAAAGATAGTAGGAAGAAGCATAGTGGGGCTAAGATAACTACTAACCAT	639
ORF21	ACAGTTGATGATAAAGATAGTAGGAAGAAGCATAGTGGGGCTAAGATAACTACTAACCAT	645
TK81-O	ACAGATCATGATAAAGATAGTAGGAAGAAGCATAGTGGGGCTAAGATAACTACTAACCAT	651

ORF18	TTGGAAGGGATGAATTGGGAAATTTCGTTGTTGATAAACCGTTGGTTGAGTCCAGTTAT	705
ORF19	TTGGAAGGGTTGAATTGGGAAATTTTCGTTGTTGATAAACCGTTGGTTGAGTCCAGTTGT	690
ORF20	TTGGAAGGGATGAATTGGGAAATTTTCGTTGTTGATAAACCGTTGGTTGAGTCCAGTTAT	699
ORF21	TTGGAAGGGATGAATTGGGAAATTTTCGTTGTTGATAAACCGTTGGTTGAGTCCAGTTAT	705
TK81-0	---GAAGGGATGAATTGGGAAATTTTCGTTGTCGATAAACCGTGGGTTGAGTCCAGTTGT	708

ORF18	TTATTAGGTGGGAAGATTGTTGTTTACACCGGATTGCTCAACCATT-GCAACTCTGATG	763
ORF19	TTATTTGATGGGAAGATTGTTGTTTACACCGGATTGCTCAACCATTT-CAACTCTGATG	748
ORF20	TTATTAGGTGGGAAGATTGTTGTTTACACCGGATTGCTCAACCATT-GCAACTCTGATG	757
ORF21	TTATTAGGTGGGAAGATTGTTGTTTACACCGGATTGCTCAACCATT-GCAACTCTGATG	763
TK81-0	ATATTTGGTGGGAAGATTGTTGTTTACACTGGATTGCTCAACCATTTG-ATCTCTGATG	766
ORF18	CTGAATTGGCTACAATTATCGCGCATCAGGTTGGGCATGCTGTGGCTCGACATGAGGCAG	823
ORF19	CTGAATTGGCTACAATTATCGCGCATCAGGTTGGGCATGCTGTGGCTCGACATGAGGCAG	808
ORF20	CTGAATTGGCTACAATTATCGCGCATCAGGTTGGGCATGCTGTGGCTCGACATGAGGCAG	817
ORF21	CTGAATTGGCTACAATTATCGCGCATCAGGTTGGGCATGCTGTGGCTCGACATGAGGCAG	823
TK81-0	CTGAATTGGCTACAATTATCGCGCATCAGGTTGGGCATGCTGTGGCTCGACATGAGGCAG	826
	Gre	
ORF18	AGGATTCGACAGCATTTTTCTGGTTGTTAATA---TCCCTCAACGTGATATTATTTAAAA	880
ORF19	AGCATTGGACAGCATTGTTCTGGTGGTCAATGTTAGGGTTCTACGTGACATTATTTGAAA	868
ORF20	AGGATTCGACAGCATTTTTCTGGTTGTTAATA---TCCCTCAACGTGATATTATTTAAAA	874
ORF21	AGGATTCGACAGCATTTTTCTGGTTGTTAATA---TCCCTCAACGTGATATTATTTAAAA	880
TK81-O	AGCATTGGACAACATTGTTGTGGTCGATACTGTTAGTGATATACATGACAATATTTCAAT	886
ORF18	TTСТАTTTACTGAGCCTGAATCTGCCAATGCAAGATCAAAACTACTCTTAAGGCATCCTC	940
ORF19	TTCTATTTACTGCGCCTGAATTTGCCAATGCAAGATCAAAACTACTCTTAAGGCATCCTC	928
ORF20	TTСТАTTTACTGAGCCTGAATCTGCCAATGCAAGATCAAAACTACTCTTAAGGCATCCTC	934
ORF21	TTСТАTTTACTGAGCCTGAATCTGCCAATGCAAGATCAAAACTACTCTTAAGGCATCCTC	940
TK81-0	АTСТАTTTACTGCGCCTGAATTTGCCAATGCAATATCAAAACTACTCTCAAGGCATCCTC	946
	$\text { on } 2$	
ORF18	TCTTGCAAAA AGTTTGGAAGATTATTCAGGCTAGAGCTCCACAATTACTGCCACGAACTA	1000
ORF19	TCTTGCAAAA GGTTTGGAAGATTATTCAGGCTAGATTTCATCAATTACTGCCACGAACTA	988
ORF20	TCTTGCAAAA AGTTTGGAAGATTATTCAGGCTAGAGCTCCACAATTACTGCCACGAACTA	994
ORF21	TCTTGCAAAAAGTTTGGAAGATTATTCAGGCTAGAGCTCCACAATTACTGCCACGAACTA	1000
TK81-0	TCTTGCAAAAGGTTTGGAAGATTATTCAGGCTAGATTTCATCAATTACTGCCACGAACTA	1006
	D-Rv	
ORF18	TCT---GCTTGTCCCTTGTTGGATTGTTTTCCTCGGTGTTTATTCTTTATTATGGTCGGA	1057
ORF19	CCTTGCGATTGGGCTTTGTTGGATTGTCTTCCTTGGTGTTTATTCTTTATTTTGGTCGGA	1048
ORF20	TCT---GCTTGTCCCTTGTTGGATTGTTTTCCTCGGTGTTTATTCTTTATTATGGTCGGA	1051
ORF21	TCT---GCTTGTCCCTTGTTGGATTGTTTTCCTCGGTGTTTATTCTTTATTATGGTCGGA	1057
TK81-0	CCTTGCACTTGGGCTTTCTTGGATTGTCTTCCTTGGTGTTTATTCTTTATTTTGGTCGGA	1066

ORF18	AGGAAATAGAAGCAGATCACATTGGAGTGCTTCTGATGGCTTCTGCTGGATACGACCCGC 1117
ORF19	AGGAAATAGAAGCAGATCACATTGGAGTGCTTCTGATGGCTTCTGCTGGATACGACCCGC 1108
ORF20	AGGAAATAGAAGCAGATCACATTGGAGTGCTTCTGATGGCTTCTGCTGGATACGACCCGC 1111
ORF21	AGGAAATAGAAGCAGATCACATTGGAGTGCTTCTGATGGCTTCTGCTGGATACGACCCGC 1117
TK81-0	AGGAAATAGAAGCAGATCACATTGGAGTGCTTCTGATGGCTTCTGCTGGATACGACCCGC 1126
ORF18	GAGTTGCACCTCAAGTATATGACAAGCTTGCAAAGCCACTGGGCGACTGGAACTGTTTAG 1177
ORF19	GAGTTGCACCTCAAGTATATGACAAGCTTGCAAAGCCACTGGGCGACTGGAACTGTTTAG 1168
ORF20	GAGTTGCACCTCAAGTATATGACAAGCTTGCAAAGCCACTGGGCGACTGGAACTGTTTAG 1171
ORF21	GAGTTGCACCTCAAGTATATGACAAGCTTGCAAAGCCACTGGGCGACTGGAACTGTTTAG 1177
TK81-0	GAGTTGCACCTCAAGTATATGACAAGCTTGCAAAGCCACTGGGCGACTGGAACTGTTTAG 1186
ORF 18	CAACTCATCCATTTGCAAGAATGAGAGCAAAGTTGTTAGCTCGAGCTGATGTTATGAAGG 1237
ORF19	CAACTCATCCATTTGCAAGAATGAGAGCAAAGTTGTTAGCTCGAGCTGATGTTATGAAGG 1228
ORF20	CAACTCATCCATTTGCAAGAATGAGAGCAAAGTTGTTAGCTCGAGCTGATGTTATGAAGG 1231
ORF21	CAACTCATCCATTTGCAAGAATGAGAGCAAAGTTGTTAGCTCGAGCTGATGTTATGAAGG 1237
TK81-0	CAACTCATCCATTTGCAAGAATGAGAGCAAAGTTGTTAGCTCGAGCTGATGTTATGAAGG 1246
ORF18	AAGCAGATAAGATATACAATGAAGTTGTAGCAGGACGTGCAATTCAAGGTCTTCAGTAA 1296
ORF19	AAGCAGATAAGATATACAATGAAGTTGTAGCAGGACGTGCAATTCAAGGTCTTCAGTAA 1287
ORF20	AAGCAGATAAGATATACAATGAAGTTGTAGCAGGACGTGCAATTCAAGGTCTTCAGTAA 1290
ORF21	AAGCAGATAAGATATACAATGAAGTTGTAGCAGGACGTGCAATTCAAGGTCTTCAGTAA 1296
TK81-0	AAGCAGATAAGATATACAATGAAGTTGTAGCAGGACGTGCAATTCAAGGTCTTCAGTAA 1305

FIGURE S5.- Sequence alignment of $b v$ ORF18 (ORF18), bvORF19 (ORF19), bvORF20 (ORF20), bvORF21 (ORF21), and bvORF20L (TK81-O). Hyphens indicate gaps inserted for maximum matching. Residues of nucleotide sequences are numbered from the translational initiation codon. Positions of introns are shown with black triangles, but the intronic sequences are not shown. Exon/intron boundaries have been experimentally confirmed (H. Matsuhira, T. Mikami and T. Kubo, manuscript in preparation). Primer sequences are underlined. Nucleotide residues corresponding to Site 1 and Site 2 in Figure 4 are shown by red and blue letters, respectively. 5 '-CTCGAA- 3 ' repeated sequences are indicated by purple letters.

FIGURE S6.- Gel blot analyses using bvORF16 sequence as a probe. Total cellular DNA of NK-198 was used. Size of signal band is given in kbp. DNA fragment for the hybridization probe was generated by PCR using a pair of primers (5 '-TGTGTATGCTGTTCTGGTTGA -3'

FIGURE S7.- Comparison of anther morphology and anther content between two sugar-beet plants derived from the 14 F1 plants. Panels A and C show photographs taken from a plant having the biaphos-resistance gene. Panels B and D show photographs taken from a plant missing the bialaphos-resistance gene. A and B, anther morphology. C and D, images of Alexander's staining (scale bars; $20 \mu \mathrm{~m}$).

FIGURE S8.- Co-segregation analysis between the bialaphos-resistance gene and partial fertility. Agarose gel electrophoresis of PCR products resulting from amplification using primers targeting the bialaphos-resistance gene. Size of the amplicon is shown on the left. Plant ID and pollen fertility is shown above and below the photograph, respectively. PF and S indicate partial fertility and complete sterility, respectively.
bvORF18/21 MAWYRNSRFVYNALKLNLRSKTFGTIPTPRVHSNSSSLFYNQSTNKCSGLFGSAKSGYFN 60 bVORF19 MAWYRNSRFVYNALKLNLRSKTFGTIPTPRVHSNSSSLFYNQSTNKCSGLFGSAKSGYFN 60 bvORF20 MAWYRNSRFVYNALKLNLRSKTFGTIPTPRVHSNSSSLFYNQSTNKCSGLFGSAKSGYFN 60 bVORF20L MAWYRNSRFVYNALKLNLRSKTFGTIPTPRVHSNSSSLFYNQST-KCSGLFGSAKSGYFN 59
bvORF18/21 GFKHHOEISSFSGFARRNYHGDKTEVSVESWLEKFLVPIGLILTFG-ILGYPHVHPVVVP 119 bvORF19 GFKHHQEISSFSGFARRNYHGDKTEVSAESLLEKLLL---LAVALI-LIAYRHVHPVVVP bvORF20 GFKHHOEISSFSGFARRNYHGDKTEVSVESWLEKFLVPIGLILTFG-ILGYPHVHPVVVP bVORF20L GFKHHOEISSFSGFARRNYHGVKTEVSVEFRVEKLLLGIALIISHSGMIAFFYLHPVVVP
$* *: * *: *: ~ *: ~: ~: ~: ~: ~: ~$ 119
bvORF18/21 YTGRKHYVLMSTTRENEIGEVEKRKIQPATHPDTDRVRSIFQHILESLEREINHHELELE 179 bvORF19 YTGRKHYVLMSTTRENENGEVEKRKIQPATHPDTERVRSIFQHIIESLEREINHHELELE 176 bvORF20 YTGRKHYVLMSTTRENEIGEVEKRKIQPATHPDTDRVRSIFQHILESLEREINHHELELE bvORF20L YTGRKHYVILSTTHENENGEFEKRKIQPATHPDTERVRSIFQHILESLEREINHHELELE 179

bvORF18/21 LE--RDETFKEKTIWKEETVDDKDSRKKHSGAKITTNHLEGMNWEIFVVDKPLVESSYLL 237
bvORF19 ----RDETFKEKTIWKEETVDDKDSRKKHSGAKITTNHLEGLNWEIFVVDKPLVESSCLF 232
bVORF20 ----RDETFKEKTIWKEETVDDKDSRKKHSGAKITTNHLEGMNWEIFVVDKPLVESSYLL 235
bVORF20L LELERDETFKEKTIWKEETDHDKDSRKKHSGAKITTNH-EGMNWEIFVVDKPWVESSCIF 238
bvORF18/21 GGKIVVYTGLLNHCNSDAELATIIAHOVGHAVARHEAEDSTAFFWL-LISLNVILFKILF 296 bvORF19 DGKIVVYTGLLNHFNSDAELATIIAHOVGHAVARHEAEHWTALFWWSMLGFYVTLFEILF
bVORF20 GGKIVVYTGLLNHCNSDAELATIIAHOVGHAVARHEAEDSTAFFWL-LISLNVILFKILF 294
bvORF20L GGKIVVYTGLLNHCISDAELATIIAHOVGHAVARHEAEHWTTLLWSILLVIYMTIFQYLF

bvORF18/21 TEPESANARSKLLLRHPLLQKVWKIIQARAPQLLPR-TICLSLVGLFSSVFILYYGRKEI 355
bvORF19 TAPEFANARSKLLLRHPLLQKVWKIIQARFHOLLPRTTLRLGFVGLSSLVFILYFGRKEI
bvORF20 TEPESANARSKLLLRHPLLQKVWKIIQARAPQLLPR-TICLSLVGLFSSVFILYYGRKEI
bvORF20L TAPEFANAISKLLSRHPLLQKVWKIIQARFHOLLPRTTLHLGFLGLSSLVFILYFGRKEI
bvORF18/21 EADHIGVLLMASAGYDPRVAPQVYDKLAKPLGDWNCLATHPFARMRAKLLARADVMKEAD 415
bvORF19
bvORF20
bvORF20L EADHIGVLLMASAGYDPRVAPQVYDKLAKPLGDWNCLATHPFARMRAKLLARADVMKEAD

412 EADHIGVLLMASAGYDPRVAPQVYDKLAKPLGDWNCLATHPFARMRAKLLARADVMKEAD 413 EADHIGVLLMASAGYDPRVAPQVYDKLAKPLGDWNCLATHPFARMRAKLLARADVMKEAD 418
bvORF18/21 KIYNEVVAGRAIQGLQ 431
bVORF19 KIYNEVVAGRAIQGLQ 428
bVORF20 KIYNEVVAGRAIQGLQ 429
bVORF20L KIYNEVVAGRAIQGLQ 434

FIGURE S9.- Comparison of amino acid sequences of five bvORF20-related genes between NK-198 and TK-81mm-O. Note that bvORF18 and bvORF21 are identical (see Fig. S5). Amino acid residues are numbered from the first methionine residue. Asterisks (*) indicate positions that have a single, fully conserved residue; colons (:) indicate that one of the following 'strong' groups is fully conserved: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW. Points (.) indicate that one of the following 'weaker' groups is fully conserved: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM, HFY (after CLUSTAL W package). HQVGH motifs in the bvORF20-related ORFs are underlined.

File S1. List of gene sequences used for phylogenetic analysis.

Name of genes	Label in tree
AtPPR_1g01970*1	AT1g01970
AtPPR_1g02060	AT1g02060
AtPPR_1g02150	AT1g02150
AtPPR_1g02370	AT1g02370
AtPPR_1g02420	AT1g02420
AtPPR_1g03100	AT1g03100
AtPPR_1g03560	AT1g03560
AtPPR_1g05600	AT1g05600
AtPPR_1g05670	AT1g05670
AtPPR_1g06270	AT1g06270
AtPPR_1g06580	AtRFL1
AtPPR_1g06710	AT1g06710
AtPPR_1g07590	AT1g07590
AtPPR_1g07740	AT1g07740
AtPPR_1g08610	AT1g08610
AtPPR_1g09680	AT1g09680
AtPPR_1g09820	AT1g09820
AtPPR_1g09900	AT1g09900
AtPPR_1g10270	AT1g10270
AtPPR_1g10910	AT1g10910
AtPPR_1g11630	AT1g11630
AtPPR_1g11710	AT1g11710
AtPPR_1g11900	AT1g11900
AtPPR_1g12300	AtRFL2
AtPPR_1g12620	AtRFL3
AtPPR_1g12700	AtRFL4
AtPPR_1g12770	AT1g12770
AtPPR_1g13040	AT1g13040
AtPPR_1g13630	AT1g13630
AtPPR_1g13800	AT1g13800
AtPPR_1g15480	AT1g15480
AtPPR_1g16830	AT1g16830
AtPPR_1g18900	AT1g18900
AtPPR_1g19290	AT1g19290
AtPPR_1g19520	AT1g19520
AtPPR_1g20300	AT1g20300
AtPPR_1g22960	AT1g22960
AtPPR_1g26460	AT1g26460
AtPPR_1g26500	AT1g26500
AtPPR_1g28020	AT1g28020
AtPPR_1g30610	AT1g30610
AtPPR_1g31790	AT1g31790
AtPPR_1g31840	AT1g31840
AtPPR_1g43010	AT1g43010
AtPPR_1g51965	AT1g51965
AtPPR_1g52620	AT1g52620
AtPPR_1g52640	AT1g52640
AtPPR_1g53330	AT1g53330
AtPPR_1g55630	AT1g55630
AtPPR_1g55890	AT1g55890
AtPPR_1g60770	AT1g60770
AtPPR_1g61870	AT1g61870

AtPPR_1g62350	AT1g62350
AtPPR_1g62590	AtRFL5
AtPPR_1g62670	AtRFL6
AtPPR_1g62680	AtRFL7
AtPPR_1g62720	AtRFL8
AtPPR_1g62910	AtRFL9
AtPPR_1g62930	AtRFL11
AtPPR_1g63070	AtRFL12
AtPPR_1g63080	AtRFL13
AtPPR_1g63130	AtRFL14
AtPPR_1g63150	AtRFL15
AtPPR_1g63330	AtRFL16
AtPPR_1g63400	AtRFL17
AtPPR_1g64100	AtRFL18
AtPPR_1g64580	AtRFL19
AtPPR_1g64585	AT1g64585
AtPPR_1g66345	AT1g66345
AtPPR_1g68980	AT1g68980
AtPPR_1g69290	AT1g69290
AtPPR_1g71060	AT1g71060
AtPPR_1g71210	AT1g71210
AtPPR_1g73400	AT1g73400
AtPPR_1g73710	AT1g73710
AtPPR_1g74580	AT1g74580
AtPPR_1g74750	AT1g74750
AtPPR_1g74850	AT1g74850
AtPPR_1g74900	AT1g74900
AtPPR_1g76280	AT1g76280
AtPPR_1g77360	AT1g77360
AtPPR_1g77405	AT1g77405
AtPPR_1g79080	AT1g79080
AtPPR_1g79490	AT1g79490
AtPPR_1g79540	AT1g79540
AtPPR_1g80150	AT1g80150
AtPPR_1g80270	AT1g80270
AtPPR_1g80550	AT1g80550
AtPPR_1g80880	AT1g80880
AtPPR_2g01360	AT2g01360
AtPPR_2g01390	AT2g01390
AtPPR_2g01740	AT2g01740
AtPPR_2g01860	AT2g01860
AtPPR_2g02150	AT2g02150
AtPPR_2g06000	AT2g06000
AtPPR_2g13420	AT2g13420
AtPPR_2g15630	AT2g15630
AtPPR_2g15820	AT2g15820
AtPPR_2g15980	AT2g15980
AtPPR_2g16880	AT2g16880
AtPPR_2g17033	AT2g17033
AtPPR_2g17140	AT2g17140
AtPPR_2g17525	AT2g17525
AtPPR_2g17670	AT2g17670
AtPPR_2g18520	AT2g18520
AtPPR_2g18940	AT2g18940

AtPPR_2g19280	AT2g19280
AtPPR_2g20710	AT2g20710
AtPPR_2g26790	AT2g26790
AtPPR_2g27800	AT2g27800
AtPPR_2g28050	AT2g28050
AtPPR_2g30100	AT2g30100
AtPPR_2g30780	AT2g30780
AtPPR_2g31400	AT2g31400
AtPPR_2g32230	AT2g32230
AtPPR_2g32630	AT2g32630
AtPPR_2g35130	AT2g35130
AtPPR_2g36240	AT2g36240
AtPPR_2g37230	AT2g37230
AtPPR_2g38420	AT2g38420
AtPPR_2g39230	AT2g39230
AtPPR_2g40240	AT2g40240
AtPPR_2g41720	AT2g41720
AtPPR_2g48000	AT2g48000
AtPPR_3g02490	AT3g02490
AtPPR_3g02650	AT3g02650
AtPPR_3g04130	AT3g04130
AtPPR_3g04760	AT3g04760
AtPPR_3g06430	AT3g06430
AtPPR_3g06920	AT3g06920
AtPPR_3g07290	AT3g07290
AtPPR_3g09060	AT3g09060
AtPPR_3g09650	AT3g09650
AtPPR_3g13150	AT3g13150
AtPPR_3g13160	AT3g13160
AtPPR_3g14580	AT3g14580
AtPPR_3g15200	AT3g15200
AtPPR_3g15590	AT3g15590
AtPPR_3g16010	AT3g16010
AtPPR_3g16710	AtRFL20
AtPPR_3g16890	AT3g16890
AtPPR_3g18020	AT3g18020
AtPPR_3g18110	AT3g18110
AtPPR_3g22470	AtRFL21
AtPPR_3g22670	AT3g22670
AtPPR_3g23020	AT3g23020
AtPPR_3g25210	AT3g25210
AtPPR_3g29290	AT3g29290
AtPPR_3g42630	AT3g42630
AtPPR_3g46610	AT3g46610
AtPPR_3g46870	AT3g46870
AtPPR_3g48250	AT3g48250
AtPPR_3g48810	AT3g48810
AtPPR_3g49240	AT3g49240
AtPPR_3g49730	AT3g49730
AtPPR_3g53170	AT3g53170
AtPPR_3g53700	AT3g53700
AtPPR_3g54980	AT3g54980
AtPPR_3g56030	AT3g56030
AtPPR_3g59040	AT3g59040

AtPPR_3g60050	AT3g60050
AtPPR_3g60960	AT3g60960
AtPPR_3g60980	AT3g60980
AtPPR_3g61360	AT3g61360
AtPPR_3g61520	AT3g61520
AtPPR_3g62470	AT3g62470
AtPPR_3g62540	AT3g62540
AtPPR_4g01400	AT4g01400
AtPPR_4g01570	AT4g01570
AtPPR_4g01990	AT4g01990
AtPPR_4g02820	AT4g02820
AtPPR_4g04790	AT4g04790
AtPPR_4g11690	AT4g11690
AtPPR_4g14190	AT4g14190
AtPPR_4g16390	AT4g16390
AtPPR_4g17618	AT4g17618
AtPPR_4g17910	AT4g17910
AtPPR_4g18975	AT4g18975
AtPPR_4g19440	AT4g19440
AtPPR_4g19900	AT4g19900
AtPPR_4g20090	AT4g20090
AtPPR_4g20740	AT4g20740
AtPPR_4g21170	AT4g21170
AtPPR_4g21190	AT4g21190
AtPPR_4g21705	AT4g21705
AtPPR_4g21880	AT4g21880
AtPPR_4g26680	AT4g26680
AtPPR_4g28010	AT4g28010
AtPPR_4g30825	AT4g30825
AtPPR_4g31850	AT4g31850
AtPPR_4g34830	AT4g34830
AtPPR_4g35850	AT4g35850
AtPPR_4g36680	AT4g36680
AtPPR_4g38150	AT4g38150
AtPPR_4g39620	AT4g39620
AtPPR_5g01110	AT5g01110
AtPPR_5g02830	AT5g02830
AtPPR_5g02860	AT5g02860
AtPPR_5g04810	AT5g04810
AtPPR_5g06400	AT5g06400
AtPPR_5g08315	AT5g08315
AtPPR_5g09450	AT5g09450
AtPPR_5g10690	AT5g10690
AtPPR_5g11310	AT5g11310
AtPPR_5g12100	AT5g12100
AtPPR_5g13770	AT5g13770
AtPPR_5g14080	AT5g14080
AtPPR_5g14770	AT5g14770
AtPPR_5g14820	AT5g14820
AtPPR_5g15010	AT5g15010
AtPPR_5g15280	AT5g15280
AtPPR_5g15980	AT5g15980
AtPPR_5g16420	AT5g16420
AtPPR_5g16640	AtRFL23

AtPPR_5g18390	AT5g18390
AtPPR_5g18475	AT5g18475
AtPPR_5g18950	AT5g18950
AtPPR_5g21222	AT5g21222
AtPPR_5g24830	AT5g24830
AtPPR_5g25630	AT5g25630
AtPPR_5g27270	AT5g27270
AtPPR_5g27460	AT5g27460
AtPPR_5g28460	AT5g28460
AtPPR_5g38730	AT5g38730
AtPPR_5g39710	AT5g39710
AtPPR_5g39980	AT5g39980
AtPPR_5g40400	AT5g40400
AtPPR_5g41170	AtRFL24
AtPPR_5g42310	At_CRP1
AtPPR_5g43820	AT5g43820
AtPPR_5g46100	AT5g46100
AtPPR_5g46580	AT5g46580
AtPPR_5g46680	AT5g46680
AtPPR_5g47360	AT5g47360
AtPPR_5g48730	AT5g48730
AtPPR_5g50280	AT5g50280
AtPPR_5g55840	AT5g55840
AtPPR_5g57260	AT5g57260
AtPPR_5g59900	AT5g59900
AtPPR_5g60960	AT5g60960
AtPPR_5g61370	AT5g61370
AtPPR_5g61400	AT5g61400
AtPPR_5g61990	AT5g61990
AtPPR_5g62370	AT5g62370
AtPPR_5g64320	AT5g64320
AtPPR_5g65560	AT5g65560
AtPPR_5g65820	AT5g65820
AtPPR_5g66635	AT5g66635
AtPPR_5g67570	AT5g67570
AtPPR_1g62910	AtRFL10
AtPPR_4g26800	AtRFL22
AtPPR_1g12770	AtRFL25
AtPPR_1g64585	AtRFL26
Glyma01g07140*2	GmRFL1
Glyma01g07300	GmRFL2
Glyma02g09530	GmRFL3
Glyma05g28430	GmRFL4
Glyma0679s00210	GmRFL5
Glyma07g11290	GmRFL6
Glyma07g11410	GmRFL7
Glyma07g27410	GmRFL8
Glyma08g05770	GmRFL9
Glyma09g07250	GmRFL10
Glyma09g07290	GmRFL11
Glyma09g07300	GmRFL12
Glyma09g28360	GmRFL13
Glyma09g30160	GmRFL14
Glyma09g30500	GmRFL15

Glyma09g30530	GmRFL16		
Glyma09g30620	GmRFL18		
Glyma09g30640	GmRFL19		
Glyma09g30680	GmRFL20		
Glyma09g30720	GmRFL21		
Glyma09g30740	GmRFL22		
Glyma09g30940	GmRFL23		
Glyma09g39260	GmRFL24		
Glyma09g39940	GmRFL25		
Glyma10g00540	GmRFL26		
Glyma14g38270	GmRFL28		
Glyma15g24040	GmRFL29		
Glyma16g25410	GmRFL30		
Glyma16g27600	GmRFL31		
Glyma16g27640	GmRFL32		
Glyma16g27790	GmRFL33		
Glyma16g27800	GmRFL34		
Glyma16g28020	GmRFL35		
Glyma16g31950	GmRFL36		
Glyma16g31960	GmRFL37		
Glyma16g32030	GmRFL38		
Glyma16g32050	GmRFL39		
Glyma16g32420	GmRFL40		
Glyma18g46270	GmRFL41		
jgi\|Poptr1	556096	eugene3.00040809*3	PtRFL1
jgi\|Poptr1	561788	eugene3.00061747	PtRFL2
jgi\|Poptr1	561789	eugene3.00061748	PtRFL3
jgi\|Poptr1	562052	eugene3.00062011	PtRFL4
jgi\|Poptr1	570945	eugene3.00130309	PtRFL5
jgi\|Poptr1	570961	eugene3.00130325	PtRFL6
jgi\|Poptr1	570963	eugene3.00130327	PtRFL7
jgi\|Poptr1	571830	eugene3.00131194	PtRFL8
jgi\|Poptr1	573736	eugene3.00190210	PtRFL9
jgi\|Poptr1	581077	eugene3.01250075	PtRFL10
jgi\|Poptr1	581161	eugene3.127570001	PtRFL11
jgi\|Poptr1	594495	eugene3.00640083	PtRFL12
jgi\|Poptr1	595453	eugene3.00700094	PtRFL13
jgi\|Poptr1	595455	eugene3.00700096	PtRFL14
jgi\|Poptr1	595479	eugene3.00700120	PtRFL15
jgi\|Poptr1	595494	eugene3.00700135	PtRFL16
jgi\|Poptr1	595495	eugene3.00700136	PtRFL17
jgi\|Poptr1	595506	eugene3.00700147	PtRFL18
jgi\|Poptr1	562855	eugene3.00070793	PtRFL19
jgi\|Poptr1	572581	eugene3.00140626	PtRFL20
AAM52339**	PPR-592		
CAD61285	radish-Rf		
bvORF16*5	bvORF16		

${ }^{* 1} h t t p: / / w w w . p l a n t e n e r g y . u w a . e d u . a u / a p p l i c a t i o n s / p p r / p p r . p h p ~ a n d ~ h t t p: / / w w w . a r a b i d o p s i s . o r g / t o o l s / b u l k / s e q u e n c e s / i n d e x . j s p ~$
${ }^{* 2}$ http://www.phytozome.net/search.php?show=text\&org=Org_Gmax_v1.1
*3http://www.phytozome.net/search.php?show=blast\&method=Org_Ptrichocarpa_v2.2
${ }^{* 4}$ DDBJ/GenBank/EMBL dataase
${ }^{* 5}$ This study

File S2. Phylogenetic tree drawn by the Neighbor-Joining method. Amino acid sequences listed in File S1 were aligned using ClustalW (http://clustalw.ddbj.nig.ac.jp/index.php?lang=ja) and tree data were obtained. The tree was drawn using FigTree software (http://tree.bio.ed.ac.uk/software/figtree/). The tree includes: P-type PPR proteins from Arabidopsis thaliana (O'Toole et al., Mol. Biol. Evol., 2008, 25: 1120-1128); soybean PPR-type Rf-like (RFL) proteins (Fujii et al., PNAS, 2011, 108: 1723-1728); poplar RFL proteins (Fujii et al., PNAS, 2011, 108: 1723-1728); petunia RF protein (Bentolila et al., PNAS, 2002, 99: 10887-10892); radish RF protein (Brown et al. Plant J., 2003, 35: 262-272; Desloire et al., EMBO Rep., 2003, 4: 588-594; Koizuka et al., Plant J., 2003, 34: 407-415); and bvORF16. Clades including bvORF16 and AT5g42310 (At_CRP1), and RF and RFL are colored by green and red, respectively.

File S3. Multiple alignment of amino acid sequences of OMA1-homologous proteins from Arabidopsis (At_OMA1, At5g51740), rice (Os_OMA1, Os02g0735100), sugar beet (bvORF19, this study), and yeast (Sc_OMA1, S000001795). Position of the Zn^{2+} binding motif is shown by a horizontal line. The amino acid sequences were aligned using ClustalW (http://clustalw.ddbj.nig.ac.jp/index.php?lang=ja). The identity of amino acid sequences between bvORF19 and yeast OMA1 is 17%. The E-value obtained from a BLAST search using bvORF19 as a query is $1 \mathrm{e}-12$ for yeast OMA1.

STE2 4
Candida STE24
Aspergīlus STE 24
Coccidioides
Neurospora
OsSTE 24
HvSTE 24
ATSTE 24
Homo STE24
Mus STE 24
Bos ${ }^{-}$STE 24
Gallus_STE 24
Xenopus_ste24
Tetraodon_STE24
Strongylocentrotus_STE 24
Drosophila
At CpMPL
Os CpMPL
Synechocystis
Crocosphaera
An abaena
Thermosynechococcus
Synechococcus
Streptomyces
Mycobacterium
Trichodesmium ht px
Haemophilus
Desulfitobacterium
Nitrobacter
Methanosarcina
Wolinella
Photobacterium
a-proteobacterium
Nitrococcus
Pseudomonas
Azotobacter
Chromobacterium
Bordetella
Flavobacterium
Ustilago
Cryptococcus
Omalp
Candida
MR PR P-1
Mus
Ptrongylocentrotus
Gibberella
Aspergillus
AtMP L
Os MPL
ORF19
yf gC

EI TAVIAEEIGETWK NHIVNMVIFSQLHTFLIFS L ETVAVLAHEIGHWK LNHLPKMI TMMQGHLFLIFSL EVVAVISHELGHWSLGHTTKLFAIA QS HMFYIFAL EVVAVISHELGHWSLSHTTKLFGIAQFHMFYIFAL EVVAVLAHELGHWK L GHTTS LFGI S QAHFFAI FS L EI VSVIAHEL GHWK L NHTVYSF VA VQL LM F LQ FGG EIVSVIAHELGHWKLNHTAYSFVAVQLLTFMQFGG EIVAVIAHE LGHWK LNETTYSFIAVQI LAFLQFGG EV LA VIGHEL GHWK L GHTVKNI II S QMNS FLCFFL EVLAVLGHELGHWK LGHTVKNIIIS QMNS FLCFFL EVLAVIGHELGHWKLGHTVKNIIIS QMNS FLCFFL EV LA VIGHEL GHWK L GHTVKNI II S QMNS FLCFFL EVLAVIGHELGHWKLGHTVKNIVIS QVNS FLCFFL EI LA VIGHELGHWK L GHTV KNI VI S QMNS F LC FS L EVLAVLAEELGHWK GHNL KNLIIS QVNI LLCLFL EVLAVIGHELGHWK L GHVT KNI II M QV HL F LM FL V EL QAVIAHELGHLKCDHGVWLTFANILT--LGAYT EL QAVLAEELGHLKCDHGVWLTFANILT- - MGAYS EI QA VMAHELGHLK CEHGVYLTLAN IMV- - LAAGL EI QGVMAHELGHLK C EHGVYLTLANMMV--LGASL EI QAVIAHELGHLK CDHSVYLTPVNLLV- - LAASA ELQAVEAIELGHLKCEHGVYLTIANLLL- - FAAS Q EI QA VIAHEL GHLK CNHGVY LTMANLLM- - LS TS L EMRAVIGHEVGHALS GHSVYRTILLFLTSLALRVA EM RF VMGEEL GHAL S GHAVYRTMMMHL LRLARSF G ELKTVLAHELGHIKCGHPILNQMATWAMGIASAIT EA EAVIAHEISHIANGDMV TMTLI QGVVNTFVIFI EA EAVIAHEI SHISNGDMVTMALLQGVLNTFVIFL ELEGVIAHEMAHIKNRDILISTLAA -VMAGVITTL ELAGVIAHELAHIKH HD TLLMT ITA-TIAGAI SML ELEAVIAHELSHVKNRDMAVLTIAS -FLSSVAFYI ELAVVMGHEIAHAIARIGAERLSVSMASELGRNLI QLATVIGHE IGHVI A QHISNERLSRS QLANAGLELT QLAS VMGHEIGHVIAEHGNERMSIATLSNLGLQIT QLATVIGHEVGHVLAGHANERLSTNAATQTGLDLL EIAA VMGHE I AHAL R EHGR EAMSKA YGVQVAS Q-I EIAA VMGHEI AHAL R EHGREAL SKA YA VEMAK QGA ELAA VIGHE I SHAL R EHTRENM SQA YA QQM GL GL V ELAAVIGHEIAHAL REHARERVSQQMA TS I GL SVL GL AM ILGHEL AHAL ANHGAQRMTAQQGQQIVGAAG GLATVIGHEVAHQVARHSAEKMSGYKVLLFGTFLL GLATVLGHEIAHQVARHPAERMSSMKVLFALGLLL GI ATVLAHEFAHQLARHTAENLSKAPIYSLLGLVL GIATVLSHEFAHQLARHTAENLSKA PLYSLLGIIL QL SF LIGHEI AHAVLGHAAEKA GMV HL LD FLGMI F QL SF LIGEEI AHAV L GHAAEKASLV HL LD F LGMI F QL GTV LAHEMAHVV L NHSA EMA SF F EF FD L FM IVV AL ABVIGHEI AHNT A SHASERLSAA WV GNLTAGSL GLAAVIGHEI AHVVA Hif TGERMSN----NFVTMGV EVATVIGEEVGHAVARHVAEGITKNLWFAI-LQLV EIATVIGHEVGHAIARHAAEMITKNLWFWI-LQIV ELAT I IAAEVGHAVARHEAEDS TAFFWLLISLNV I QLAS VMAHEISHVTQRHIARAMEDQQRSAPLTWVG

File S4. See next page for the legend.

File S4. Multiple alignment of ~ 35 amino acid residues surrounding the Zn^{2+} binding motif of peptidase M48 proteins, a protein family to which yeast OMA1 belongs. The position of the Zn^{2+} binding motif is shown by a horizontal line. Note that only bvORF19 (indicated by ORF19 in the alignment) contains HQxxH, instead of HExxH that is present in the other members. Data from: STE24, Saccharomyces cerevisiae, CAA89647; Candida_STE24, Candida albicans, XP_713382; Aspergillus_STE24, Aspergillus fumigatus, XP_752066; Coccidiodes, Coccidioides immitis, EAS28348; Neurospora, Neurospora crassa, CAC28689; OsSTE24, Oryza sativa, Os02g0680400; HvSTE24, Hordeum vulgare, CAL26913; ATSTE24, Arabidopsis thaliana, At4g01320; Homo_STE24, Homo sapiens, NP_005848; Mus_STE24, Mus musculus, NP_766288; Bos_STE24, Bos taurus, XP_882083; Gallus_STE24, Gallus gallus, XP_417720; Xenopus_STE24, Xenopus laevis, AAH82484; Tetradon_STE24, Tetraodon nigroviridis, CAG10466; Strongylocentrotus_STE24, Strongylocentrotus purpuratus, XP_001177479; Drosophila_STE24, Drosophila melanogaster; AtCpMPL, Arabidopsis thaliana, At3g27110; OsCpMPL, Oryza sativa, Os01g0970700; Synechocystis, Synechocystis sp. PCC 6803, NP_440889, Crocosphaera, Crocosphaera watsonii, NP_681428; Anabaena, Anabaena variabilis, YP_321952 ; Thermosynechococcus, Thermosynechococcus elongatus, NP_681428; Synechococcus, Synechococcus sp. JA-3-3Ab, YP_473883; Streptomyces, Streptomyces avermitilis, NP_826653; Mycobacterium, Mycobacterium tuberculosis, NP_216493; Trichodesmium, Trichodesmium erythraeum, YP_721635; htpX, Escherichia coli, AAA62779; Haemophilus, Haemophilus influenzae, NP_438878; Desulfitobacterium, Desulfitobacterium hafniense, ZP_01369144; Nitrobacter, Nitrobacter hamburgensis, YP_575597; Methanosarcina, Methanosarcina mazei, NP_635158; yfgC, Escherichia coli, AAC75547; Desulfovibrio, Desulfovibrio desulfuricans, YP_386603; Wolinella, Wolinella succinogenes, NP_907498; Photobacterium, Photobacterium profundum, YP_132334; aproteobacterium, a-proteobacterium HTCC2255, ZP_01448796; Nitrococcus, Nitrococcus mobilis, ZP_01126393; Pseudomonas, Pseudomonas aeruginosa, NP_253322; Azotobacter, Azotobacter vinelandii, ZP_00416091; Chromobacterium, Chromobacterium violaceum, NP_899823; Bordetella, Bordetella bronchiseptica, NP_888655; Flavobacterium, Flavobacterium sp. MED217, ZP_01061128; Ustilago, Ustilago maydis, XP_757961; Cryptococcus, Cryptococcus neoformans, XP_569916; Oma1p, Saccharomyces cerevisiae, P36163; Candida, Candida glabrata, XP_446463; MPRP-1, Homo sapiens, BAC79381; Mus, Mus musculus, NP_080185; Strongylocentrotus, Strongylocentrotus purpuratus, XP_799173; Gibberella, Gibberella zeae, XP_390368; Aspergillus, Aspergillus nidulans, XP_659454; AtMPL, Arabidopsis thaliana, At5g51740 (AtOMA1); OsMPL, Oryza sativa,Os02g0735100 (OsOMA1) . Multiple alignment was done by using ClustalX (http://www.clustal.org/clustal2/).

0.1

File S5. A Neighbor-Joining tree of peptidase M48 family proteins (see File S4). The tree was drawn by TreeView (http://taxonomy.zoology.gla.ac.uk/rod/treeview.html) based on the alignment shown in File S4. The sequence data are grouped into four clades. Note that bvORF19, as well as its homologous sequences in Arabidopsis, rice, and yeast OMA1 (see File S3), belongs to a single group, tentatively named the Oma1 group.

[^0]: Copyright © 2012 by the Genetics Society of America
 doi: 10.1534/genetics. 112.145409
 Manuscript received June 25, 2012; accepted for publication September 10, 2012 Available freely online through the author-supported open access option.
 Supporting information is available online at http://www.genetics.org/lookup/suppl/ doi:10.1534/genetics.112.145409/-/DC1.
 ${ }^{1}$ Present address: Crop Breeding Research Division, NARO-HARC, Sapporo, Hokkaido 062-8555, Japan.
 ${ }^{2}$ Present address: Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan.
 ${ }^{3}$ Corresponding author: Laboratory of Genetic Engineering, Research Faculty of Agriculture, Hokkaido University, N-9, W-9, Kita-ku, Sapporo, Hokkaido 060-8589, Japan. E-mail: gelab@abs.agr.hokudai.ac.jp.

