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Existing first-line cancer therapies often fail to cope with the heterogeneity and complexity
of cancers, so that new therapeutic approaches are urgently needed. Among novel
alternative therapies, adoptive cell therapy (ACT) has emerged as a promising cancer
treatment in recent years. The limited clinical applications of ACT, despite its advantages
over standard-of-care therapies, can be attributed to (i) time-consuming and cost-
intensive procedures to screen for potent anti-tumor immune cells and the
corresponding targets, (ii) difficulties to translate in-vitro and animal-derived in-vivo
efficacies to clinical efficacy in humans, and (iii) the lack of systemic methods for the
safety assessment of ACT. Suitable experimental models and testing platforms have the
potential to accelerate the development of ACT. Immunocompetent microphysiological
systems (iMPS) are microfluidic platforms that enable complex interactions of advanced
tissue models with different immune cell types, bridging the gap between in-vitro and in-
vivo studies. Here, we present a proof-of-concept iMPS that supports a triple culture of
three-dimensional (3D) colorectal tumor microtissues, 3D cardiac microtissues, and
human-derived natural killer (NK) cells in the same microfluidic network. Different
aspects of tumor-NK cell interactions were characterized using this iMPS including:
(i) direct interaction and NK cell-mediated tumor killing, (ii) the development of an
inflammatory milieu through enrichment of soluble pro-inflammatory chemokines and
cytokines, and (iii) secondary effects on healthy cardiac microtissues. We found a specific
NK cell-mediated tumor-killing activity and elevated levels of tumor- and NK cell-derived
chemokines and cytokines, indicating crosstalk and development of an inflammatory
milieu. While viability and morphological integrity of cardiac microtissues remained mostly
unaffected, we were able to detect alterations in their beating behavior, which shows the
potential of iMPS for both, efficacy and early safety testing of new candidate ACTs.

Keywords: microphysiological system, 3D microtissue, natural killer cell, adoptive cell therapy, efficacy and
safety assessment
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INTRODUCTION

The lack of treatment options renders cancer one of the major
health burdens of our time. The International Agency for Research
on Cancer ranks cancer the second leading cause of death, with an
estimated global impact of 19.3 million new cancer cases and
approximately 10 million cancer deaths in 2020 alone (1). Current
standard cancer treatments, i.e., radio- and chemotherapies as well
as surgery are still confronted with multiple setbacks. While non-
invasive approaches suffer from severe side effects, low efficacy,
and therapy resistance, invasive surgery is only applicable for a
limited number of localized and contained solid tumors (2). The
search for safer and more durable therapies led to the
interdisciplinary efforts in the fields of oncology and
immunology and the development of cancer immunotherapies.
Since the first description of immunotherapy in the 1980s (3), a
large number of immunotherapeutic approaches have recently
entered clinical evaluation (4). These novel therapies utilize
different components of the immune system, such as antibodies
or immune cells to instruct the patient’s immune system to target
the cancer cells (5, 6). Among emerging cancer immunotherapies,
adoptive cell therapy (ACT) – a cell-based immunotherapy –
holds promise to personalize immunotherapy for each patient’s
condition. Cytotoxic immune cells, such as CD8+ T cells or natural
killer (NK) cells are isolated from patients (autologous) or healthy
donors (allogeneic). The cells are expanded in vitro and, in some
cases, genetically engineered to increase their lifespan and in-vivo
tumor-killing activity. High numbers of these immune cells are
then transferred back into the patient to mediate anti-tumor
activity (7). Although ACT offers an alternative treatment
option for cancer patients, who are refractory to standard
therapies, clinical trials of ACT with satisfactory results have
been limited to hematologic malignancies (7, 8). For non-
hematologic solid tumors, positive outcomes of such therapies
are sporadic. For instance, despite of its success to suppress
leukemia (9), NK cell-based ACT did not show any activity
against metastatic melanoma in a clinical trial by Parkhurst
et al. (10). It is worth mentioning that this clinical trial for ACT,
and many other trials, were carried out after substantial in-vitro
testing. The high anti-tumor activity evidenced in pre-clinical in-
vitro screenings and the contrasting lack of efficacy afterwards in
vivo highlight the poor in vitro-to-in vivo translatability of complex
treatments. Such poor translatability has been attributed mainly to
the widespread use of conventional two-dimensional (2D) cell
cultures and animal models for pre-clinical evaluations (11).

Traditional 2D cell cultures fail to mimic the architecture and
cellular heterogeneity of a solid tumor and cannot realistically
recapitulate tumor-immune cell interactions. Likewise, animal
models fail to reliably predict the efficacy and safety of immune-
cell-based therapies due to critical immunological differences
between animals and human beings (12, 13). During the past two
decades, human cell-derived 3D tissue models have attracted
more attention as tumor models for therapy screening as they
overcome problems associated with 2D cell cultures. Under
carefully designed culture conditions, tumor cells can form 3D
microtissues (MTs) that are spherical, compact, and closely
resemble in-vivo tumors in terms of structure, metabolism, loss
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of polarized cell morphology – as found in epithelial tissue-
originated tumors, and gene-expression profiles (14).

Microphysiological systems (MPSs) combine advanced tissue
models, such as 3D MTs, organoids or bioartificial tissues with
microfluidic technology. Such systems are key innovations to
further develop and refine advanced tissue models. The
microfluidic components within MPSs can be designed to
mimic different aspects of a tissue’s microenvironment, such as
physical and mechanical cues, and allow for interconnection of
several tissue models (15). Currently developed MPSs can
interconnect up to ten organ models for an experimental
duration of up to four weeks (16, 17), making them suitable
systems for systemic invest igat ions of inter-t issue
communication and for therapeutic testing. A wide range of
single- or multi-tissue MPSs have been developed, among which
are lung MPSs (18), gastrointestinal MPSs (19), liver MPSs (20),
and immunocompetent MPSs (iMPSs).

The majority of reported iMPSs for immune-oncology purposes
included either single tumor cells or 3D tumor MTs (TuMTs) that
were embedded in hydrogel. Immune cells were added into
microfluidic channels adjacent to the hydrogel, which were
initially separated from the tumor cells (21). Such a configuration
mimics the placement of cell components in the tumor
microenvironment (TME). The hydrogel recapitulated the dense
interstitial extracellular matrix (ECM) mesh of an in-vivo TME that
immune cells have to penetrate to reach the tumor cells. Such
realistic configurations helps to avoid overestimations of anti-tumor
efficacy – which are likely to be obtained with systems that combine
immune and tumor cells and enforce mutual interaction (22, 23).
Furthermore, 3D constructs and iMPSs can help to mimic
processes, such as immune-cell recruitment and migration, tumor
infiltration, and TME-relevant immunosuppression (22, 24–26)
that cannot be studied with conventional 2D cell cultures.
Although it could be shown that TME can influence therapeutic
outcomes, the indispensable use of ECM hydrogel limits the
experimental readout options to microscopy measurements.
Additionally, most studies focused on demonstrating treatment
efficacy while the safety assessment of candidate ACTs was
neglected. Two major risk factors of ACT include (i) on-target,
off-tumor attack of healthy cells by cytotoxic immune cells, and (ii)
the high level of soluble inflammatory chemokines and cytokines
that are released during tumor recognition and elimination.
Cytotoxic immune cells recognize tumor cells via pairing between
specific sets of their surface receptors and corresponding ligands on
the tumor cell surface. However, most of these ligands are also
expressed on healthy cells, which can result in accidental on-target,
off-tumor attack by these immune cells (27). Moreover, tumor-
immune cells interactions can give rise to a complex of
inflammatory chemokine and cytokines, eventually creating an
inflammatory environment that is harmful to bystander organs
(27–29). These adverse effects are difficult to predict even with
animal models (30). Currently, most ECM hydrogel-based iMPSs
are also not capable to simultaneously assess drug efficacy on the
tumor and its toxicity on secondary, healthy organs.

In an effort to narrow the gap between in-vitro studies and the
in-vivo situation, we developed an iMPS, which allows for co-
culturing of anti-tumor immune cells and 3D MTs. With this
December 2021 | Volume 12 | Article 781337
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system, we aim at addressing current limitations of iMPS, such as
the local confinement of immune cells in hydrogels, the low
experimental throughput due to technical complexity, and
missing models of healthy tissues for simultaneous toxicity
testing. We used umbilical cord blood (UCB)-derived NK cells,
whose anti-tumor activity involves both, direct interaction of NK
cells with tumor cells and indirect tumor suppression via
chemokine/cytokine signaling (31, 32). The 3D tumor model
was established from the colorectal tumor cell line HCT116, the
cells of which can produce their own ECM (33) and form
compact, solid tumor-like MTs (TuMTs). 3D cardiac MTs
(CarMTs) – formed from induced pluripotent stem cell
(iPSC)-derived cardiac myocytes – were chosen as healthy-
tissue model. All organ models were combined in the
microfluidic chip that was developed for culturing of suspension
cells and several, spatially separated, solid tissue models. Dedicated
cell enrichment zones confined NK cells inside the medium
reservoirs at the ends of the microfluidic channels (Figure 1A).
During the experiments, NK cells either stayed in the cell
enrichment zones or circulated back and forth along the same
microfluidic channel (Figure 1A, ii and iii). Medium perfusion
was actuated by gravity-driven flow by tilting the microfluidic
chips, which ensured a constant exchange of soluble factors
between the three tissue types. Different indicators of tumor-NK
cell interaction were used: (i) NK cell-induced apoptosis of tumor
cells, (ii) an elevated level of inflammatory chemokines
[interleukin-8 (IL-8)] and cytokines [interferon-g (IFN-g), tumor
necrosis factor-a (TNF-a), granulocyte-macrophage colony-
stimulating factor (GM-CSF)], produced by TuMTs and NK
cells, and (iii) invasion of NK cells into the TuMT volume
(Figure 1B). To study the health status and detect structural
damages of CarMTs, we recorded and analyzed the pattern of their
spontaneous beating and measured soluble Troponin I in the cell
Frontiers in Immunology | www.frontiersin.org 3
culture supernatant. Our iMPS can potentially be used for early
recognition of ACT-associated cardiotoxicity, particularly for NK
cell-based ACT, the causes and consequences of which are still
under investigation (34, 35).
MATERIALS AND METHODS

Microfluidic Chip
We modified the Akura™ Flow MPS discovery platform
(InSphero, Schlieren, Switzerland), which was originally
developed to study inter-tissue communication between 3D MTs
(36). The microfluidic chip features two individual microfluidic
channels with medium reservoirs at both ends. Each channel can
accommodate up to ten fluidically interconnected MTs, which are
located in the MT compartments (Figure 1A, i). To accommodate
NK cells in suspension and to promote their direct interaction with
3D MTs, we adapted the chip by computer numerical control
(CNC) micro-milling: (i) We introduced a drop-shaped cell-
enrichment zone in the medium reservoirs (Figure 1A, ii and iii,
left panels). The cell enrichment zone retained NK cells close to the
entrance to the microfluidic channel after each tilting cycle and
prevented them from accumulating in the low-flow zones in the
corners of the reservoirs. For gravity-driven flow-based
experiments, each microfluidic channel was supplied with 200 µL
of fresh medium every day. This enabled the use of enough cell-
culture medium to maintain all tissue models viable during the
culturing periods. (ii) To facilitate direct cell-cell interactions
between NK cells and MTs, we removed the barrier structures in
the MT compartments (Figure 1A, ii and iii, right panels) and
enlarged the microfluidic channels to a cross-section of 220 mm ×
600 mm (height × width). More details on the performed
A

B

FIGURE 1 | (A) i) A schematic drawing of the iMPS, which is based on the Akura™ Flow platform (modifications indicated as red dashed lines). Scale bar: 10 mm.
ii) Cross-sectional view of one reservoir and adjacent MT compartments. iii) Bright-field images of the cell enrichment zone inside one reservoir (scale bar: 1 mm) and
a MT compartment with a TuMT (scale bar: 200 mm). (B) Schematic representation of on-chip cell cultures and possible interactions among components.
December 2021 | Volume 12 | Article 781337
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modifications are shown in Figure S1. Gravity-driven perfusion
was induced by tilting the chip back and forth over a tilting angle of
±5° using the Akura™ Flow system (InSphero) inside a standard
cell-culture incubator. Each tilting cycle included a 5-min halt at
the positions of maximum tilting angle in both directions and a 1 h
40 min halt in a horizontal position. Detailed protocols for MT
loading and system operation were also previously described by
Lohasz et al. (36) and are demonstrated in Video S1.

Cell Cultures
Formation of 3D Tumor and Cardiac MTs
All cell cultures were maintained in a humidified incubator at
37°C and 5% CO2 (Binder CB 220, Tuttlingen, Binder,
Germany). The HCT116 human colorectal carcinoma cell line
(ATCC® CCL-247) was purchased from the American Type
Culture Collection (ATCC, Manassas, VA, USA). In brief, cells
were cultured in cell culture flasks using a tumor-growth
medium that contains Roswell Park Memorial Institute
(RPMI) 1640 medium (BioConcept, Allschwil, Switzerland),
10% heat-inactivated fetal bovine serum (h.i. FBS; Gibco,
Thermo Fisher Scientific, Waltham, MA, USA), 2 mM CTS™

GlutaMAX™ supplement (Gibco, Thermo Fisher Scientific), 1
mM sodium pyruvate (Gibco, Thermo Fisher Scientific), 1× non-
essential amino acids (NEAA) (Merck, Darmstadt, Germany),
and 50 mg/mL Kanamycin (BioConcept). Medium exchange was
done every two days, and the cells were sub-cultured when
reaching approximately 85% confluence.

The hiPSC line, CW30318CC1 (healthy donor, female), was
obtained from the CIRM hPSC Repository funded by the California
Institute of Regenerative Medicine (CIRM) via FujiFilm Cellular
Dynamics (Madison, WI, USA). This cell line was differentiated to
cardiac myocytes using the PSC Cardiomyocyte Differentiation Kit
(Gibco, Thermo Fisher Scientific). iPCS-derived cardiac myocytes
were maintained as monolayers in standard 12-well plates (Greiner
Bio-One, Kremsmünster, Austria), pre-coated with Geltrex
extracellular matrix (Gibco, Thermo Fisher Scientific) – diluted
1:50 in PBS without Ca2+ and Mg2+ (Gibco, Thermo Fisher
Scientific). Medium exchange was performed twice a week with a
cardiac myocyte growth medium that contains RPMI 1640, 2 mM
CTS™ GlutaMAX™ supplement, 1× B27 supplement (Gibco,
Thermo Fisher Scientific), and 50 mg/mL Kanamycin. No
passaging was performed during cardiac myocytes maintenance
as the cardiac myocytes hardly divide in culture. Only prior to MT
formation, cells were lifted with TrypLE Express enzyme solution
(Gibco, Thermo Fisher Scientific) for cell suspension preparation.
Here, TrypLE Express enzyme solution was used to preserve the
expression of cell surface markers (37).

For 3DMT off-chip production and maintenance, Nunclon™

Sphera™ U-shaped-bottom, 96-well plates (96U-well plates)
(Thermo Fisher Scientific) were used. 3D TuMTs were formed
from the HCT116 cell line in tumor-growth medium at an initial
seeding density of 500 cells/MT. In brief, 100 mL of cell
suspension containing 5000 cells/mL were seeded to each well
of a 96U-well plate and spun down at 250 ×g for 2 min. TuMTs
were ready to use at day 4 post seeding when their diameters
reached approximately 400 mm. At this size, the necrotic core did
Frontiers in Immunology | www.frontiersin.org 4
not form yet, and the TuMTs were large enough to not escape the
MT compartments.

We formed CarMTs in the cardiac myocyte growth medium
using an initial seeding density of 6500 cells/MT. Cardiac
myocyte suspension was prepared in cardiac myocyte growth
medium, supplemented with 20% h.i. FBS. Then, 200 mL of the
prepared suspension were seeded to each well of a 96U-well plate
and spun down at 200 ×g for 3 min. After 24 h, a compact cell
cluster formed, and the medium was replaced with standard
cardiac myocyte growth medium. Spontaneous beating of
CarMTs typically started between day 3 and day 4. To ensure
reproducibility among experiments, we only used CarMTs from
day 5 post seeding, when beating activity was observed in 100%
of MTs. Regular microscopy inspection was carried out, and
CarMTs with a weak beating activity or abnormal shapes were
disqualified. CarMT size attained roughly 380 mm at day 5 post
seeding with a slight shrinkage (~10-20 mm in diameter) over
time due to compaction. Once formed, CarMTs can be
maintained up to one month with medium exchange twice a
week. During all preparation steps, all cells were kept at 37°C on
a thermostat plate. Both types of MT were imaged with a
Cell3iMager Neo plate scanning system (SCREEN Group,
Kyoto, Japan) for quality check before each experiment.

NK Cells
Ethical Statement
Anonymized human umbilical cord blood (UCB) samples were
collected from healthy newborns of both sexes at the University
Hospitals Basel with parental informed consent. Relevant ethical
regulations were followed, according to the guidelines of the local
Basel ethics committee (vote 13/2007V, S-112/2010,
EKNZ2015/335).

Sample Processing and Cell Isolation
After collection, UCB cells were processed by density gradient
centrifugation. CD34 positive (CD34+) and negative (CD34-) cells
were separated using EasySep CD34 positive selection kit II (StemCell
Technologies, Vancouver, BC, Canada) and cryopreserved.

NK cells were isolated from the cryopreserved CD34–fraction
(hematopoietic stem cells removed) of human umbilical cord
blood (UCB). We used the EasySep NK cells isolation kit
(StemCell Technologies) to isolate NK cells and maintained
them in NK cell-growth medium (RPMI 1640, supplemented
with 10% h.i. FBS, 2 mM CTS™ GlutaMAX™ supplement, 1
mM sodium pyruvate, 1× non-essential amino acids (NEAA),
50 mg/mL Kanamycin, 50 mM b-mercaptoethanol (Gibco,
Thermo Fisher Scientific), and 200 U/mL recombinant human
interleukin-2 (IL-2; Peprotech, Cranbury, NJ, USA)) for up to
two weeks. Fluorescein isothiocyanate (FITC)-conjugated CD45
(clone HI30), Phycoerythrin (PE)-conjugated CD3 (clone
UCHT1), and Allophycocyanin (APC)-conjugated CD56
antibodies (clone HCD56) – all were purchased from StemCell
Technologies – were used to confirm the purity of NK cells after
isolation by flow cytometry (BD Fortessa, BD Biosciences,
Franklin Lakes, NJ, USA). Additionally, 2-(4-amidinophenyl)-
6-indolecarbamidine dihydrochloride (DAPI) stain (Merck) was
used to assess cell viability in flow cytometry analysis. Where
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indicated, NK cells were transferred to an NK cell-activating
medium that contained 1000 U/mL IL-2 and 20 ng/mL of
recombinant human interleukin-15 (IL-15; Peprotech) for
5 days before the experiments with a partial medium exchange
at day 3. This pre-treatment was extensively used to enhance the
overall proliferation and cytotoxic activity of NK cells against the
target tumor (38, 39), especially before on-chip cultures.

Cell Labeling and Live-Cell Imaging
To spatially track NK cells within the chip, we labeled the cells
with Cytopainter Cell Proliferation Staining Reagent – Green
fluorescence, (Abcam, Cambridge, UK), diluted from 500× stock
solution in NK cell-growth medium, for 40 min at 37°C before
seeding them into the iMPS. BioTracker NucView Blue 405
Caspase-3 Dye (PBS) (Merck) was added directly into the cell-
culture medium with a final concentration of 5 mM to visualize
apoptotic cells during the experimental duration. Live-cell
imaging was performed on a fluorescence Nikon TiE
microscope (Nikon Europe B.V., Amsterdam, Netherlands)
every day with a Plan Fluor 10× objective.

Static, Well Plate-Based Cultures of NK
Cells and MTs
For static co-culture experiments, we combined NK cells with
each type of MT in a 96U-well plate to assess the cytolytic activity
and the cytokine release of isolated NK cells. Since HCT116 cells
are relatively resistant to NK cell-induced cytolysis at a low
effector-to-target (E:T) ratio (40), we used a high E:T ratio of 10:1
based on the initial seeding density of HCT116. First, the culture
wells were pre-loaded with 100 mL of NK cell-growth medium,
into which pre-formed MTs were transferred by contact transfer.
Then, the wells were topped with 100 mL of NK cell suspension
prepared in the same medium. For mono-cultures, the wells were
filled with equal volumes of NK cell-growth medium without
cells. The plate was placed inside a cell-culture incubator for
three days without medium exchange. The morphological
changes of MTs were monitored daily by bright-field imaging.
MTs and the cell-culture supernatant were collected every day
for performing viability assays and chemokine/cytokine
quantitations. Jurkat cells, clone E6-1 (ATCC) were co-
cultured with MTs using the same experimental layout as a
negative control for tumor-killing activity. As positive controls
for cardiotoxicity, CarMTs were treated with 30 mMDoxorubicin
hydrochloride (Dox; Tocris, Bristol, UK) for 3 days in a Nunclon
Sphera 96U-well plate before measuring Troponin I levels (41).

On-Chip Cultures in iMPS
TuMTs and CarMTs were transferred to the iMPS chip by using
a contact-transfer technique at day 4 and at day 5 post seeding.
Each microfluidic channel was loaded with six TuMTs and four
CarMTs. Phenol red-free NK cell-growth medium was used for
all on-chip cultures. Fluorescently labeled NK cells were spun
down at 500 ×g for 5 min at 4°C and resuspended in a
pre-warmed medium at a density of 1.67 × 106 cells/mL. Since
a local administration of NK cells has proven to increase the
amount of NK cells at the tumor site and can lead to better tumor
Frontiers in Immunology | www.frontiersin.org 5
suppression (42), we introduced the NK cell suspension directly
into MT compartments through their loading ports. A total
amount of 30 mL of NK cell suspension was loaded in 5 mL-
dispensing steps into each TuMT-containing MT compartment.
The chip was kept in a horizontal position (without perfusion)
for 3 hours to prime the interaction between NK cells and MTs.
Fluorescence imaging was conducted at the end of the priming
period to check the presence of NK cells inside the MT
compartments and cell enrichment zones. On-chip cultures
were maintained for 3 days in the Akura™ Flow system inside
a cell culture incubator. To assess the beating activity of CarMTs,
we recorded 20 second-long AVI videos of each CarMT with a
frame rate of 100 frames per second at the beginning and at the
end of the experiments. Medium was exchanged daily during
3 days, and the removed medium was stored at -20°C for
supernatant-based assays. After the co-culturing period, all
unbound NK cells were removed from the microfluidic chip,
and MTs were either (i) collected from the chip for ATP-
dependent viability assays using the CellTiter-Glo 3D cell
viability assay (Promega, Madison, WI, USA) or (ii) fixed for
high-resolution microscopy.

Immunofluorescence (IF) Staining and
High-Resolution Microscopy
MTs were fixed directly on chip after the experiment. In brief, all
supernatant was removed from the reservoirs, then all
microfluidic channels were flushed twice with 200 mL of
phosphate-buffered saline (PBS, with calcium chloride (Ca2+)
and magnesium chloride (Mg2+), Merck). Then, 100 mL of
2% formaldehyde in PBS (Merck) were added to the microfluidic
channels for 10 min. All channels were flushed again three times
with 200 mL of PBS (without Ca2+ and Mg2+; Gibco), and MTs
were blocked with 5% bovine serum albumin (BSA; Merck) in PBS
(without Ca2+ and Mg2+) for at least 1 hour. Depending on the
experiments, different combinations of the following antibodies
were used: Alexa Fluor (AF) 647-conjugated anti-Cytokeratin 18
(CK18; clone C-04; Santa Cruz Biotechnology, Dallas, TX, USA) –
1:50 dilution, AF594-conjugated polyclonal anti-CD69 (Bioss
Antibodies, Woburn, MA, USA) – 1:200 dilution, and AF647-
conjugated anti-human major histocompatibility complex (MHC)
class I chain-related protein A and B (MICA/B) (clone 6D4,
BioLegend, San Diego, CA, USA) – 1:50 dilution. All antibodies
were diluted in 0.1% BSA in PBS (without Ca2+ and Mg2+) and
incubated with the MTs overnight at 4°C. The washing step was
repeated and, when applicable, nuclear counterstaining was
performed using NucBlue™ Live ReadyProbes™ Reagent
(Hoechst 33342, Invitrogen, Thermo Fisher Scientific). We used
a non-hardening mounting medium [ibidi Mounting Medium
(Ibidi, Gräfelfing, Germany)] to fill the whole system
before imaging.

We acquired 190 – 200 mm-thick Z-stacks of MTs in 2-mm
steps in different culture conditions to detect tumor-infiltrating
NK cells using either an inverted Leica SP8 (Leica Microsystem,
Wetzlar, Germany) or an inverted Nikon A1 (Nikon Europe
B.V.) confocal laser scanning microscope. To inspect the
expression of MICA/B NK cell ligand on the surface of TuMTs
December 2021 | Volume 12 | Article 781337
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and CarMTs, 100 mm-thick Z-stacks of MTs were acquired in
0.4-mm steps using an X-Light v3 inverted spinning disk confocal
microscope (Nikon Europe B.V.).

Enzyme-Linked Immunosorbent
Assay (ELISA)
Cell-culture supernatant was collected into a low-binding Nunc™

96-well polypropylene storage microplate (Thermo Fisher
Scientific). We centrifuged the plate at 2000 ×g for 10 min to
remove cell debris, then transferred all supernatant to a new
storage plate of the same type and stored the supernatant at
-20 °C until use. We employed a customized bead-based multiplex
assay according to the manufacturer’s protocol (BioRad, Hercules,
CA, USA) to measure IL-8, GM-SCF, IFN-g, and TNF-a inside
the supernatant. Soluble Troponin I and soluble MICA (sMICA)
were measured separately using a human cardiac Troponin I
ELISA kit (Abcam) and a MICA human ELISA kit (Invitrogen,
Thermo Fisher Scientific), respectively, according to the
manufacturers’ protocol and a Tecan Infinite M1000 Pro plate
reader (Tecan, Männedorf, Switzerland).
Data Analysis
Microscope images were processed and analyzed using the
Nikon NIS-Elements Advanced Research (Nikon Europe B.V.)
or ImageJ software. Beating patterns of CarMTs were analyzed
using the Musclemotion macro (43) in ImageJ (National
Institution of Health, Stapleton, NY, USA). We used the Bio-
Plex Manager software (BioRad) and Microsoft Excel (Redmond,
WA, USA) to analyze data obtained from the multiplex assay and
the Troponin I ELISA. This data was statistically analyzed with
one-way or two-way ANOVA depending on the data set and
visualized using GraphPad Prism 7 software (GraphPad
Software, San Diego, CA, USA). Data obtained from sMICA
ELISA assay was processed and statistically analyzed with
GraphPad Prism 7. All statistical results were represented as
mean ± standard deviation (SD) with a significance of P < 0.05,
unless indicated differently.
RESULTS

Static, Well Plate-Based Cultures of NK
Cells and MTs
Human NK cells are characterized by the absence of surface markers
CD3 and the presence of CD56 (CD3-/CD56+). Therefore, after
isolation, we quantitated the proportion of CD3-/CD56+ cells in the
obtained population using flow cytometry. Figure S2 shows that
the purity of CD3-/CD56+ cells in our samples was up to 99.2%.
The isolated NK cell population also appeared to express CD56 at
different relative levels, which reflected the maturity and
differentiation state of the NK cells. CD56bright NK cells with high
CD56 surface expression are immature and less cytotoxic as
compared to fully differentiated CD56dim NK cells with lower
CD56 surface expression. These immature CD56bright NK cells,
however, can become as potent as their mature, differentiated
Frontiers in Immunology | www.frontiersin.org 6
counterpart through additional cytokine treatment (39), hence the
use of NK cell-activating medium in our experiments.

The two selected solid tissue models, TuMTs and CarMTs,
were qualitatively assessed for their ectopic expression of
membrane-bound MICA/B. MICA/B are the most studied
ligands for the NK group 2D (NKG2D) activating receptor,
which is universally expressed by NK cells (44). Figure 2A
shows high expression levels of membrane-bound MICA/B on
tumor cells within the optically accessible outer layers of the
TuMTs, while MICA/B was poorly expressed in CarMTs. These
results are supported by other studies that report high
expression levels of MICA/B on the cell surface of tumor cells
but not on the surface of normal cells (45). Based on this result,
we expected our UCB-derived NK cells to recognize and
eradicate tumor cells, while CarMTs should remain mostly
unaffected. In static co-cultures of each MT type and NK cells,
we closely monitored the size change of the MTs and their
chemokine/cytokine production to scrutinize the extent and
specificity of NK-cell-mediated tumor-killing activity. Our
results indicated that, in static TuMT-NK-cell co-cultures,
A

B

FIGURE 2 | (A) Membrane-bound MICA/B expression on TuMTs and
CarMTs shown by maximum intensity projection of 100 mm-thick Z-stacks.
Scale bars: 100 mm. (B) Specific anti-tumor activity of UCB-derived NK cells in
static co-cultures in a 96U-well plate. Upper panels: TuMT disintegrated after
72 hours in co-culture with NK cells. Lower panels: CarMT remained intact in
co-cultures with UCB-derived NK cells. Scale bars: 200 mm.
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UCB-derived NK cells showed specific anti-tumor activity
against TuMTs, regardless of the cytokine treatments. As
shown in Figure 2B (upper panel), TuMTs completely
disintegrated after 3 days in TuMT-NK-cell co-cultures. The
fast cytolysis of TuMTs occurred within the first day and was
confirmed by the low intracellular ATP-dependent viability of
the MTs and increased IFNg concentrations, as compared to the
low basal levels in mono-cultures of NK cells or TuMTs
(Figures S3A, B). As expected, NK cells did not affect the
morphology and viability of CarMTs after 3 days in co-culture
as shown in Figure 2B (lower panel) and Figure S3C. IFN-g
levels in CarMT-NK-cell co-cultures were at least 10-fold lower
than in co-cultures of NK cells and TuMTs (Figure S3D).

Negative control experiments with Jurkat cells, which do not
have cytotoxic activity against TuMTs, showed that a certain
additional mass of suspension cells did not interfere with the
growth of TuMTs (e.g., through nutrient competition). No IFN-g
was detected in this co-culture (data not shown).

iMPS: On-Chip Inter-Tissue
Communication and Anti-Tumor Effects
of NK Cells
To fully understand the dynamics and effects of each
individual tissue model in our iMPS, we included multiple
cell culture combinations, categorized into 3 groups as shown
in Table 1: (i) mono-cultures of each individual tissue model,
i.e., TuMTs, CarMTs, and NK cells, (ii) co-cultures of pairs of
tissue models, and (iii) a triple culture that included all cell models.
Data collected from mono-cultures were used as reference to
assess the contributions of each tissue/cell type in the co-
cultures and the triple culture, which revealed direct and/or
indirect interactions.

Tumor Growth
To obtain a first assessment on how CarMTs and/or NK cells
affect TuMT growth in different culture conditions, we tracked
the diameter of 18 individual TuMTs per cell culture condition
every day during three days. Absolute TuMT size changes were
calculated in reference to the size at day 0 of the experiment, at
which the MTs were transferred to the chip. As shown in
Figure 3A and Table S1, TuMTs grew steadily and similarly in
mono-culture and in co-culture with CarMTs during the three
days of the measurements.

In contrast, we observed heterogeneous changes in TuMTs size
when adding NK cells to cultures with TuMTs and the triple
Frontiers in Immunology | www.frontiersin.org 7
culture with both MT types (Figure 3A and Table S1). In those
cultures, the average growth of TuMTs was significantly lower
than that of TuMTs in mono-cultures and TuMT-CarMT co-
cultures (Figure S4A). Several TuMTs, especially in the triple
cultures, shrank between day 2 and day 3 of the experiment. These
shrinking MTs shared a few commonalities: (i) higher NK cell
accumulation within the MT compartment and the TuMT itself,
(ii) lower viability as shown by higher caspase 3/7 activity through
live-cell fluorescence imaging (Figure 3B, left panel), and low
intracellular ATP content, measured at day 3 of the experiment
(Figure S5). TuMTs that grew in diameter had none or only a few
NK cells on their surface or in the peripheral zone (Figure 3B,
right panel). This heterogeneous tumor growth suppression can be
attributed to (i) different levels of interaction between NK cells and
TuMTs during the initial priming period and/or the first day
(Figure S6), (ii) poor tumor invasion by NK cells, and/or (iii)
immune escape of TuMTs (46).

Proteolytic shedding of MICA’s ectodomain is one of the
major mechanisms used by tumor cells to escape from NK cell-
mediated killing (44). The released sMICA has been shown to
impair tumor cell recognition and cytotoxic activity of NK cells
by direct blockage or by sMICA-induced internalization and
degradation of NKG2D receptors (45). After confirming the
membrane-bound expression of MICA on TuMTs (Figure 2A,
left panel), we also measured the sMICA concentration released
into the cell culture supernatant for different culture conditions.
In agreement with the IF staining results for membrane-bound
MICA/B (Figure 2A, right panel), we did not detect any sMICA
in the mono-cultures of CarMTs or NK cells, as well as in the
CarMT-NK cell co-cultures. In contrast, less than 5 pg/mL of
sMICA were detected in mono-cultures of TuMTs in a 3-day
experiment, which indicates the presence of MICA shedding
(Figure 3C). Interestingly, MICA shedding was enhanced
significantly in TuMT/NK cell co-cultures and in triple
cultures, especially at day 3 of the experiment.

Tumor-Infiltrating NK Cells
As an additional endpoint analysis of the experiment, we fixed the
MTs directly on-chip and stained them with CD69 and CK18
antibodies. CD69 is an activation marker for NK cells, while CK18
is an epithelium-specific cytoskeletal protein. CK18 plays a role in
maintaining tissue integrity and was shown to be overexpressed in
colorectal cancer tissues and cell lines, including the HCT116 cell
line used in our work (47). It is important to note that only cells
that were double positive for Green fluorescence and CD69
staining were qualified as CD69+ NK cells, as NK cells were
TABLE 1 | All cell culture conditions in the microfluidic on-chip cultures.

Culture condition Abbreviation Tissue model/combination

Mono-culture Mono 1. TuMTs
2. CarMTs
3. NK cells

Co-culture Co 1. TuMTs – NK cells
2. CarMTs – NK cells
3. TuMTs – CarMTs

Triple culture Triple 1. TuMTs – CarMTs – NK cells
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stained with Cytopainter staining reagent prior to being seeded
into the iMPS. We searched for tumor-infiltrating NK cells by
taking Z-stacks of a total thickness of 190 – 200 µm and a Z-stack
size of 2 mm using a confocal microscope. As shown in Figure 4,
we found only a few NK cells that infiltrated the TuMTs across all
examined MTs. Most of these tumor-infiltrating NK cells were
CD69+ and resided within the few outermost cell layers of
the TuMT.

Chemokine/Cytokine Signaling
We next investigated the chemokine/cytokine signaling in
different culture conditions inside our MPS. To evaluate the
response of TuMTs to NK cell exposure, we measured IL-8 in the
cell culture supernatant in all cell culture conditions. IL-8 level
has been proven to increase in many types of solid tumors,
including colorectal tumor. An increased serum IL-8 content is
currently considered a potential predictive marker of higher
grade tumor burden and resistance to chemo- and immune-
therapies (48). As shown in Figure 5A, mono-cultures of TuMTs
Frontiers in Immunology | www.frontiersin.org 8
produced increasing amounts of IL-8, ranging from 83 ± 17 pg/mL
at day 1 to 138 ± 18 pg/mL at day 2, and 147 ± 19 pg/mL at day 3.
In contrast to the levels measured for TuMT mono-cultures, IL-8
levels significantly spiked in co-cultures of TuMTs and NK cells.
They slightly fluctuated in the TuMT-NK-cell co-cultures but
increased steadily in triple cultures – from 320 ± 120 pg/mL at day
1 to 430 ± 100 pg/mL at day 3 – and remained significantly
different from those observed in TuMT mono-cultures. Mono-
cultures of NK cells and CarMTs consistently produced less than
10 pg/mL of IL-8 (Figure S7A).

As an indicator for indirect anti-tumor activity of NK cells, we
measured the amount of GM-CSF, IFN-g, and TNF-a, which were
released by NK cells into the cell-culture medium. In the absence of
NK cells, all these cytokines of interest were undetectable (Figures
S7B-D). However, NK cells in mono-culture abundantly produced
all three cytokines. The absence of other T cell-associated cytokines,
e.g., IL-6, and IL-17 (data not shown), confirmed that NK cells
were the only source of these cytokines in our system (Figures 5B-
D). All cytokine levels dropped slightly over time in mono-cultures
A B

C

FIGURE 3 | (A) TuMT size changes monitored by bright-field imaging. Diameters of individual TuMTs measured at Day 1 (D1), Day 2 (D2), and Day 3 (D3) were
normalized to their own diameter at day 0 (n = 18 MTs) (Mono: mono-culture, Triple: triple culture). Detailed statistical comparisons between conditions are shown in
Figure S4A (ns: not significant). (B) Representative fluorescence images reflecting heterogeneous size changes of TuMTs in triple cultures. NK cells were labeled with
Green fluorescence cell proliferation staining reagent, while apoptotic cells were labeled with Blue 405 Caspase-3 Dye. Scale bars: 200 mm. (C) Quantitation of sMICA
released into the supernatant of different cell cultures during a 3-day experiment (n = 3). Detailed statistical comparisons between conditions are shown in Figure S4B.
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of NK cells, which is commonly observed when IL-15 was
withdrawn from the cell culture medium (49, 50). The
production of these cytokines was more extensive in co-cultures
of TuMTs with NK cells, compared to mono-cultures of NK cells.
However, all cytokines displayed different time-dependent
dynamics. Over the experimental period, GM-CSF levels
Frontiers in Immunology | www.frontiersin.org 9
increased slightly in TuMT-NK cell co-cultures and triple
cultures. In contrast, IFN-g and TNF-a levels decreased slightly
over time in all culture conditions. Interestingly, the IFN-g level
peaked at day 1 and dropped to a basal level within less than 2 days
in the triple cultures, while there was no clear trend in TuMT-NK-
cell co-cultures with respect to the basal level. TNF-a levels of all
FIGURE 4 | Images showing tumor-infiltrating NK cells at different Z-positions in a TuMT. The Z-depth – in reference to the bottom of the TuMT – is indicated at the
bottom left of each image. White dashed lines indicate the outer border of the TuMT in the corresponding Z-plane. Scale bars: 100 mm.
A B

DC

FIGURE 5 | Quantification of the chemokines/cytokines (A) IL-8, (B) GM-CSF, (C) IFN-g, and (D) TNF-a in the supernatant of different cell culture conditions over a 3-day
experimental period (n = 3) (Mono, mono-culture; Triple, triple culture) (ns: not significant). Detailed statistical comparisons between conditions are shown in Figure S8.
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culture conditions that included TuMTs remained higher than of
those without tumors until the end of the experiment (Figure S8).

Besides NK cells that (i) moved inside the iMPS with the flow
(Video S2) and (ii) interacted with TuMTs (Figures 3, 4), a
portion of NK cells did accumulate inside cell enrichment zones
during the experiment. This circumstance offered us the possibility
to parallelly investigate the indirect tumor growth suppression of
NK cells through soluble mediators, i.e., chemokines/cytokines.
Therefore, in a different set of triple cultures, we removed all NK
cells inside the cell enrichment zones on day 1. Figure S9 shows
the drop of GM-CSF, IFN-g, and TNF-a levels after NK cell
removal, while IL-8 levels increased over the next two days, as all
TuMTs continued to grow, albeit slowly (Figure S9A). This
experiment further confirmed the dependency of the system on
NK-cell-mediated signaling.

NK-Cell-Induced Anti-Tumor Activity Effects
on CarMTs
Finally, we investigated the behavior of CarMTs for all described
culture conditions by analyzing their physical interaction with NK
cells, ATP-dependent viability, soluble Troponin I secretion, and
beating patterns. The Troponin I level in patient serum is a
clinically used biomarker that indicates cardiac injuries at elevated
levels. Hence, we used soluble Troponin I as an indicator for health
Frontiers in Immunology | www.frontiersin.org 10
status of CarMTs in our iMPS. As shown in Figure 6A and Figure
S10A, NK cells infiltrated CarMTs but did not negatively affect the
viability of CarMTs under all culture conditions. Additionally, while
CarMTs disintegrated after being exposed to 30 mMDox for 3 days
in a well-plate-based test, CarMTs in co-culture with NK cells and
in triple culture on-chip remained intact (Figure S10B). The
average Troponin I level per CarMT was lower than 10 pg/mL
under all conditions in our iMPS as compared to the value obtained
for Dox-treated MTs (47 ± 19 pg/mL per CarMT), which indicated
that there was no structural damage of cardiac myocytes in the
CarMTs (Figure 6A). Looking at the contraction profiles of the
MTs, only a slight arrhythmia was observed in the CarMTs of
CarMT-NK-cell co-culture (Figure S11C), while the CarMTs of the
triple culture exhibited an obviously decreased beating rate (Figure
S11D). In-depth analyses of the beating patterns of four exemplary
CarMTs per culture condition revealed an increased average peak-
to-peak time only in the CarMTs of the triple culture (Figure 6B).
The majority of scrutinized CarMTs in the triple culture showed
irregular contraction amplitudes as shown in Figure 6C. In fact,
under this culture condition, CarMTs experienced highly elevated
levels of both tumor-derived and NK cell-derived pro-
inflammatory chemokines and cytokines, most importantly IL-8
and TNF-a (Figures 5A, D), that have been shown to negatively
affect cardiac contractility in vivo (51, 52). Meanwhile, in CarMT-
A B

C

FIGURE 6 | (A) ATP-contents of CarMTs (n = 6) indicating viability and average soluble Troponin I, produced by individual CarMTs under different culture conditions
(n = 3) (Mono, mono-culture; Triple, triple culture; Dox: Doxorubicin hydrochloride). (B) Changes in beating patterns of CarMTs under different conditions, represented as
peak-to-peak time between contractions (ms). The figure shows exemplary patterns of four CarMTs per culture condition. The numbering on the X-axis indicates the
peak-to-peak interval count of individual CarMTs within a 20-seconds recording window (peak-to-peak intervals are shown in the insert graph.). (C) Contraction
amplitudes of CarMTs under different culture conditions. The figure shows exemplary patterns of four CarMTs per culture condition. The numbering on the X-axis
indicates the beat count of individual CarMTs within a 20-second recording window (beat counting is illustrated in the insert graph). For each culture condition, contraction
amplitudes of the same CarMT were connected by a dashed line in chronological order. The same color code was applied for the same CarMT in both (B, C).
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TuMT and CarMT-NK cell co-cultures, only one in four of
CarMTs exhibited irregular contraction amplitudes, suggesting
that detrimental effects on CarMTs may already be inflicted at a
lesser extent by TuMTs or activated NK cells, or in other words, by
lower levels of TuMT-derived IL-8 (Figure 5A) or NK cell-derived
TNF-a (Figure 5D).
DISCUSSION

Despite the therapeutic potential of immune cell-employed ACT,
there is still a large gap between in-vitro performance and in-vivo
efficacy. This discrepancy mainly is due to a limited access to
physiologically relevant tumor models and a lack of suitable
in-vitro platforms for studying interactions between tumor
models and immune cells. Interdisciplinary approaches will
help to overcome these problems and increase the relevance of
in-vitro screenings. While 3D tumor models offer more biological
relevance (14, 53–56), iMPSs can provide physiological niches and
critical cues for tumor models and immune cells to recapitulate
physiological interaction (22, 24, 57–59). Although many initiatives
show promising results, standardized iMPSs are still missing.
Reasons may include the limited scalability of many academic
approaches, the use of non-standardized and highly specialized
tissue models, differences in screening protocols among
laboratories, and the difficulty to transfer existing approaches to a
broader community and clinical or industrial settings.

In this work, we developed an iMPS to study direct and indirect
effects of anti-tumor NK cells on TuMTs and CarMTs. The
inclusion of CarMTs into our iMPS allowed for a simultaneous
assessment of potential off-target effects caused by anti-tumor NK
cells. Interestingly, while a complete eradication of 3D TuMTs by
NK cells was achieved in our static experiment, we observed
heterogeneous tumor-killing activities by NK cells in our iMPS.
This discrepancy shows how static culture conditions – where all
cell components are forced to interact – can lead to an
overestimation of ACT efficacy. Direct killing of TuMTs by NK
cells was observed in our iMPS by a combination of different
features: accumulation of NK cells in direct proximity of the MT,
an increase in caspase 3/7 activity in tumor cells, and TuMT growth
arrest or shrinkage. We also observed TuMTs that displayed a non-
responsive phenotype within the same microfluidic channel. In
such non-responsive TuMTs, growth and viability were not
affected by the presence of NK cells (Figure 3 and Figure S6A).
As shown in Figure S6B, growth trajectories of TuMTs were
determined by the level of direct interaction between TuMTs and
NK cells within the first day of co-culturing rather than the number
of NK cells in proximity of the TuMTs during the initial priming
period. TuMTs that harbored large numbers of NK cells at day 1
grew slower or were subjected to growth suppression. Meanwhile,
TuMTs harboring only a few NK cells at day 1 experienced less
growth suppression that was mainly a consequence of the presence
of NK cell-derived cytokines. The increased level of sMICA
shedded from TuMTs (Figure 3C) may contribute to the
observed ineffective NK cell-mediated tumor killing activity and
heterogeneous tumor growth suppression.
Frontiers in Immunology | www.frontiersin.org 11
Additionally, as shown in Figure S6, once the diameter of a
given TuMT surpassed 500 mm, it was more likely to resist NK cell-
induced growth suppression. It has been shown in other studies that
TuMTs that are larger than 500 mm in diameter typically develop a
hypoxic core (60, 61). Hypoxia induces hypoxia-driven adaptive
mechanisms that promote tumor heterogeneity and survival while
it imposes an immunosuppressive microenvironment on immune
cells (62). Although the specific effect of hypoxia on NK cells
remains elusive, it was shown to cause NK-cell dysfunction and to
impair direct tumor-killing by tumor-infiltrating NK cells (63).

The chemokine/cytokine profiles of the on-chip cultures
confirmed the reciprocal signaling between TuMTs and NK cells,
indicating their interaction.We observed with all TuMTs that only a
few NK cells infiltrated the TuMTs. Similarly, only low numbers of
tumor-infiltrating NK cells were reported in different studies (46, 64,
65). Using whole-tissue sections of 112 patients and performing an
in-situ quantification of immune cells, Halama et al. showed that
NK cells were scarce in colorectal cancer tissue, even at early stages
of the tumor development. NK cell invasion and retention in tumor
tissue was low despite a high local level of chemokines, such as IL-8,
and increased levels of IFN-g and TNF-a in comparison to the
mucosa adjacent to the tumor tissue (64). In another study, Rios-
Doria et al. (66) developed xenograft models from different human
tumor cell lines in humanized mice and quantified the presence of
different immune-cell types within the tumor. Their results showed
high infiltration levels for B-cells and dendritic cells, while tumor-
infiltrating NK cells only amounted to between 1% and 5% of total
tumor-infiltrating lymphocytes. Interestingly, the low number of
NK cells – comparable to the number of tumor-infiltrating NK cells
– was shown to induce resistance against NK cell-mediated killing
in melanoma-resection-derived melanoma cell lines (67). To reveal
the reasons for the resistance against NK-cell-mediated killing in
our iMPS, extensive genomic and proteomic analyses will be
required in future work.

We attributed the heterogeneous anti-tumor activity of NK cells
to (i) different numbers and/or activation states of NK cells that
could establish physical interactions with TuMTs within the first
day of the experiment, (ii) chances of mutations within TuMTs that
lead to immune-editing and eventually escape from NK cell-
induced cell apoptosis (68), (iii) the development of tolerance for
tumor cells by NK cells (69), or (iv) the activity suppression of NK
cells by hypoxia and soluble factors shed from tumor cells (63, 70).

By including gravity-driven flow, our iMPS readily supported
indirect, soluble-factor-mediated interaction between all included
tissue models. This feature allowed us to simultaneously examine the
response of TuMTs to NK cell-mediated killing activity and its
impact on healthy CarMTs. A constant exposure of CarMTs to
chemokines/cytokines, released by TuMTs-NK cells interaction – as
shown in our iMPS – is difficult to realize withmedium-conditioning
approaches due to the short half-live times of IL-8 and TNF-a (half-
live time of IL-8: 24 minutes, half-live time of TNF-a – 18.2
minutes) (71).

Interestingly, we did not detect any structural damages of cardiac
myocytes in CarMTs for all our on-chip culture conditions.
Nevertheless, the high level of chemokine and cytokine release by
both TuMTs and NK cells upon interaction in the triple culture
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significantly reduced the beating frequency and altered the
contraction amplitude of CarMTs. This observation is in
agreement with in-vitro and in-vivo investigations by Buoncervello
et al. (52). In their in-vitro analysis, the authors dosed cardiac
myocyte cultures with different inflammatory chemokines/
cytokines, including IL-8, IFN-g, and TNF-a for 48 hours. They
reported an absence of cell death but various “severe phenotypic
changes” in chemokine/cytokine-treated cardiac myocytes,
indicating a dysfunction of contractile cytoskeletal elements. They
also provided evidence on the link between colorectal tumor-induced
heart systolic dysfunction and chronic systemic inflammation in
their follow-up in-vivo experiment (52). Similar to our results, they
did not detect any elevation of Troponin I in animal plasma across all
conditions. Not many studies have yet investigated the risks
associated with NK cell-based ACT so that NK cells are generally
considered to cause less side effects than T-cells (72). However, this
consideration may be due to the fact that suitable tissue models and
testing platforms that could reveal more subtle adverse effects are still
lacking. Moreover, solid tumors can alter the immune response and
other signaling pathways in ways that can lead to unexpected
damages to other organs. Therefore, more systemic approaches
and better tools are needed for researchers to address these
open questions.
CONCLUSION

In summary, we presented a simple and user-friendly iMPS that
offers: (i) long-term triple culture of 3D TuMTs with anti-tumor
NK cells and healthy CarMTs, (ii) microscopy-based observation
of direct TuMT-NK cell interaction and evaluation of the
spontaneous beating activity of CarMTs, (iii) collection of the
cell-culture supernatant for chemokine/cytokine profiling, and
(iv) harvesting of all tissue models for endpoint analyses. This
proof-of-concept work is aimed at demonstrating the potential
and versatility of iMPSs for use in immuno-oncology research,
especially for early in-vitro validation and safety assessment of
therapy approaches. More in-depth investigations regarding the
growth inhibition of TuMTs, the specific receptor-ligand
interactions involved in NK cell-mediated tumor killing, and
more extensive profiling of the signaling-molecule repertoire
remain topics for future work.
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