
proteomes

Article

Comparative Proteomic Analysis of Cotton Fiber
Development and Protein Extraction Method
Comparison in Late Stage Fibers

Hana Mujahid 1, Ken Pendarvis 2,†, Joseph S. Reddy 3,‡, Babi Ramesh Reddy Nallamilli 1,§,
K. R. Reddy 4, Bindu Nanduri 3 and Zhaohua Peng 1,*

1 Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology,
Mississippi State University, Mississippi State, MS 39762, USA; hm73@msstate.edu (H.M.);
nbrameshreddy@yahoo.co.in (B.R.R.N.)

2 Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment
Station, Mississippi State University, Mississippi State, MS 39762, USA; jkpendarvis@email.arizona.edu

3 College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA;
Reddy.Joseph@mayo.edu (J.S.R.); bnanduri@cvm.msstate.edu (B.N.)

4 Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA;
krreddy@pss.msstate.edu

* Correspondence: zp7@BCH.msstate.edu; Tel.: +1-662-325-0685; Fax: +1-662-325-8664
† Present Address: College of Agriculture and Life Sciences, University of Arizona, P.O. Box 210036, Tucson,

AZ 85721, USA.
‡ Present Address: Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA.
§ Present Address: Department of Human Genetics, Emory University School of Medicine, Atlanta,

GA 30322, USA.

Academic Editors: Ganesh Kumar Agrawal, Sun Tae Kim and Randeep Rakwal
Received: 20 November 2015; Accepted: 28 January 2016; Published: 3 February 2016

Abstract: The distinct stages of cotton fiber development and maturation serve as a single-celled
model for studying the molecular mechanisms of plant cell elongation, cell wall development and
cellulose biosynthesis. However, this model system of plant cell development is compromised for
proteomic studies due to a lack of an efficient protein extraction method during the later stages
of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic
compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa
(days post anthesis) fiber with multiple protein extraction methods and present a comprehensive
quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis
using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa
to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation,
cytoskeleton development and carbohydrate metabolism among other functional categories in four
fiber developmental stages were identified. Our studies provide protocols for protein extraction from
maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile
of cotton fiber development.
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1. Introduction

Being the world’s leading natural textile fiber, the economically-valuable cotton fibers of upland
cotton (Gossypium hirsutum L.) are unique in the plant kingdom due to their size and chemical
composition [1,2]. Each cotton fiber is a single and long (ě2.25 cm) cell originating from the ovule
epidermis [2–5]. Developing near-synchronously during seed development, cotton fiber development
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consists of four overlapping developmental stages: fiber initiation, cell elongation (primary cell wall
synthesis), cell wall thickening (secondary cell wall deposition) and maturation [2,3,5,6]. During
primary wall elongation (within 20 days post anthesis (dpa)) and secondary wall deposition and
thickening (from 20 to 35 dpa), sizeable amounts of polysaccharide components are synthesized and
deposited, producing a cell wall 3 to 4 µm thick, made up of more than 94% cellulose [3,7,8]. These
advantageous features make cotton fiber an excellent single-celled model for studying the molecular
mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis [2,5,9–11].

Progress has been made in the large-scale identification of genes and proteins involved in cotton
fiber elongation in the last decade [9,12,13]. Several comparative proteome and transcriptome studies
during different stages of cotton fiber development have been reported [2,5,8,11,12]. In addition,
the transcriptome and proteome comparisons between reduced fiber and fiberless mutants and
their respective parental wild-types (WT) have also been conducted [6,14–22]. However, due to the
recalcitrant nature of cotton fiber, most of the reported studies used young fiber tissue as experimental
materials instead of fibers in later developmental stages. Initially, cotton fiber proteins were extracted by
directly homogenizing cotton fibers in aqueous buffer followed by organic solvent precipitation [7,23].
However, this method was unsuitable for two-dimensional gel electrophoresis due to the horizontal
and vertical streaking and smearing caused by the phenolic and other contaminants co-extracted with
proteins [7,23]. In recent years, cotton fiber proteins have been mainly extracted with modifications
on the phenol-based procedure [2,5,7,8,10,11,13,20,22,24,25] and by the trichloroacetic acid extraction
method, as described by Pang et al. [6]. However, there have not been any reports of the successful
extraction of cotton fiber proteins for shotgun proteomics from maturing fiber tissues, for example
fiber stages after 30 dpa. Despite all of the reported studies, the underlying mechanisms behind fiber
initiation, elongation and maturation are still largely unknown [13,21].

The development of novel strategies that optimize protein extraction for cotton fiber cells,
particularly the stages after 25 dpa, is critical for using mass spectrometry-based proteomic approaches
to study cotton fiber development. Pressure cycling technology (PCT) uses a specifically designed
device (Barocycler™) and reaction containers (PULSE™ tubes) to apply cycles of hydrostatic pressure
to samples [26,27]. PCT provides a simple, fast, effective and reproducible process to release cellular
contents from biological samples [26–28]. Previously, it has been shown that the use of PCT increased
protein yields from E. coli, where PCT extracted 14.2% more total protein than using a standard
bead mill [29,30]. Furthermore, 2-DE showed 801 protein spots in the PCT lysate, compared to
760 spots in the bead mill lysate [29]. In mammalian liver tissue, PCT isolated more protein, as
well as unique proteins when compared to protein isolation using a Polytron or ground-glass (GG)
homogenizers [30,31]. Szabo et al. found that PCT-assisted glycan release resulted in the rapid release
of asparagine-linked glycans from bovine ribonuclease B, human transferrin and polyclonal human
immunoglobulin [32]. It is thought that high pressure alters the protein conformation, pushing
water molecules into the protein interior, thus leading to protein unfolding [32,33]. Furthermore,
for heat-sensitive molecules, PCT provides an advantage by being able to be conducted at mild
temperatures (room temperature to 37 ˝C) [32,34]. Szabo et al. showed that PCT offers several
advantages, including not causing decomposition (e.g., desialylation) of the glycan structures, the
speed of extraction and the ability to simultaneously process 12 samples at a time [32]. However,
the PCT effect on plant protein extraction, particularly the recalcitrant samples, such as cotton fiber,
remains to be examined.

In this report, we identified 1446 proteins in four time points of fiber development (10 dpa,
15 dpa, 25 dpa and 35 dpa). Comparison of the proteomes of different stages of fiber development
revealed 287 differentially-regulated proteins, functionally involved in cytoskeleton development,
energy/carbohydrate metabolism and cell wall development, among other processes. This study
presents the first proteome of the 35 dpa cotton fiber, a highly recalcitrant tissue, and presents a
comprehensive proteomic study of fiber development from 10 dpa to 25 dpa. In addition, it provides
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protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis, and our
results considerably expand the knowledge of the cotton fiber proteome during development.

2. Experimental Section

2.1. Plant Materials

Upland cotton (Gossypium hirsutum L.) cultivar Texas Marker (TM)-1 was grown in sunlit,
controlled environment chambers, known as soil-plant-atmosphere-research (SPAR) units, located
at the Rodney Foil Plant Science Research Center, Mississippi State University, Mississippi, USA,
consisting of fine sand as the growing medium [35].

2.2. Growth Conditions

Detailed operations and controls of SPAR chambers have been previously described [35]. Briefly,
the SPAR chamber consisted of a steel soil bin (1 m deep ˆ 2 m long ˆ 0.5 m wide) to accommodate
the root system, a Plexiglas chamber (2.5 m tall ˆ 2 m long ˆ 1.5 m wide) to accommodate aerial plant
parts and a heating and cooling system connected to air ducts that passed conditioned air to cause leaf
flutter through the plant canopy. Variable density shade cloths placed around the edges of the plant
canopy, designed to simulate canopy spectral properties, were adjusted regularly to match canopy
height and to eliminate the need for border plants. Four rows with five plants per row were maintained
in the chamber until harvest. A day/night temperature of 30/22 ˝C was maintained throughout the
experiment. The temperature control was achieved to the desired set points using chilled ethylene
glycol supplied to the cooling system via several parallel solenoid valves that were opened and closed
depending on the cooling requirements, an electrical resistance heater, which provided short pulses
of heat, and a fan, which provided air circulation throughout the chamber [35]. A carbon dioxide
concentration of 400 ppm was maintained during the experiment. CO2 concentration was monitored
and adjusted every 10 s throughout the day and maintained at 400 ˘ 10 µL¨L´1 during the daylight
hours using a dedicated LI-6250 CO2 analyzer (Li-COR, Inc., Lincoln, NE, USA). Plants were well
watered with full-strength Hoagland’s nutrient solution [36] three times a day through a programmed
drip irrigation system in order to maintain optimum water and nutrient supply throughout the
experiment. The SPAR units were supported by an environmental monitoring and control system,
which provided automatic acquisition and storage of data, monitored every 10 s throughout the day
and night. During the experiment, the incoming daily solar radiation (285 to 2800 nm) outside of the
SPAR units was measured with a pyranometer (Model 4–8; The Eppley Laboratory Inc., Newport,
RI, USA), which ranged from 1.4 to 27.2 MJ¨m´2¨d´1 with an average of 15.6 MJ¨m´2¨d´1. The
relative humidity (RH) of the chamber was monitored with a humidity sensor (HMV 70Y, Vaisala Inc.,
San Jose, CA, USA) installed in the returning path of airline ducts. The average relative humidity
during the experimental period was 34.5% ˘ 3.0%.

Cotton bolls were labeled and tagged on the anthesis day. Harvested fiber time points for
protein extraction were 10 days post anthesis (dpa), 15 dpa, 25 dpa and 35 dpa. Fiber samples were
collected by hand, immediately frozen in liquid nitrogen and stored at ´80 ˝C until protein extraction
was performed.

2.3. Protein Extraction with Phenol

Protein extraction with phenol was performed as previously described [24,37–39]. Briefly, 2 grams
of cotton fiber were ground under liquid nitrogen using a mortar-pestle; the tissue was suspended in
phenol extraction buffer (PEB) containing 0.9 M sucrose, 0.5 M Tris-Cl, 0.05 M EDTA, 0.1 M KCl and
2% 2-mercaptoethanol (added freshly), pH 8.7, and homogenized well. The same volume of phenol
was added to the sample, and the sample was homogenized well. The phenol phase was collected by
centrifugation at 7000 rpm for 15 min at 4 ˝C, and phenol extraction was repeated three times. Five
volumes of precipitation solution (methanol, 0.1 M ammonium acetate and 1% 2-mercaptoethanol
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(added freshly)) were added to the final collected phenol phase. To precipitate, the sample was stored
at ´70 ˝C overnight. To collect the precipitate, the sample was centrifuged at 12,000 rpm for 15 min
at 4 ˝C. The pellet was collected and washed three times with 70% ethanol. The pellet was vacuum
dried and stored at ´80 ˝C. Three replicates were included for extraction methods comparison for the
25 dpa samples and three replicates for comparison were included for differential expression analyses
of all of the samples involved.

2.4. Protein Extraction with Phenol and PCT for 25 dpa Fiber

Approximately 400 mg of cotton fiber were suspended in PEB buffer with phenol. Tissue was
disrupted using the PBI PCT shredder™ following the manufacturer’s instructions, followed by PCT
using the Barocycler® NEP2017 pressure cycling instrument (Pressure BioSciences Inc., South Easton,
MA, USA) in PCT Shredder PULSE Tubes™ for 60 cycles at 35,000 psi [29,40]. After PCT completion,
the remaining phenol extraction steps as described in Section 2.3 were performed.

2.5. Protein Extraction with IEF Reagent for 25 dpa Fiber

Approximately 400 mg of cotton fiber were ground under liquid nitrogen. After tissue
disruption, fiber was suspended in isoelectric focusing (IEF) buffer (7 M urea, 2 M thiourea, 4%
3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)) and vortexed well. After
vortexing, samples were centrifuged, and the supernatant was collected.

2.6. Protein Extraction with IEF Reagent and PCT for 25 dpa and 35 dpa Fiber

Approximately 400 mg of cotton fiber were suspended in IEF buffer, followed by PCT, as described
in Section 2.4.

2.7. Protein Digestion

Protein concentration was determined using the Bradford assay, and equal amounts of proteins
were prepared for digestion. Protein digestion was carried out as previously described [38,39,41,42].
After desalting the digested peptides, the eluted peptides were dried by vacuum and dissolved in
5% acetonitrile (ACN) and 0.1% formic acid. The injection volume for mass analysis was twenty
microliters (50 µg digested peptides).

2.8. Shotgun Proteomic Analysis

Chromatography equipment consisted of a Thermo Surveyor HPLC system operated at 500 nL per
minute via a split solvent line. A gradient from 5% to 95% acetonitrile in 600 min was used for peptide
separation, followed by a 25-min hold at 95% acetonitrile and a 30 min column re-equilibration period;
all solvents contained 0.01% formic acid as an ion source. Ten days post anthesis (dpa), 15 dpa and
some 25 dpa samples were separated using this gradient for differential expression analysis, while the
remaining 25 dpa samples (for method comparison) and 35 dpa samples were analyzed using a 5% to
50% gradient with identical wash and equilibration steps. The latter gradient provided better peptide
resolution and was employed in a previous publication [39]. A 0.75 mm by 100 mm BioBasic C18
column (Thermo 72105–100266) was used for peptide separation using both gradients. The Surveyor
was coupled with a Thermo LCQ DECA XP Plus mass spectrometer with a stock nanospray ion source.
Data were collected over a total duration of 655 min for each sample using MS scans directly followed
by three tandem MS/MS scans on the three most intense precursor masses from the full MS scan.
Dynamic mass exclusion windows were 2 min long with a repeat count of two. All data collection
parameters were identical for both HPLC gradients.
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2.9. Protein Identification and Statistical Analysis

Spectral files (RAW) were converted to mgf format using msConvert (available in the
ProteoWizard tool kit) [43] and searched against the Gossypium database downloaded on 22 April 2015
from UniProt, using X!tandem [44]. The database contained 37,423 entries. X!tandem was configured
to allow a maximum of 2 missed tryptic cleavage sites and the precursor and fragment mass tolerance
were set to 1000 and 500 ppm, respectively. Amino acid modifications included in the database search
were single and double oxidation of methionine, carboxymethylation and carbamidomethylation of
cysteine, methylation of arginine and lysine residues, phosphorylation of serine and threonine residues,
as well as spontaneous water loss after phosphorylation of serine and threonine residues. X!tandem
results, by default, consist of individual peptide-spectrum matches, with each match containing
information about the corresponding peptide sequence and parent protein. In order to view the
results on the protein level, with subsequent peptide sequences listed as a group, they needed to be
reorganized. This was accomplished using the Perl programming language to parse the X!tandem
results files. As spectrum matches were processed, those with an E-value greater than 0.05 were
discarded and the remainder organized by corresponding protein. Proteins identified by a single
peptide match were also discarded. In order to evaluate the quality of the dataset (false discovery rate),
decoy searches were performed using a randomized version of the Gossypium protein database and
processed using the same Perl logic as before. For all protein search results files, the false discovery
rate was less than 0.01 (less than 1%). Results passing all criteria were subsequently organized by
dpa and extraction method using Perl. Protein coverage was calculated using Perl. For each protein
sequence, an array of zeros the same length as the protein was created. Peptides were string-matched
to protein sequence and the coordinates recorded. Elements of the array having the same coordinates
were set equal to 1. Once all peptides were processed, the elements were summed, divided by the
protein length and multiplied by 100 to calculate coverage.

2.10. Protein Grouping

Since the database used for protein identification contained several species of Gossypium, the
filtered results included several orthologs identified with the same set of peptides. To reduce
redundancy in protein identification, protein grouping was performed using in-house Perl scripts [45]
with the following conditions: if two or more proteins were identified with an identical set of spectra
in Gossypium, only one protein ID (preferentially from Gossypium hirsutum) was retained in the protein
list, and the remaining protein IDs were grouped together; if two or more proteins were identified with
an identical set of spectra in Gossypium hirsutum, they were retained in order to account for isoforms in
Gossypium hirsutum. Only proteins retained after grouping were considered for further analysis. Each
group and associated proteins can be found in Supplemental Table S2.

2.11. Protein Quantification and Statistical Analysis

To evaluate differences between dpa samples on a proteome level, a differential expression analysis
based on peptide elution profiles was performed using Perl. Precursor mass spectra were extracted
from the raw data in MS1 format using the msConvert tool from the ProteoWizardtoolkit [43]. Peptide
precursor m/z values were extracted from the previously compiled protein identifications. Elution
profiles for peptide-spectrum matches were calculated by parsing each corresponding MS1 file and
summing the ion current for that match’s m/z value within a 1-Da tolerance, effectively integrating the
elution profiles. Each trace started at the scan number of the peptide-spectrum match and proceeded
both forward and backward until the chromatogram noise level, or a distance of 250 scans, was
reached. Multiple peptide-spectrum matches with the same precursor m/z were only counted once,
ensuring the same integral was not counted multiple times. Once all peptide-spectrum matches were
processed, intensities were summed for each protein on a per-replicate basis. Proteins not identified in
a replicate were represented with the average noise level of the replicate’s chromatogram for further
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calculations. The reasoning behind this is two-fold: (1) peptides not identified in a replicate could be
present at levels at or below the noise level of the chromatogram, causing the mass spectrometer to
ignore them; and (2) for calculating expression ratios between lines, zero cannot be in the denominator.
Data were normalized using a mode-based technique. First, the mode of the protein intensities for
each replicate was calculated, representing the most commonly-occurring protein intensity. Next, for
each identified protein, the intensity per replicate was divided by the mode of the same replicate. This
ensures that normalization is not affected by the minimum and maximum intensities, which can vary
tremendously between replicates. For each protein, the ratio between lines was calculated from the
replicate intensities. A Monte Carlo resampling analysis was performed to evaluate the significance of
the intensity distribution. For each replicate, a random intensity was generated between and including
the minimum noise level and maximum intensity across all replicates. A new ratio between lines
was calculated and compared to the original. This process was performed one million times, and the
number of times the random ratio was above or below the experimental ratio was recorded. From this,
a p-value was calculated for each distribution to indicate significance. Expression differences with a
p-value ď 0.05 were considered significantly differentially expressed.

3. Results

3.1. Comparison of Different Protein Extraction Buffers and Tissue Grinding Methods

Cotton protein extraction for proteomics studies has largely been performed using modifications
on the traditional phenol extraction method as reported [2,5,7,8,10,11,13,20,22,24,25] and TCA
extraction as described by Pang et al. [6]. As cotton fiber tissue matures, however, the protein
content decreases, the cell wall thickens and interfering content, such as polysaccharides, polyphenolic
compounds, pectin, lipids and waxes, is present, which substantially affect downstream proteomic
applications [7,46]. To optimize the protein extraction method for cotton fiber, particularly the fiber
from later developmental stages, such as 25 dpa and 35 dpa, we examined different extraction
procedures using 25 dpa fibers as shown in Figure 1.
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Figure 1. Summary of protein extraction methods used in this study. Cotton fiber proteins from 25 days
post anthesis (dpa) fiber were extracted using different protein extraction methods, as shown in (A)
and (B). Cotton fiber proteins were extracted with the mortar-pestle method combined with isoelectric
focusing IEF reagent (A), the mortar-pestle method combined with phenol-Tris buffer (A) and with
pressure cycling technology (PCT) combined with IEF reagent or phenol-Tris buffer (B). *After PCT
combined with phenol-Tris buffer was completed, remaining phenol extraction steps were performed
as described in Section 2.3.
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We found that pairing the pressure cycling technology with both the IEF buffer and phenol could
improve protein identification. Grinding the sample under liquid nitrogen (mortar-pestle extraction)
and using the IEF buffer identified 845 proteins. When PCT was used with the IEF buffer, 884 proteins
were identified, from which 235 were newly-identified proteins (Figure 2). When phenol extraction
was coupled with PCT, 980 proteins were identified, while grinding the sample under liquid nitrogen
and using phenol alone identified 934 proteins (Figure 2).
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Figure 2. Analysis of 25 dpa cotton fiber proteome obtained using four different extraction methods
(phenol, phenol + PCT, IEF and IEF + PCT). Venn diagrams displaying the number of identified cotton
proteins in each extraction procedure for 25 dpa cotton fiber and the overlap of identified proteins
among extraction procedures. Venn diagrams were generated using the Venny 2.0 tool [47].

For functional classification of the identified proteins, we carried out gene ontology analysis
using the UniProt-GOA database (www.uniprot.org). The proteins were classified by gene ontology
annotation based on three categories: biological process, cellular component and molecular function.
Analysis of the identified proteins by each of the four extraction methods showed that the majority
of the proteins identified in all methods were involved in microtubule-based processes (GO:0007017)
and protein polymerization (GO:0051258) (Figure 3A). The majority of the GO terms from these
categories overlapped significantly across the four methods, with phenol identifying the most unique
biological processes’ GO terms (Figure 3B). Using the GOSlimAuto [48] available at AgBase, the
cellular component and molecular function gene ontology terms were compared across the four
protein extraction procedures (Figure 3C,D). Although the majority of proteins identified across
the four extraction methods did not significantly belong to any one category, a large number did
come from the cytoplasm, cytosol, cell wall, plasma membrane, protein complex and membrane
(Figure 3C). Interestingly, ribosomal proteins were only identified in the phenol extracted samples
(Figure 3C). When looking at the molecular function, the majority of the proteins had catalytic activity
and nucleotide binding (Figure 3D).
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Figure 3. Gene ontology (GO) annotations of proteins identified using four protein extraction
procedures in 25 dpa cotton fiber. Protein number, y-axis; gene ontology terms, x-axis. Phe, phenol.
Phe+PCT, phenol+PCT. Only predominant GO category terms are shown in figure (A). Predominant
biological process GO category terms of 25 dpa fiber proteins identified by the four extraction
procedures, respectively. (B) Venn diagram displaying overlapping biological process category terms
across four extraction procedures used for 25 dpa fiber. (C) Predominant cellular component category
terms for proteins identified in 25 dpa fiber using four extraction methods, respectively. ( . . . ) in
the x-axis indicates an abbreviated term; complete names of abbreviated cellular component GO
terms from left to right include: intracellular membrane-bounded organelle || intracellular organelle
part. (D) Predominant molecular function category terms for proteins identified in 25 dpa fiber using
four extraction methods, respectively. ( . . . ) in the x-axis indicates abbreviated terms; complete
names of abbreviated molecular function GO terms from left to right include: structural constituent
of ribosome || hydrolase activity, hydrolyzing O-glycosyl compounds || structural constituent of
cytoskeleton || sucrose synthase activity || transferase activity, transferring glycosyl groups ||
transition metal ion binding || unfolded protein binding || organic cyclic compound binding ||
heterocyclic compound binding.
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3.2. Fiber Proteome

We identified 451 proteins with two or more peptides in 10 dpa cotton fiber using the phenol
extraction method. Meanwhile, 407 proteins were identified with two or more peptides in the 15 dpa
fibers using the same extraction method. For 25 dpa fiber, a total of 1387 proteins were identified
with two or more peptides when all four extracting methods were included (Figure 2). In an effort to
improve protein identification for later stage fibers, both IEF + PCT and phenol extraction methods
were used for 35 dpa fiber. Using these two methods, a total of 785 proteins were identified with two or
more peptides. With all protein extraction methods combined in this study, we identified 1446 proteins
of the fiber proteome (Supplemental Table S1).

3.3. Functional Analysis of the 35 dpa Proteome

Functional analysis of the total identified proteins in the 35 dpa fiber proteome revealed a strong
role of cytoskeletal and energy/carbohydrate metabolism proteins at this fiber stage (Supplementary
Figures S1–S3). Major biological processes involving 35 dpa proteins included the metabolic
process, oxidation-reduction process, microtubule based process, seed trichome elongation, protein
polymerization, response to stress, carbohydrate metabolic process, transport, etc. (Supplementary
Figure S1). The 35 dpa proteome contained proteins from the cytoplasm, plasma membrane, protein
complex, membrane, cytosol, cell wall, plasmodesma, cytoplasmic part, microtubule, mitochondrion,
Golgi apparatus, etc. (Supplementary Figure S2). The predominant molecular functions of proteins
identified in the 35 dpa proteome included catalytic activity, nucleotide binding, transferase activity,
hydrolase activity, ATP binding, GTP binding, GTPase activity, structural constituent of cytoskeleton,
metal ion binding, etc. (Supplementary Figure S3). The proteins in the 35 dpa proteome belonged
to a broad range of protein families (Figure 4). The major protein families identified in the 35 dpa
proteome included the tubulin family, actin family, zinc containing alcohol dehydrogenase family,
14-3-3 family, heat shock protein 70 family, annexin family, plant LTP family, profilin family, ATPase
alpha/beta chains family, etc. (Figure 4). Cytoskeletal proteins identified in the 35 dpa proteome
included several actin isoforms, as well as alpha and beta-tubulin isoforms and annexin, among
others. Energy/carbohydrate metabolism proteins included enolase isoforms, fructokinase (D2D2Z5),
glyceraldehyde-3-phosphate dehydrogenase, sucrose synthase 1, 4, 2 and sucrose synthase isoforms B,
C and D. The presence of proteins involved in cytoskeletal and carbohydrate metabolism in the 35 dpa
proteome is understandable, since cellulose is the major carbohydrate in cotton fiber at maturity [49]. A
large amount of energy is needed to produce and deposit the secondary wall cellulose microfibrils [49].

The 35 dpa proteome also contained many redox-related proteins. Proteins in this category
included 2-nitropropane dioxygenase (D2D302), 3-ketoacyl-CoA thiolase 2 (A0A0B0N1S6), ascorbate
peroxidase (C6ZDA9), protein disulfide isomerase (G1ED19), benzoquinone reductase (A3F7Q2),
superoxide dismutase (Q3SAW9), catalase isozyme 1, 2 (A0A0B0PAB0, P30567), among others. Several
cell wall synthesis-related proteins were also identified, including endo-1,3-beta-glucanase (O23953),
several endo-alpha-1,4-glucanase isoforms (F1BWY1, Q4F885, F1BWY2), pectin methylesterase 5
(R9QQU5), UDP glucose pyrophosphorylase (Q6RY01), GRP-like protein 2 (Q0PW29) and fasciclin-like
arabinogalactan protein 6, 2, 5, 1 and 4 (A9XTL1, A9XTK7, A9XTL0, B1NHU5, A9XTK9), among others.
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3.4. Differentially-Expressed Proteins during Fiber Development

During fiber development, fiber cells undergo a series of morphological and compositional
changes. To further examine developmental regulation of the cotton fiber proteome, we examined
differentially-expressed proteins in different stages of fiber development. We quantitatively compared
the proteome changes in the following stages: 15 dpa vs. 10 dpa and 25 dpa vs. 15 dpa. A non-labeling
quantification method based on peptide spectral intensity was used [50]. Differential expression was
only considered for proteins with a p-value ď 0.05.

Following the course of fiber development, we found that 287 proteins were differentially
expressed in total (Supplemental Table S3). To further analyze the differentially-regulated proteins,
functional classification of the differentially-expressed cotton proteins was carried out according to the
gene ontology (GO) rules using GOSlimAuto available at AgBase [39,48,51,52].
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Functional analysis and comparison of the biological processes of the upregulated proteins
showed that when 15 dpa vs. 10 dpa stages were compared, the predominant biological processes were
the oxidation-reduction process, biosynthetic process and sucrose metabolic process, among others
(Supplementary Figure S4). The predominant categories of the cellular component of the upregulated
proteins in this comparison (15 dpa vs. 10 dpa) were cytosol, intracellular and nucleus, among
others (Supplementary Figure S5). The predominant molecular function categories of the comparison
(15 dpa vs. 10 dpa) were oxidoreductase activity, metal ion binding and zinc ion binding, among
others (Supplementary Figure S6). When 25 dpa vs. 15 dpa stages were compared, the predominant
biological processes of the upregulated proteins were the metabolic process, microtubule-based process
and protein polymerization, among others (Supplementary Figure S4); the predominant cellular
components were microtubule, cytoplasm and cytosol, among others (Supplementary Figure S5);
and the predominant molecular function categories were nucleotide binding, GTPase activity and
structural constituent of cytoskeleton (Supplementary Figure S6) in the same comparison.

When 15 dpa vs. 10 dpa downregulated proteins were compared, proteins belonging to biological
processes, such as metabolic process, transport and plant-type cell wall organization, among others,
were the predominant (Supplementary Figure S7). Meanwhile, proteins in membrane, cytoplasm
and cell wall were predominant categories of cellular components in the same comparison of the
downregulated proteins. (Supplementary Figure S8). Additionally, proteins in catalytic activity,
transferase activity and hydrolase activity, among others, were the main molecular function categories
in the comparison (15 dpa vs. 10 dpa) (Supplementary Figure S9). The 25 dpa vs. 15 dpa downregulated
protein comparison showed a predominance of proteins involved in the oxidation-reduction process,
transport and protein folding, among others (Supplementary Figure S7). The 25 dpa vs. 15 dpa
downregulated protein comparison showed a predominance of proteins residing in the cytoplasm,
plasma membrane and apoplast, among other cellular components (Supplementary Figure S8). The
same comparison showed a predominance of proteins involved in transferase activity, nucleotide
binding, and catalytic activity, among other molecular functions (Supplementary Figure S9).

3.5. Differential Expression of Cytoskeletal Related Proteins

Identifying proteins related to fiber development and maturation is essential for discovering the
cellular network responsible for fiber and cell wall development. In this study, we identified multiple
cytoskeletal-related proteins that were differentially regulated, including the actin binding proteins,
profilin and actin-depolymerizing factor (ADF). Profilins have been found to be expressed during early
cotton fiber development [53–55], and when overexpressed in transgenic tobacco cells, they produced
an elongated cell with thicker and longer microfilament cables [54,55]. We found that an isoform of
profilin (A0A0B0PF49) was downregulated during secondary wall deposition (25 dpa) when compared
to an earlier fiber development stage (15 dpa), while actin depolymerizing factor 7 (A1XJ44) was
found to be upregulated in 15 dpa when compared to 10 dpa and downregulated in 25 dpa fiber
when compared to 15 dpa. Another cytoskeleton binding protein, known as annexin, was found to be
downregulated in 15 dpa (Q69DC2, Q8W4Z7, A6MUT1) and 25 dpa fiber (Q69DC2, S5GI78, D2D2Z9,
S5G619, M4MX81). Annexins are capable of binding to calcium and lipid membranes, allowing them
to play a role in signaling networks, membrane trafficking and cytoskeletal interactions [56–63].

We also identified several beta and alpha-tubulin proteins that were differentially expressed,
including one that was upregulated in 15 dpa fiber (A0A0B0MX93, tubulin beta-1 chain-like protein).
Several others were upregulated in 25 dpa fiber, including alpha-tubulin 3 (Q8H6L9), alpha-tubulin 2
(Q8H6M0), tubulin beta-7 chain (A0A0B0PUW5), tubulin alpha-2 chain (A0A0B0NQH0), beta-tubulin
1 (A6MUS5) and tubulin beta-7 chain (A0A0B0NRH5). Alpha-tubulin 3 (Q8H6L9), alpha-tubulin
2 (Q8H6M0) and tubulin alpha-3/alpha-5 chain-like protein (A0A0B0PKT8) were downregulated
in 15 dpa fiber. Other important differentially-regulated cytoskeletal proteins included an actin
protein that was downregulated in 15 dpa fiber (A6MUT3); while four other actin proteins showed
downregulation in 25 dpa fiber (Q7XZK1, A0A0B0NUJ5, A0A0B0MGZ2 and I1T3U6).
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3.6. Differential Expression of Cell Wall-Related Proteins

Many proteins involved in cell wall synthesis and modification were found to be differentially
expressed at various time points during the fiber development process. Interestingly, several
expansin protein family members showed downregulation during fiber development. For instance,
alpha-expansin (B2Z3V3, Q283Q7, Q8LKK3, Q8LKK2), expansin (Q7Y254, O23952), alpha expansin 1
(A6YR48, I1T470, A6YR43, I1T469) and alpha expansin 2 (A6YR66 and A6YR63) were downregulated
in 15 dpa fiber.

3.7. Differential Expression of Energy/Carbohydrate Metabolism Proteins

Many sucrose synthase isoforms were found to be differentially regulated. For instance, sucrose
synthase proteins (I1T4T5, G9BRX6, I1T4T6, H6AC56, H6AC57 and G9BY14) were upregulated in
15 dpa fiber; while in 25 dpa fiber, sucrose synthase isoform C proteins were upregulated (G1JRK6,
G1FNX7 and G1FNX4). Some sucrose synthase proteins were also downregulated. For example,
sucrose synthase isoform B (G1JRK5), sucrose synthase isoform D (G1JRK7), sucrose synthase Sus1
(I1T4R3), sucrose synthase 2 (G9BRX6) and sucrose synthase (Q9ZRC4, I1T4T5, I1T4T6, H6AC56,
H6AC57, G9BY14) were all downregulated in 25 dpa fiber. The large number of differentially-regulated
energy/carbohydrate metabolism proteins suggested important roles of these proteins in fiber
development, which is consistent with prior reports. Brill et al. showed that SusA/B/D isoforms
are expressed highly during fiber elongation, falling off during secondary cell wall synthesis [64].
However, SusC is absent at both the transcript and protein levels in early fiber development, but highly
expressed in later fiber development [64].

4. Discussion

4.1. Comparison of Protein Extraction Methods for Recalcitrant Cotton Fiber

Protein extraction from recalcitrant plant tissue is highly challenging due to the abundance
of interfering plant chemical compounds and extremely robust cell wall. Efficient and routine
study of recalcitrant plant material has been limited due to the high amount of plant secondary
metabolites, including phenols, flavonoids, stilbenes, terpenes, tannins and lignins, which negatively
affect downstream proteomic efforts [65,66]. Secondary metabolites build up as soluble forms in the
vacuoles and are more prevalent in adult mature tissues than in young etiolated tissues [66,67]. For
proteome analysis of cotton fiber, an ideal protein extraction method should successfully disrupt
the cell wall and reproducibly extract all of the proteins in the proteome, with efficient removal of
non-protein contaminants [66]. In the present study, we evaluated plant protein extraction protocols,
including phenol extraction and IEF buffer coupled with and without pressure cycling technology
(PCT). A comparison of the protein extraction methods was done based on protein identification.

Considering protein identification, phenol plus PCT identified the largest amount of proteins
(980), while phenol extraction came in second, identifying 934 proteins with two or more peptides in
25 dpa fiber. PCT used together with IEF buffer identified 884 proteins; without PCT, 845 proteins were
identified in 25 dpa fiber. Our results suggested that to thoroughly study the cotton total proteome, the
use of multiple extraction procedures collectively is favorable, because they provide a broader range
of coverage of the total proteome. Combining the various protein extraction methods in this study,
we identified 1446 proteins (Supplemental Table S1, Supplemental Tables S4 to S7 and Supplemental
Figures S10 to S12) and 287 differentially-expressed proteins (Supplemental Table S3) in G. hirsutum.
Our study provided a comprehensive proteome in G. hirsutum, including the proteome of 35 dpa fiber.

4.2. Proteome Studies on 35 dpa Fiber

Although many studies have been performed on different stages of cotton fiber development,
the majority of these studies have primarily focused on early fiber stages due to the recalcitrant
nature of maturing cotton fiber. Many studies cited the difficulty resulting from the tough secondary
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cell wall exterior and reduced protein content [7,46]. To the best of our knowledge, this is the first
report to present proteome study data on 35 dpa fiber. We identified 785 proteins in the 35 dpa
fiber proteome. Seventeen of these proteins were exclusively identified in 35 dpa fiber tissue. These
proteins included three uncharacterized proteins (A0A0B0N1M7, A0A0B0MIW5, A0A0B0PNM1),
glutamate—glyoxylate aminotransferase 2-like protein (A0A0B0NW95), peroxidase 51-like protein
(A0A0B0PPW0), WRKY transcription factor 1-like protein (A0A0B0PEV3), NF-X1-type zinc finger
NFXL1-like protein (A0A0B0NHR9), GDSL esterase/lipase CPRD49-like protein (A0A0B0N5L5),
quinone oxidoreductase-like protein 2 (A0A0B0P6H8), Biotin carboxyl carrier protein subunit
(A8RWF8), alcohol dehydrogenase class-P-like protein (A0A0B0NGV8), 60S acidic ribosomal
P1 (A0A0B0PNW5), cell division cycle 48 (A0A0B0NEP6), UDP-glucuronic acid decarboxylase
1 (A0A0B0N8J8), polygalacturonase-inhibiting protein (Q6WMU5), lysosomal beta glucosidase
(A0A0B0PUQ5) and beta-D-xylosidase 1-like protein (A0A0B0PLT0).

4.3. Proteome Differential Regulation during Cotton Fiber Development

In this study, we aimed to identify regulatory proteins that were expressed at specific
developmental stages. We found 287 proteins that were differentially expressed at one or more
of the three time points compared. However, the number of differentially-regulated proteins identified
in this study may be inflated due to the presence of homologous proteins in the database, which
can share peptides. It is difficult to distinguish whether all of the proteins sharing the same set of
peptides are present in the sample or if only some of the proteins are actually present [68]. In future
studies, identification of proteotypic peptides for quantitative proteomics would aid in overcoming
this setback [68]. Many of the differentially-expressed proteins belonged to functional classes involved
in cytoskeletal arrangement, energy/carbohydrate metabolism, stress responses and cell wall. The
distribution of the differentially-regulated proteins indicates the cytoskeleton plays a critical role in
cotton fiber development; as well as a strong role of energy/carbohydrate metabolism throughout fiber
development. This result is plausible, because rapid cell elongation and fiber development require a
large amount of energy, as well as cytoskeletal and cell wall dynamic rearrangement [8]. Furthermore,
the distribution of the identified proteins shows that cotton fiber cells possess an increased level
of redox-related activity at the 15 dpa fiber stage, likely due to H2O2 content increasing at 15 dpa
and peaking at the 20 dpa stage of fiber development [8]. Altogether, protein functional analysis
and regulation data indicate that fiber development involves an interplay between cytoskeletal, cell
wall and metabolic proteins, creating a complex arrangement of events associated with key fiber
developmental stages. Our observations were consistent with prior 2-DE gel-based studies on fiber
development and comparison between the fuzzless-lintless mutant and wild-type.

4.4. Cytoskeletal Dynamics

Cytoskeletal architecture in cotton fibers plays an essential role in cotton fiber development. Plant
cell morphology is largely determined by the highly dynamic actin cytoskeleton [55]. In this study, we
found that cytoskeletal proteins were highly differentially regulated during fiber development, which
included actin and actin binding proteins profilin and annexin. Actin was found to be downregulated
in 15 dpa fiber and 25 dpa fiber when compared to earlier time points.

The activity of actin is further modulated by actin-modifying proteins, including profilins (PFN),
which were found to be upregulated in 15 dpa cotton fiber in this study. Wang et al. found that
expression of a profilin family member (GhPFN2) was significantly induced during the period of rapid
fiber elongation and secondary wall synthesis [55,69]. Another important regulator of actin dynamics,
annexin was found to be downregulated in 15 dpa and 25 dpa fiber. In cotton, it was shown that
four cotton annexin proteins (AnxGh1: AAR13288, AnxGh2: AAB67993, AnxGhFx:FJ415173, AnxGhF:
AAC33305) were present in higher amount in fibers of 10 dpa wild-type plants as compared to the
fuzzless-lintless mutant [6,63]. Another actin regulating protein called actin depolymerizing factor
(ADF) was found to be upregulated in 15 dpa and downregulated in 25 dpa. Interestingly, it was found
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that increased expression of profilin 2, as well as suppression of actin depolymerizing factor 1 led to
inhibition of fiber elongation and promoted secondary wall formation [69–71].

Another important family of cytoskeletal proteins known as tubulins, specifically several beta and
alpha-tubulin isoforms, were differentially expressed. The bulk of these proteins were upregulated
in 25 dpa fiber. During fiber elongation, a minimum of nine β-tubulin genes are preferentially or
differentially expressed [72]. A study by Pu et al. in cotton fiber suggested that transcription factors,
such as GhMYB109, control key regulatory processes by modulating microtubules by influencing
the expression of GhTUB1 and GhACT1 genes, thereby effecting subsequent downstream cellular
effects related to the cytoskeleton [72,73]. Therefore, the differential regulation of actin and tubulin
variants along with actin-regulating proteins may be part of a complex regulatory network of proteins
controlling fiber development.

4.5. Cell Wall Dynamics

Cotton fiber provides a good model for studying the regulation of primary and secondary cell
wall development. During rapid fiber elongation, it is known that genes encoding wall-loosening
expansin proteins [74,75] are expressed and are associated with quantitative trait loci linked with fiber
length [72,76,77]. In this study, expansins were also found to be differentially regulated. The expansin
family members were downregulated in 15 dpa with expression patterns consistent with previous
studies. The expansin gene plays a very important role during cell wall extension [78,79]. Ruan et al.
found that the transcript of the fiber-specific wall loosening gene, GhEXP1, was high at the early phase
of elongation (6 to 8 dpa), but substantially reduced to untraceable levels at 20 dpa, suggesting that
at this point, the primary cell wall of elongating fiber has become very rigid, elongation has stopped
because of the loss of higher turgor as a result of downregulation of transporter genes and reopening
of plasmodesmata and fiber cells have shifted their energy to cellulose synthesis [79].

5. Conclusions

In this study, protocols for protein extraction from mature cotton fiber tissue were developed.
Combining different protein extraction protocols and LC-MS/MS technology, we have established
a comprehensive cotton fiber proteome in Gossypium hirsutum, including the 35 dpa fiber proteome,
which has not been examined in prior reports to the best of our knowledge. Proteins with diverse
functions at specific developmental stages of cotton fiber were identified by quantitative comparison
at three representative developmental stages. The results provide novel insight into cotton fiber
development and regulation in addition to identifying efficient methods of protein extraction for
cotton fiber proteomics.

Supplementary Materials: The Supplementary Materials are available online at www.mdpi.com/2227-7382/
4/1/7/s1.
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