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Analysis of metabolomic patterns in thoroughbreds before and 
after exercise
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Objective: Evaluation of exercise effects in racehorses is important in horseracing industry and 
animal health care. In this study, we compared metabolic patterns between before and after exercise 
to screen metabolic biomarkers for exercise effects in thoroughbreds.
Methods: The concentration of metabolites in muscle, plasma, and urine was measured by 1H 
nuclear magnetic resonance (NMR) spectroscopy analysis and the relative metabolite levels in 
the three samples were compared between before and after exercise. Subsequently, multivariate 
data analysis based on the metabolic profiles was performed using orthogonal partial least square 
discriminant analysis (OPLS-DA) and variable important plots and t-test was used for basic 
statistical analysis. 
Results: From 1H NMR spectroscopy analysis, 35, 25, and 34 metabolites were detected in the 
muscle, plasma, and urine. Aspartate, betaine, choline, cysteine, ethanol, and threonine were 
increased over 2-fold in the muscle; propionate and trimethylamine were increased over 2-fold 
in the plasma; and alanine, glycerol, inosine, lactate, and pyruvate were increased over 2-fold 
whereas acetoacetate, arginine, citrulline, creatine, glutamine, glutarate, hippurate, lysine, methio
nine, phenylacetylglycine, taurine, trigonelline, trimethylamine, and trimethylamine N-oxide 
were decreased below 0.5-fold in the urine. The OPLS-DA showed clear separation of the meta
bolic patterns before and after exercise in the muscle, plasma, and urine. Statistical analysis 
showed that after exercise, acetoacetate, arginine, glutamine, hippurate, phenylacetylglycine 
trimethylamine, trimethylamine N-oxide, and trigonelline were significantly decreased and 
alanine, glycerol, inosine, lactate, and pyruvate were significantly increased in the urine (p<0.05). 
Conclusion: In conclusion, we analyzed integrated metabolic patterns in the muscle, plasma, 
and urine before and after exercise in racehorses. We found changed patterns of metabolites 
in the muscle, plasma, and urine of racehorses before and after exercise.
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INTRODUCTION

Exercise affects metabolic responses throughout the body [1]. During exercise, muscles generate 
ATP by using various intramuscular and extramuscular substrates such as creatine phosphate, 
muscle glycogen, blood-borne glucose, lactate, and free fatty acids. The various substrates for 
exercise metabolism are dependently determined by exercise intensity and duration as well as 
training status, dietary manipulation, and other environmental factors [2]. Exercise of maximal 
intensity increases the amount of lactate derived from the degradation of muscle glycogen, products 
of adenine nucleotide catabolism, and tricarboxylic acid cycle intermediates related to aerobic 
energy production [3]; it also promotes glycogenolysis, lipolysis, and ammonia metabolism [4]. 
Prolonged submaximal intensity exercise improves insulin sensitivity, arterial compliance, and 
endothelial function [5]; increases lipid catabolism [6]; decreases the catecholamine response 
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[7]; and maintains bone density, skeletal muscle mass, and muscle 
metabolic capacity during ageing [8]. 
  The equine skeletal muscle displays intrinsic metabolic ad-
aptations based on myofiber structure and function, substrate 
and by-product transport across the sarcolemma, and coordinated 
integration of metabolic pathways to produce ATP in response 
to exercise [9]. Equine muscles store a large amount of glycogen 
(300 to 650 mol/g dry weight) in fast fibers. The stored glycogen 
is used as the most important source of energy for muscle con-
traction during both submaximal (<85% VO2max) and maximal 
exercise (>85% VO2max) [9]. During prolonged submaximal inten-
sity exercise, lipids also contribute to produce muscle energy with 
glycogen [10]. After exercise, supplementation of muscle glyco-
gen can slowly take up to 72 h in horses [11]. Previous studies 
have shown that muscle glycogen supplement after exercise was 
enhanced by certain processes such as intravenous glucose infu-
sion, oral acetate administration, and rehydration with hypotonic 
electrolyte solutions in horses [12]. In addition, the buffering ca-
pacity that prevents muscle acidosis by lactate is higher in horses 
than in other species, probably because of high carnosine content 
[9]. Some studies have also suggested that equine adaptation to 
exercise could improve both aerobic and anaerobic capacities [9]. 
However, the mechanism underlying equine metabolism in res
ponse to exercise is still unclear.
  Recently, multivariate approaches of metabolomic analysis 
have been used to understand biological mechanisms [13]. With 
respect to biological endpoints, quantifications of metabolomes 
could elucidate biological phenomena with other omics studies 
such as genomics, transcriptomics, and proteomics. For the ac-
quisition of metabolic data, high-resolution 1H or 13C nuclear 
magnetic resonance (NMR) spectroscopy and mass spectroscopy 
have been used along with other spectroscopic methodologies 
[14,15]. The acquired data can be interpreted using multivariate 
statistical analysis, such as hierarchical cluster analysis, principal 
component analysis, different types of partial least square analy-
sis, and subsequent modeling with new regression algorithms 
[16,17].
  In this study, we analyzed the metabolic profiles of equine 
muscle, plasma, and urine before and after exercise by using 1H 
NMR spectroscopy. On the basis of the analysis results, com-
monly or specifically expressed metabolites were selected from 
the muscle, plasma, and urine, and they reflected the effects of 
exercise. Subsequently, we suggested metabolic pathways related 
to those metabolites. Our study could contribute to understand-
ing fluctuations in equine metabolism because of exercise.

MATERIALS AND METHODS

Horses and ethical statement
Three Thoroughbred were used in this study. The Pusan National 
University-Institutional Animal Care and Use Committee ap-
proved the study design (Approval Number: PNU-2015-0864).

Sample collection
Blood, muscle, and urine samples were collected from each horse 
before and after exercise (30 min). Briefly, venous blood samples 
were collected using a-50 mL syringe and transferred to heparin-
containing tubes and centrifuged at 5,000 rpm for 15 min to obtain 
plasma. The plasma samples were stored at –20°C until NMR 
sample preparation. For skeletal muscle biopsy, local anesthesia 
was administered to the gluteus medius, and a biopsy collection 
syringe was used to obtain the muscle samples before and after 
exercise. The samples were stored in liquid nitrogen until analysis. 
Urine was collected from the subjects before and after exercise 
and centrifuged to remove solids. An 600 μL aliquot of the super-
natant was added to a micro centrifuge tube containing 70 μL 
of D2O solution with 5 mM dextran sulphate sodium (DSS) and 
10 mM imidazole. The DSS was used as the qualitative standard 
for the chemical shift scale. In addition, 30 μL of 0.42% sodium 
azide was added. The urine samples were stored at –70°C until 
analysis. 

Nuclear magnetic resonance spectroscopy
The skeletal muscle and plasma samples were subjected to 1H 
NMR spectroscopy analysis. Briefly, 45 μL of the samples was 
used with 5 μL of deuterium oxide (D2O) containing 20 mM of 
the reference material trimethylsilylpropionate (TSP); 20 mg of 
the skeletal muscle samples was analyzed with 25 μL of D2O con-
taining 2 mM of TSP, and 630 μL of the urine samples was mixed 
with 70 μL of D2O containing 20 mM of TSP before NMR mea-
surement. 
  We conducted high-resolution magic angle spinning NMR 
for the skeletal muscle and plasma samples. The spinning rate 
was 2,050 Hz. To analyze the skeletal muscle, plasma, and urine 
samples, the Carr-Purcell-Meiboom-Gill pulse sequence was 
used to remove the water peak and macromolecular peak signal. 
The acquisition time was 1.704 s, and the relaxation delay was 
1.0 s. Each sample was scanned 128 times, and the total analysis 
time was 8 min and 13 s.
  Chenomx NMR Suite 7.1 (Chenomx Inc., Edmonton, AB, 
Canada) and SIMCAp+12.0 (Umetrics, Umea, Sweden) software 
were used to minimize the errors of the measured spectrum and 
statistical analysis, respectively. In this study, we quantified 22 
metabolites in the plasma, while 33 metabolites were investigated 
in the skeletal muscle in both groups. We used TSP as the stan-
dard and measured the absolute concentrations of the metabolites 
to normalize the samples; the relative concentration of each me-
tabolite was measured. The multivariate statistical analysis method 
was used to calculate the amount of metabolites present in the 
samples.

Orthogonal partial least square discriminant analysis
All data were converted from the NMR software format to the 
Microsoft Excel format. One-dimensional NMR spectra data 
were imported into SIMCA-P (version 12.0, Umetrics Inc., Kin-
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nelon, NJ, USA) for multivariate statistical analysis, to examine 
intrinsic variations in the data set. These data were scaled using 
centered scaling prior to the orthogonal partial least square dis-
criminant analysis (OPLS-DA). For the scaling process, the average 
value of each variable was calculated and then subtracted from 
the data. OPLS-DA score plots were used to interpret intrinsic 
variations in the data. 

Statistical analysis
Means and standard deviations of the metabolites were calculated 
using Microsoft Excel. The statistical significance (p<0.05, p<0.01, 
or p<0.001) of apparent differences in metabolite concentrations 
before and after exercise was assessed using analysis of variance, 
followed by the t-test (Prism 5.01, San Diego, CA, USA). 

RESULTS

Differentially expressed metabolites and metabolic 
patterns before and after exercise in horses
The metabolite analyses before and after exercise showed that 
35, 25, and 34 metabolites were detected in the muscle, plasma, 

and urine, respectively. Sixteen metabolites were commonly 
changed among the muscle, plasma, and urine after exercise, and 
11, 3, and 14 metabolites were specifically changed in the muscle, 
plasma, and urine, respectively, after exercise (Figure 1, Table 1). 
The relative levels of the metabolites after exercise in the muscle, 
plasma, and urine were measured and compared with the cor-
responding levels of before exercise. The results showed that 
aspartate, betaine, choline, cysteine, ethanol, and threonine were 
increased over 2-fold in the muscle; propionate and trimethyl-
amine were increased over 2-fold in the plasma; and alanine, 
glycerol, inosine, lactate, and pyruvate were increased over 2-fold 
and acetoacetate, arginine, citrulline, creatine, glutamine, glutarate, 
hippurate, lysine, methionine, phenylacetylglycine, taurine, tri
gonelline, trimethylamine, and trimethylamine N-oxide were 
decreased below 0.5-fold in the urine (Figure 1). 

OPLS-DA and variable important plots of the metabolites 
before and after exercise
OPLS-DA showed clear separation of the metabolic patterns 
before and after exercise in the muscle, plasma, and urine (Figure 
2A, 2B, 2C). Subsequently, when variable important plots (VIPs) 

Figure 1. Metabolic clustering (left) and heatmap analysis of the differentially expressed metabolites (right) among the muscle, plasma, and urine.
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Table 1. Metabolic clustering among the muscle, plasma, and urine

Clustering Total Metabolites

Muscle only 11 Anserine, aspartate, betaine, carnitine, cysteine, ethanol, fumarate, o-phosphocholine, o-phosphoethanolamine, serine, sn-glyce-
ro-3-phosphocholine

Plasma only 3 Formate, histidine, propionate
Urine only 13 Acetoacetate, allantoin, benzoate, citrate, citrulline, glutarate, hippurate, homocitrulline, inosine, methylsuccinate, phenylac-

etylglycine, trigonelline, trimethylamine n-oxide
Muscle and plasma 5 Choline, glycine, myo-inositol, phenylalanine, proline
Plasma and urine 1 Trimethylamine
Urine and muscle 3 Arginine, glucose, glycerol
Muscle, plasma, and urine 16 Lactate, creatine, taurine, glutamine, methionine, threonine, pyruvate, succinate, leucine, valine, isoleucine, glutamate, alanine, 

acetate, tyrosine, lysine

Figure 2. Analysis of the metabolic patterns in equine muscle, plasma, and urine before and after exercise. Orthogonal partial least square discriminant analysis (OPLS-DA) (R2X: 
0.977; R2Y: 0.852; Q2: –0.142) (A) and variable importance plots (VIPs) for the muscle (D). OPLS-DA (R2X: 0.889; R2Y: 0.883; Q2: –1.33) (B) and VIPs for the plasma (E). OPLS-DA (R2X: 
0.987; R2Y: 1; Q2: 0.971) (C) and VIPs for the urine (F).
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were derived from OPLS-DA for the metabolic patterns before 
and after exercise, the detected metabolites that contributed to 
separating the clusters in the respective samples were scored to 
reflect their priorities (Figure 2D, 2E, 2F). Lactate, creatine, taurine, 
and cysteine had VIP scores >1 in the muscle; lactate, alanine, 
glycine, trimethylamine, acetate, and choline had VIP scores >1 
in the plasma; and lactate and glycerol had VIP scores >1 in the 
urine (Table 2). 

Metabolites that responded to exercise
When the levels of the differentially expressed (fold change >2 
or <0.5) and high-VIP-score (VIP score >1) metabolites were 
collectively analyzed in the muscle, plasma, and urine, the ex-
pressed levels were observed to be significantly changed in the 

urine after exercise, while no significant differences were detected 
in the muscle and plasma before and after exercise. After exercise, 
acetoacetate, arginine, glutamine, hippurate, phenylacetylglycine 
trimethylamine, trimethylamine N-oxide, and trigonelline were 
significantly decreased by 38.8%, 44.6%, 19.6%, 22.7%, 33.8%, 
30.6%, 37.8%, and 30.8%, respectively, while alanine, glycerol, 
inosine, lactate, and pyruvate were significantly increased by 
436.7%, 2,184.4%, 1,008.8%, 8,347.9%, and 726.5%, respectively, 
in the urine (p<0.05; Figure 3). With respect to the commonly 
detected metabolites, alanine, glutamine, lactate, and pyruvate 
showed significantly different expressions in the urine after exer-
cise (p<0.05; Figure 4); the concentrations of alanine, lactate, and 
pyruvate in the plasma were significantly higher than in the muscle 
and urine, whereas the concentration of glutamine was not signifi-

Table 2. VIP scores show the list of metabolites that contributed to the separation of the clustering in the muscle (R2X: 0.977; R2Y: 0.852; Q2: –0.142), plasma (R2X: 0.889; R2Y: 
0.883; Q2: –1.33), and urine (R2X: 0.987; R2Y: 1; Q2: 0.971) before and after exercise

Muscle Plasma Urine

Var ID (Primary) VIP VIPcvSE Var ID (Primary) VIP VIPcvSE Var ID (Primary) VIP VIPcvSE

Lactate 4.33964 4.90219 Lactate 3.75706 1.41472 Lactate 4.95072 0.185054
Creatine 2.86407 3.73581 Alanine 1.60664 1.205 Glycerol 2.43861 0.961256
Taurine 1.15696 0.677321 Glycine 1.08877 1.57026 Hippurate 0.830247 0.844768
Cysteine 1.07798 1.11629 Trimethylamine 1.08766 1.87254 Benzoate 0.733784 0.860513
Proline 0.950802 1.58483 Acetate 1.05611 2.35361 Pyruvate 0.64467 0.110574
O-Phosphoethanolamine 0.768788 1.08083 Choline 1.05136 1.17688 Phenylacetylglycine 0.553367 0.73167
Glutamine 0.757915 0.408429 Valine 0.927083 0.844553 Alanine 0.483287 0.0354834
Glucose 0.712887 5.76654 Formate 0.788366 1.50607 Glutamine 0.330252 0.337596
Choline 0.655007 0.984574 Isoleucine 0.590047 0.434523 Acetate 0.225269 0.12487
Carnitine 0.597443 1.45509 Pyruvate 0.588535 3.40277 Inosine 0.2025 0.0420699
Betaine 0.560761 0.476186 Succinate 0.54452 1.40882 Threonine 0.185985 0.128163
Methionine 0.509355 0.76717 Tyrosine 0.485224 0.149815 Taurine 0.133553 0.276668
Threonine 0.490596 0.624621 Methionine 0.442662 0.236588 Citrate 0.121972 0.0814875
Ethanol 0.489648 0.81646 Glutamate 0.423751 0.939892 Citrulline 0.117822 0.128122
Pyruvate 0.421163 1.43033 Propionate 0.422877 0.92142 Glutamate 0.112898 0.216093
Succinate 0.419546 1.43253 Leucine 0.320238 0.485677 Creatine 0.103247 0.271346
Arginine 0.40325 0.711309 Proline 0.289082 0.731382 Methylsuccinate 0.101376 0.134033
Leucine 0.340958 2.08214 Phenylalanine 0.272284 0.387797 Arginine 0.0948408 0.16968
Serine 0.339834 0.873955 Taurine 0.235986 0.816538 Acetoacetate 0.0927904 0.284629
Valine 0.274741 1.8082 Creatine 0.225572 0.492157 Trigonelline 0.0869787 0.0891645
Fumarate 0.221147 0.15998 Lysine 0.217242 0.344466 Trimethylamine N-oxide 0.0845139 0.127546
Isoleucine 0.19769 1.37773 myo-Inositol 0.151193 0.41876 Glucose 0.0585096 0.144095
Glutamate 0.151078 1.67088 Glutamine 0.109232 0.445521 Methionine 0.0564183 0.0567537
Anserine 0.147928 1.74206 Threonine 0.0471337 0.192853 Trimethylamine 0.0424139 0.0581431
Phenylalanine 0.147539 0.487178 Histidine 0.0349163 0.347014 Isoleucine 0.0411947 0.0560735
O-Phosphocholine 0.129257 1.55877 Lysine 0.0279116 0.11095
Glycerol 0.117228 0.76393 Glutarate 0.0243009 0.0617341
myo-Inositol 0.113193 0.541967 Tyrosine 0.0228266 0.0955172
Alanine 0.0848435 1.37882 Valine 0.0115851 0.0491691
sn-Glycero-3-phosphocholine 0.0792956 0.543817 Succinate 0.0113337 0.0459536
Glycine 0.0652003 1.38621 Leucine 0.0106587 0.073076
Aspartate 0.0604699 1.36912 Homocitrulline 0.00670114 0.133487
Acetate 0.0461708 0.938492 Allantoin 0.000348166 0.206484
Tyrosine 0.032664 0.755125
Lysine 0.0203432 0.702034

VIP, variable important plots; VIPcvSE, variables associated with lower standard errors in relation to VIP. 
Bold box indicates major metabolites that have a VIP score of more than 1 according to orthogonal partial least square discriminant analysis.
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cantly different between the muscle and plasma (p<0.05; Figure 4).

Enrichment analyses of metabolic pathways that responded 
to exercise
Enrichment analyses for the differentially expressed (fold change 
>2 or <0.5) and high-VIP-score (VIP score >1) metabolites were 
performed using MetaboAnalyst 3.0 [18], and 36 pathways were 
predicted (Table 3).

DISCUSSION

Metabolic alteration reflects biological responses to various ge-
netic, transcriptiomic, proteomic, and environmental influences 
[19-21]. Many metabolic studies have applied to characterize 
metabolic patterns derived from altered gene function in plants 
[22,23], explore microbial metabolism [24], assess drug toxicity 
[25] and diagnostic applications [26], and discover biomarkers 

for animal health and disease [21,27,28]. Therefore, metabolic 
biomarkers are regarded as a promising tool for improving animal 
health and welfare.
  Since domestication, horses have been selected for superior 
athletic traits related to strength, endurance, and speed. In parti
cular, racehorses have undergone artificial structural and functional 
adaptations for athletic performances. As a result, racehorses de-
veloped maximal aerobic capacity, intramuscular energy stores, 
mitochondrial volume in the muscle, and oxygen-carrying ca-
pacity in the blood [29]. From the unique physiological properties, 
most of the metabolic studies on exercising horses focused on 
glycogen stores, whereas only a few studies have addressed muscle 
triglyceride or protein stores. During intensive short-term ex-
ercise, muscle glycogen stores may be depleted by 20% to 35%, 
and prolonged exercise results in a decline in muscle glycogen 
by 50% to 100% [30]. However after cessation of exercise, the rate 
of glycogen repletion is much lower in horses than in other ani-

Figure 3. On the basis of the differentially expressed (fold change >2 or <0.5) or high-variable importance plots (VIPs)-score (VIP >1) metabolites, concentration of the metabolites 
in the urine before and after exercise. Error bars are expressed as standard deviation; * p<0.05; ** p<0.01; *** p<0.001.
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mal species and human athletes [31]. In addition, exercise induces 
changes in the amino acid profile in the blood and muscle. An 
increase in branched-chain amino acids, such as leucine, isoleu-
cine, and valine, has been observed during prolonged sub-maximal 
exercise in horses [32], and it may have been due to increased 
output by the liver in which proteolysis has been shown to accel-
erate during exercise [33]. Furthermore, certain amino acids are 
believed to be oxidized for energy production in the muscle [34], 
although the contribution of proteins to energy expenditure in 
horses during exercise is still unknown. Recently, exercise in young 
horses was associated with lipid metabolism, including choline 
and glycerol; carbohydrate metabolism, including lactate, fuma-
rate, and glucose; and amino acid metabolism, including creatine, 
creatinine, phenylalanine, tyrosine, and glutamate [35]. Collec-
tively, our results showed the consistency of the differentially 
expressed metabolites in relation with the enrichment analysis 
of the metabolic pathways. We also suggested additional meta-
bolic changes during equine exercise. 
  Alanine, glutamine, lactate, and pyruvate, which were com-
monly detected among the muscle, plasma, and urine, showed 

significantly different expressions in the urine after exercise (p< 
0.05). During exercise, muscle glycogen, which is a primary energy 
source, is sequentially processed to pyruvate and pyruvate and 
can be used to produce ATP aerobically or anaerobically through 
glycolysis [36]. When the muscle cannot use enough oxygen for 
aerobic glycolysis at high-exercise intensities, anaerobic glycolysis 
produces ATP in the cytosol of the muscle by the incomplete 
breakdown of glucose into lactate [36]. Subsequently, muscle 
lactate is excreted into the blood for the balance of production 
rate and removal [37]. Once in the bloodstream, lactate can be 
taken up by exercising or non-exercising skeletal muscles, kidney, 
or liver, where it is converted to pyruvate for gluconeogenesis 
[38]. Concurrently, when muscles degrade amino acids for energy 
needs, the resulting nitrogen is transaminated to pyruvate to 
produce alanine. This alanine is transported to the liver, where 
nitrogen enters the urea cycle and pyruvate is used to produce 
glucose [39]. In addition, glutamine is primarily synthesized from 
glutamate and glutamic acid in the skeletal muscle. Glutamine 
is considered important for the maintenance of the renal tubules, 
contributing to the healthy functioning of the kidneys. Glutamine 

Figure 4. The metabolic cycles for alanine, glutamine, lactate, and pyruvate from the muscle to the kidney, and the concentrations of alanine, glutamine, lactate, and pyruvate in the 
muscle, plasma, and urine before and after exercise.
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Table 3. List of metabolic pathways obtained using enrichment analysis for the differentially expressed (fold change >2 or <0.5) and high-VIP-score (VIP score >1) metabolites

Related metabolic pathway Total Expected Hits Raw p Holm p FDR

Protein biosynthesis 19 0.622 5 0.000217 0.0174 0.0113
Urea cycle 20 0.655 5 0.000283 0.0224 0.0113
Glycine, serine and threonine metabolism 26 0.851 5 0.00105 0.0817 0.0279
Ammonia recycling 18 0.589 4 0.00204 0.157 0.0408
Arginine and proline metabolism 26 0.851 4 0.00832 0.632 0.133
Pyruvate metabolism 20 0.655 3 0.0246 1 0.328
Betaine metabolism 10 0.327 2 0.0395 1 0.4
Methionine metabolism 24 0.785 3 0.04 1 0.4
Aspartate metabolism 12 0.393 2 0.0556 1 0.495
Biotin metabolism 4 0.131 1 0.125 1 0.999
Alanine metabolism 6 0.196 1 0.181 1 1
Taurine and hypotaurine metabolism 7 0.229 1 0.208 1 1
Gluconeogenesis 27 0.884 2 0.22 1 1
Cysteine metabolism 8 0.262 1 0.235 1 1
Malate-aspartate shuttle 8 0.262 1 0.235 1 1
Butyrate metabolism 9 0.295 1 0.26 1 1
Glutathione metabolism 10 0.327 1 0.284 1 1
Ketone body metabolism 10 0.327 1 0.284 1 1
Glucose-alanine cycle 12 0.393 1 0.331 1 1
Beta-alanine metabolism 13 0.425 1 0.353 1 1
Phenylalanine and tyrosine metabolism 13 0.425 1 0.353 1 1
Lysine degradation 13 0.425 1 0.353 1 1
Glycerolipid metabolism 13 0.425 1 0.353 1 1
Purine metabolism 45 1.47 2 0.44 1 1
Propanoate metabolism 18 0.589 1 0.454 1 1
Glutamate metabolism 18 0.589 1 0.454 1 1
Phospholipid biosynthesis 19 0.622 1 0.472 1 1
Insulin signalling 19 0.622 1 0.472 1 1
Bile acid biosynthesis 49 1.6 2 0.485 1 1
Glycolysis 21 0.687 1 0.507 1 1
Porphyrin metabolism 22 0.72 1 0.524 1 1
Citric acid cycle 23 0.753 1 0.54 1 1
Galactose metabolism 25 0.818 1 0.57 1 1
Valine, leucine and isoleucine degradation 36 1.18 1 0.706 1 1
Pyrimidine metabolism 36 1.18 1 0.706 1 1
Tyrosine metabolism 38 1.24 1 0.726 1 1

Raw p, raw p value; FDR, false discovery rate.

in the kidneys contributes to the elimination of acids from the 
blood, and it is lysed to glutamate, aspartate, pyruvate, lactate, 
alanine, and citrate through a series of metabolic reactions [40]. 
Collectively, we suggest that the fluctuations in alanine, glutamine, 
lactate, and pyruvate are potentially associated with exercise in 
the muscle, blood, and urine of Thoroughbred horses (Figure 4). 
The balances of these metabolites in equine biofluid could be 
utilized as an effective indicator of feeding and management to 
maintain optimal racing performance. 
  In conclusion, we first tried to analyze the integrated meta-
bolic patterns and enrichment of metabolic pathways in the 
muscle, plasma, and urine of racehorses before and after exer-
cise. Our results could contribute to understanding metabolic 
regulation and development of metabolic markers for equine 
exercise.
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