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Abstract. Conventional myosin has two different light 
chains bound to the neck region of the molecule. It 
has been suggested that the light chains contribute to 
myosin function by providing structural support to the 
neck region, therefore amplifying the conformational 
changes in the head following ATP hydrolysis (Ray- 
merit et al., 1993). The regulatory light chain is also 
believed to be important in regulating the actin- 
activated ATPase and myosin motor function as as- 
sayed by an in vitro motility assay (Griffith et al., 
1987). Despite extensive in vitro biochemical study, 
little is known regarding RMLC function and its 
regulatory role in vivo. To better understand the im- 
portance and contribution of RMLC in vivo, we en- 
gineered Dictyostelium cell lines with a disrupted 
RMLC gene. Homologous recombination between the 
introduced gene disruption vector and the chro- 
mosomal RMLC locus (mlcR) resulted in disruption 
of the RMLC-coding region, leading to cells devoid of 
both the RMLC transcript and the 18-kD RMLC poly- 

peptide. RMLC-deficient cells failed to divide in sus- 
pension, becoming large and multinucleate, and could 
not complete development following starvation. These 
results, similar to those from myosin heavy chain mu- 
tants (DeLozanne et al., 1987; Manstein et al., 1989), 
suggest the RMLC subunit is required for normal 
cytokinesis and cell motility. In contrast to the myosin 
heavy chain mutants, however, the mlcR cells are able 
to cap cell surface receptors following concanavilin A 
treatment. By immunofluorescence microscopy, RMLC 
null cells exhibited myosin localization patterns differ- 
ent from that of wild-type cells. The myosin localiza- 
tion in RMLC null cells also varied depending upon 
whether the cells were cultured in suspension or on a 
solid substrate. In vitro, purified RMLC- myosin as- 
sembled to form thick filaments comparable to wild- 
type myosin, but the filaments then exhibited abnormal 
disassembly properties. These results indicate that in 
vivo RMLC is necessary for myosin function. 

M 
YOSIN, a principal protein component of contrac- 
tile systems (Adelstein et al., 1980; Harrington 
and Rogers, 1984), is widely distributed in eu- 

karyotic cells. It has been implicated in critical motile 
processes including cell locomotion, cytoplasmic streaming, 
cytoldneses, and many other functions (Loomis, 1977; Tay- 
lor and Condeelis, 1979; Yumura and Fukui, 1985; Fukui 
and Yumura, 1986; DeLozanne and Spudich, 1987; Fukui 
et al., 1990). The myosin molecule consists of six subunits: 
two myosin heavy chains (MHC), 1 two regulatory myosin 
light chains (RMLC), and two essential myosin light chains 

In this paper, the word "myosin" represents myosin II only, unless otherwise 
noted. 
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(EMLC). One RMLC and one EMLC are non-covalently as- 
sociated with the neck region of each myosin head (Winkel- 
man and Lowey, 1986; Katoh and Lowey, 1989). A 2.8-A 
resolution structure of the chicken skeletal muscle myosin 
head locates both light chains to an or-helix which emerges 
from the C-terminus of the globular head domain. The 
EMLC is placed more proximal to the nucleotide-binding 
site, while the RMLC is located more distally (Rayment et 
al., 1993). 

Two classes of RMLC can be distinguished based upon 
their regulatory function (Rowe and Kendrick-Jones, 1992). 
Skeletal muscle contraction is controlled primarily by actin- 
linked regulation in which Ca 2÷ binds to the thin filament- 
associated troponin-tropomyosin complex. However, phos- 
phorylation of skeletal muscle RMLC has been shown to 
increase the rate at which the myosin enters the force produc- 
tion state (Sweeney et al., 1993). In contrast, smooth muscle 
and non-muscle systems are regulated by a myosin-linked 
system in which phosphorylation of RMLC increases actin- 
activated myosin ATPase activity (Griffith et al., 1987; Try- 
bus, 1991). At physiological ionic strength and pH, smooth 
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muscle myosin with unphosphorylated RMLC exists in a 
folded monomer conformation (Onishi and Wakabayashi, 
1982; Trybus et al., 1982; Craig et al., 1983). RMLC phos- 
phorylation promotes filament assembly by converting the 
folded myosin monomers into an extended assembly-com- 
petent configuration. Furthermore, this phosphorylation 
is coupled to the initiation of contraction (Hartshorne and 
Siemankowski, 1981). Phosphorylation of non-muscle myo- 
sin RMLC has been implicated in the regulation of platelet 
aggregation (Daniel et al., 1981, 1984), and capping in lym- 
phocytes (Bourguignon et al., 1981). In Dictyostelium dis- 
coideum, myosin filament assembly is regulated by phos- 
phorylation of the heavy chain (Kuczmarski and Spudich, 
1980; Kuczmarski et al., 1987; Egelhoff et al., 1993). In ad- 
dition, cyclic AMP stimulation induces a rapid and transient 
RMLC phosphorylation (Berlot et al., 1987), which in- 
creases myosin ATPase activity, and dramatically enhances 
the ability of myosin motor activity as assayed by an in vitro 
motility assay (Griffith et al., 1987). The ability to exchange 
heterologous light chains into scallop, skeletal, and smooth 
muscle myosin in vitro has been exploited to demonstrate 
the importance and contribution of RMLC subdomains 
(Reinach et al., 1986; Goodwin et al., 1990; Kendrick-Jones 
et al., 1991; Messer and Kendrick-Jones, 1991; Rowe and 
Kendrick-Jones, 1992; Saraswat et al., 1992). 

Direct proof that the non-muscle myosin RMLC is re- 
quired for cytokinesis has recently emerged from genetic 
studies with Drosophila (Karess et al., 1991). The mutation 
spaghetti-squash produces an embryonic lethal phenotype, 
characterized by a high proportion of polyploid cells in rap- 
idly dividing tissues such as brain, imaginal disks, and 
gonads. Little is known about the biochemical properties of 
the spaghetti-squash myosin, or the consequences of this 
mutation for other myosin-dependent cellular properties. 

The simple eukaryote Dictyostelium discoideum displays 
locomotion and chemotaxis typical of mammalian cells 
(Devreotes and Zigmond, 1988), and serves as an excellent 
model for biochemical and cell biological studies of cell 
locomotion. The success of gene targeting technology in 
Dictyostelium has created a unique opportunity to study 
components of cell locomotion in vivo. Both the conven- 
tional myosin heavy chain (DeLozanne and Spudich, 1987; 
Knecht and Loomis, 1987; Manstein et al., 1989) and its es- 
sential light chain have been eliminated via both homologous 
recombination (Chen, T.-L. L., G. Ho, P. Kowalczyk, and 
R. L. Chisholm, manuscript in preparation) and antisense 
RNA overexpression (Pollenz et al., 1992). While the mu- 
tants are still capable of pseudopod extension and retraction, 
cell migration, and chemotaxis, all three of these behaviors 
are markedly impaired in the myosin heavy chain mutants 
(Wessels et al., 1988). The mutants also showed defects in 
cytokinesis, receptor capping, and development, defining 
each of these phenomena as being myosin dependent. Re- 
cently, Uyeda and Spudich (1993) generated a Dictyostelium 
cell line in which the wild-type myosin II heavy chain is 
replaced with a mutant form that lacks the RMLC binding 
site. Cells expressing this mutant heavy chain can carry out 
cytokinesis in suspension and nearly normal development, 
despite the absence of RMLC binding to the recombinant 
heavy chain. This result contrasts to the requirement of 
RMLC for cytokinesis, as indicated by the Drosophila 
spaghetti-squash mutant. Information regarding the role of 

RMLC function in Dictyostelium should be valuable in 
reconciling these results. 

The aim of this study was to explore the consequence of 
eliminating RMLC function in vivo and correlate this with 
the in vitro activities of RMLC- myosin. We have disrupted 
the single Dictyostelium mlcR gene by homologous recombi- 
nation. The resulting RMLC null cells (mlcR-) exhibited 
defects in cytokinesis and development similar to the MHC 
mutants. In contrast, mlcR- cells were able to cap cell sur- 
face receptors after concanavalin A (con A) treatment. These 
mlcR- cells showed abnormal myosin localization by im- 
munofluorescence microscopy, and RMLC- myosin dis- 
played abnormal disassembly properties in vitro. 

Material and Methods 

Cell Culture 

Dictyostelium discoideum strain JH10, created by gene disruption of the thyl 
locus (Hadwiger and Firtel, 1992), was cultured in HL-5 media containing 
100/~g/ml thymidine, mhcA- cells were cultured according to Manstein et 
al. (1989). 

General Molecular Biology 
Standard molecular biological techniques were performed using common 
procedures (Sambrook et al., 1989). Molecular genetic techniques for 
working with Dictyostelium have also been described by Manstein et al. 
(1989) and Pollenz et al. (1992). 

DNA Constructs and Transformation 
Two genomic DNA fragments, a 1.7-kb HindHI fragment containing 
the 3' half of the mlcR gene, and a 2.5-kb EcoRI-HindlII fragment contain- 
ing the 5' portion of the gene, were isolated by cloning size fractionated 
EcoRI/HindIII and HindIII digests of Dictyostelium DNA as previously de- 
scribed (Pollenz and Chisholm, 1991). The cloned genomic DNA is indi- 
cated by a thick line in Fig. 1. The mlcR gene is contained on fragments 
which contain ,,,2.1 kb of 5' flanking and 1 kb of 3' flanking sequence. The 
coding sequence also contains two introns of ~ 200 and 320 bp, respec- 
tively, one immediately after the ATG translation initiation site and a second 
between amino acid residues 91 and 92 of the RMLC coding region. The 
gene replacement vector, prmlc-thyl, was generated by first constructing 
prmlc5' which contained a 2.5-kb EcoRI-HindHI rmlc 5' genomic fragment. 
A 1.%kb rmlc3' genomic HindIII fragment was then ligated into the HindIII 
site to construct vector prmlc. Clones containing properly oriented rmlc3' 
fragment were identified and confirmed by PCR and restriction digestion. 
Plasmidprmlc was then linearized at the StuI site, and a 3.0-kb blunt-ended 
BamHI-HindlII fragment containing the thyl gene (Dynes and Firtel, 1989) 
was introduced by a blunt-end ligation. The resultant vector, prmlc-thyl, 
was then digested with MscI and XhoI. The 7.1-kb MscI-XhoI fragment, 
rmlc-thyl, which contains mlcR genomic fragments flanking the thyl gene 
(Fig. 1) was purified and was used to transform JH10 cells. Transformation 
of Dictyostelium was performed as described by Howard et al. (1988). The 
thymidine-auxotrophic cell line, JH10, was electroporated with rmlc-thyl 
and cells were selected in HL-5 media without exogenously added thymi- 
dine. Following the appearance of colonies, around the eighth day, cells 
from these colonies were transferred to six-well plates (Costar Corp., Cam- 
bridge, MA), and screened for the absence of RMLC by western blotting. 
Cells were further cloned by picking isolated plaques after growth on bac- 
terial plates. Three independent RMLC null cell lines were confirmed by 
Southern blot analysis. 

Dictyostelium RMLC eDNA (Tafuri et al., 1989) was introduced into an 
integrating expression vector pBORP (Ostrow et al., 1994) to generate 
pBVN519. Expression of the RMLC is driven by the Dictyostelium actin 
15 promoter (see Pollenz et al., 1992, for an example). Both pBORP and 
pBVN519 were then used to transform RMLC null cells to examine func- 
tional complementation of mlcR- disruption. 

Western Blot Analysis 
Cells were harvested from plates and lysed in SDS sample buffer (0.125 M 
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Tris, pH 6.8, 4% SDS, 10% BME). Proteins were sized on 10% (for MHC) 
or 15 % (for RMLC and EMLC) SDS-PAGE, blotted to nitrocellulose filter, 
and probed with a polyclonal anti-myosin antibody (NU-3) (Chisholm et 
al., 1988) or anti-LMM (kindly provided by Dr. A. DeLozanne, Duke 
University), followed by 125I-labeted protein A as previously described 
(Pollenz et al., 1992). 

Fluorescence Microscopy 
Monoclonal antibodies specific for Dictyostelium MHC were the generous 
gift of Dr. Y. Fukui (Northwestern University) (Yumura et al., 1984), and 
Dr. G. Gerisch (Max Planck, Martinsreid, Germany) (Pagh and Gerisch, 
1986). Aetin antibody HB80 was also provided by Dr. Fukui. Cells were 
harvested and allowed to attach to coverslips for 10 min, then fixed and 
stained using the method described by Fukui et al. (1987), except that the 
agar-overlay step was eliminated. Myosin, actin staining and receptor cap- 
ping assays were performed as described (Fukui et al., 1990). DAPI stain- 
ing was performed according to Pollenz et al. (1992), except that cells were 
fixed with 1% formaldehyde in methanol for 4 min at -15°C. Photographs 
were taken through a Zeiss Axioscope or a laser scanning confocal micro- 
scope, using 63 or 100x objectives and TMAX100 film (Kodak). 

Cell Aggregation and Development 
Cells were harvested in the mid-log phase of growth and washed three times 
with buffered salt solution (Wessels et al., 1988). To initiate development, 
5 × 106 cells in 0.5 ml buffered salt solution were dispersed onto 2% agar. 
Development was observed at 0.5- to 1-h intervals for the first 15 h. Devel- 
opment was also observed on Klebsiella aerogenes lawns on SM agar plates 
(Sussman, 1987). 

Biochemical Analysis 
Myosin was purified from Dictyostelium cells as described by Pollenz et al. 
(Pollenz et al., 1992), except that ammonium sulfate precipitation step was 
omitted and a Superose 6 FPLC column (Pharmacia LKB Nuclear, 
Gaithersburg, MD) was used instead of S-500 column. Protein concentra- 
tions were determined by Bradford assay (Bradford, 1976). Cytoskeletons 
were prepared following procedures of Kuczmarski et al. (1991). The final 
pellets were suspended directly into Ca2+-ATPase reaction buffer (20 mM 
Tris-Cl, pH 8.0, 0.5 M KC1, 10 mM CaC12) and ATPase activity was de- 
termined according to Pollenz et al. (1992). 

Myosin assembly assays were performed as described by Kuczmarski, 
et al., (1987). Purified myosin (stored in 0.5 M KCI, 10 mM Triethanola- 
mine, pH 7.0, 1 mM EDTA, I mM DTT, and I mM NAN3) was diluted into 
the desired salt concentration, kept on ice for 30 min, and centrifuged in 
a Beckman Airfuge at 23 Psi for 15 min. For disassembly, myosin was first 
assembled at 50 mM KCI and pelleted by centrifugation. The pellets were 
then resuspended in the desired salt conditions. In both cases, protein con- 
centration of the supernatant was measured by Bradford assay. 

Negative Stain Transmission Electron Microscopy 
Myosin assembly was induced by rapid dilution of purified myosin in stor- 
age buffer to give a final myosin concentration of 0.1 mM in 10 mM 
triethanolamine, pH 7.0, 50 mM KCI, 10 mM MgCI2, 0.1 mM DTT. Myo- 
sin filaments were then applied to carbon-over-formvar copper grids after 
varying periods of incubation. After 30 s, the grids were rinsed with two 
drops of 2.5% Uranyl Acetate at 1.5-rain intervals. Excess stain was re- 
moved by touching the edge of the grid with a strip of filter paper. The grids 
were then air-dried before EM visualization on JEM-100CX. 

Results 

Disruption of the RMLC (mlcR) Gene 
The thymidine-auxotrophic Dictyostelium cell line, JH10 
(Mann and Firtel, 1991; Hadwiger and Firtel, 1992), was 
transformed with a gene targeting vector (Fig. 1 A) designed 
to favor a double-crossover, gene replacement event. The lin- 
ear DNA used was composed of 2.4-kb 5' and 1.7-kb 3' 
RMLC genomic sequence, with the 3-kb thyl gene (Dynes 
and Firtel, 1989) inserted into the second codon. After 
transformation, cells were selected in HL-5 medium lacking 
added thymidine and individual clones were then assayed for 
the expression of RMLC by Western blot, using a polyclonal 
Dictyostelium myosin specific antibody NU-3 (Fig. 2 A). In 
four independent transformations, the percentage of clones 
without detectable RMLC expression ranged from 24-45 %. 
Cell lines lacking RMLC were cloned by picking isolated 

Figure 1. Generation of the Dictyostelium RMLC null cell lines. (A) Diagram of the gene replacement vector, the Dictyostelium mlcR 
locus, and the disrupted mlcR locus. Homologous recombination between the targeting vector and the mlcR gene locus will provide an 
mlcR gene carrying a 3-kb insertion in the second codon of the RMLC. (B) Genomic southern blot analysis of the mlcR locus in parental 
OHI0) and three different transformed cell lines (El2, E9, and GllD8) .  DNA was purified from parental JH10 cells and transformed cell 
lines (E9, El2, GllDS).  Following digestion with restriction enzymes, DNA (4 mg) was loaded onto 0.7% agarose gel, electrophoresed, 
transferred to a nylon membrane, and hybridized with the 32p-labeled RMLC cDNA. The left four lanes represent hybridization to 
genomic DNA digested with EcoRI; DNA in the right four lanes was digested with HindlH. 
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Figure 2. Expression of RMLC protein and mRNA in the mlcR- 
and control Dictyostelium cell lines. (A and B) Western blot analy- 
sis of myosin heavy chain expression. 2 × 106 cells were lysed in 
SDS-PAGE sample buffer, separated in parallel on 10% (A, MHC) 
and 15% (A, RMLC and EMLC) polyacrylamide gels, transferred 
to nitrocellulose membranes. The blot for MHC was probed with 
anti-LMM polyclonal antibody to detect MHC expression. Poly- 
clonal antibody NU-3 was used to detect RMLC and EMLC pro- 
tein expression. Bound antibodies were detected with [125I]protein 
A and subsequent autoradiography. B represents a 10% polyacryl- 
amide gel run in parallel and stained in Coomassie Blue. Lane 1, 
parental JH10 cells; lane 2, RMLC null cell line El2; lane 3, El2 
transformed with pBORP (E12pBORP); lane 4, El2 rescued with 
RMLC eDNA in pBORP (E12pRMLC); lane 5, RMLC null cell 
line E9; lane 6, E9 transformed with a Dictyostelium expression 
vector pBORP (E9pBORP); lane 7, E9 rescued with RMLC eDNA 

plaques after growth on bacterial plates. Southern blot analy- 
sis was performed to determine the structure of mlcR gene 
locus in the RMLC-deficient cell lines. Genomic DNA was 
digested with EcoRI and Hindm separately, then hybridized 
with a probe made from RMLC cDNA fragment. This probe 
should hybridize to both the native mlcR locus and any site 
into which the exogenous gene replacement vector had in- 
serted. The EcoRI fragment contains the entire mlcR gene, 
while HindIII cuts the DNA in the RMLC coding region, 
splitting the RMLC gene into 5' and 3' fragments. As ex- 
pected for a double-crossover, homologous recombination 
event (Fig. 1 B), both the EcoRI fragment and the band 
representing the 5' HindlII fragment showed a size increase 
of ~ 3 kb, due to the insertion of thyl selection marker. The 
band corresponding to the 3' HindIII fragment did not vary 
in size. 

Northern blots of mlcR- cells probed with the RMLC 
eDNA showed no detectable ",,800 nucleotide RMLC mes- 
sage (Fig. 2 C, lanes 1, 2, 5-7, and 10). The level of the 
EMLC mRNA in mlcR- ceils is comparable to that seen in 
wild-type cells (Fig. 2 D), suggesting that the level of the 
EMLC transcript is not altered significantly by the lack of 
RMLC expression. 

To serve as a control in the analysis of the mutants, we in- 
troduced into the mlcR- cells an integrating Dictyostelium 
expression vector pRMLC (Ostrow et al., manuscript sub- 
mitted for publication), which restored RMLC expression at 
both the mRNA (Fig. 2 C, lanes 8 and 9) and protein level 
(Fig. 2 B, lanes 4 and 7). These rescued cell lines were 
phenotypically indistinguishable from wild-type cells in all 
subsequent assays. 

Myosin heavy chain protein level in mlcR- cells was as- 
sayed by western blotting of whole cell extracts, probed with 
anti-LMM polyclonal antibody kindly provided to us by Dr. 
DeLozanne (Duke University, Durham, NC) (Fig. 2 A). The 
level of MHC protein level does not vary significantly among 
mlcR-, wild-type parental and the rescued cell lines. Similar 
results were also obtained with a monoclonal anti-MHC an- 
tibody 396 (a generous gift from Dr. Gerisch, Max Planck, 
Martinsreid, Germany) (data not shown). This indicates that 
the phenotypic defects of mlcR- cells cannot be attributed 
to a decrease in the amount of MHC in vivo. 

Phenotypic Analysis of  the mlcR- Cells 

mlcR- cells are defective in cytokinesis. Although mlcR- 
cells grew on plastic with nearly normal doubling time, 
when inoculated into suspension culture, they showed no in- 
crease in cell number over a 6-d period. Parallel suspension 

in pBORP (E9pRMLC); lane 8, RMLC null cell line GllD8, lane 
9, a non-homologous recombinant transformed cell line HI1. (C 
and D) Northern blot analysis. RNA was harvested from vegetative 
Dictyostelium cells and loaded onto 1% agarose gel (10/~g/lane), 
separated by electrophoresis, transferred to a nylon membrane, and 
probed with 32P-labeled RMLC eDNA (C). After autoradiogra- 
phy, the nylon membrane was stripped of radioactivity and rehy- 
bridized with 32P-labeled EMLC eDNA (D). Lane 1, E9pBORP; 
lane 2, E12pBORP; lane 3, parental cell line JH10; lane 4, Hll 
(non-homologous recombinant); lane 5, RMLC null cell line E9; 
lane 6, RMLC null cell line El2; lane 7, RMLC null cell line 
GIlD8; lane 8, E9pRMLC; lane 9, EI2pRMLC; lane 10, 
GI 1D8pBORP. 
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cultures of wild-type and rescued cell lines grew with a dou- 
bling time of 12 + 2 h. Two days after introduction of the 
ruleR- cells into suspension, many large multinucleate cells 
were observed. These cells were often at least 10 times the 
size of wild-type cells and frequently contained 20-30 nuclei 
per cell (Fig. 3 a). When the cells were returned to solid sub- 
strate, large multinucleate cells rapidly fragmented into sev- 
eral smaller cells (Fig. 3 e), perhaps via a process that has 
been termed traction-mediated cytofission (Fukui et al., 
1990). Two or more cytofission events often occur at the 
same time with long cytoplasmic bridges connecting each 
pair of daughter cells (Fig. 3 e). The long bridges, formed 
by stretched plasma membrane, were frequently seen to ex- 
tend 10-20 cell lengths before the connection broke. In con- 
Wast, wild-type cells showed normal cleavage furrows with 
relatively short mid-bodies (Fig. 3 f ) .  mlcR- cells rescued 
by the introduction of the RMLC expression construct ex- 
hibited normal cytokinesis and showed a normal distribution 
of one to two nuclei per cell when grown in suspension. 

Myosin organization is abnormal in mlcR- cells. Im- 
munofluorescence confocal microscopy was used to examine 
myosin and actin localization in wild-type (Fig. 4, a-c  and 
m-o)  and ruleR- cells both grown on plastic (plate-grown) 
(Fig. 4, d- l )  and incubated in suspension for two days (Fig. 
4, p-r) .  Cells were harvested and allowed to attach to cov- 
erslips for 10 rain, then fixed and processed for immuno- 
fluorescence. Actin localization was primarily cortical with 
strong signals observed in cell surface projections in cells 
cultured in either suspension or on plates. In contrast, the 
pattern of myosin localization in mlcR- cells varied de- 
pending upon culture condition (Compare Fig. 4, d or g to 
p). mlcR- cells taken from suspension cultures display 
strong cytoplasmic myosin staining with very little cortical 
staining (Fig. 4 p). After attaching to the coverslips, 
suspension-cultured cells frequently initiate the process 
dubbed ~'traction-mediated cytofission7 Myosin failed to 
localize to the cytoplasmic bridges in these cells. Myosin 
staining was often observed as dense patches and rod-like 

Figure 3. Cytokinesis is defec- 
tive in RMLC null cells. 
(a-d) RMLC null (a and b), 
and cells rescued by introduc- 
tion of an RMLC expression 
construct (c and d) were taken 
from the 2-d suspension cul- 
tures, allowed to attach to 
coverslips for 10 rain and then 
examined by phase-contrast 
optics (a and c) and fluores- 
cence microscopy after DAPI 
staining (b and d). Note the 
differences in the cell size and 
number of nuclei per cell in 
RMLC null and the rescued 
cells. (e and f )  The difference 
in cytoplasmic division be- 
tween suspension-cultured 
RMLC null cells (e) and pa- 
rental cells (f) were also ob- 
served by phase-contrast mi- 
croscopy. After they were 
transferred onto the coverslip 
from 2-d suspension culture, 
mlcR- cells often formed 
long cytoplasmic bridges dur- 
ing cytoplasmic division, 
while such bridges are rarely 
seen in wild-type cells and 
they are much shorter than 
those observed in the mlcR- 
mutants. Bars: (d) 20 gm; (f) 
40 #m. 
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Figure 4. Myosin and actin lo- 
calization in RMLC null cells. 
Myosin and actin localiza- 
tion of RMLC null cells was 
examined by immunofluores- 
cence confocal microscopy 
and phase-contrast optics. 
Cells were allowed to attach 
to coverslips for 10 min before 
they were fixed and stained. 
(a-c) Myosin (a) and actin 
(b) localization in wild-type 
Dictyostelium cells following 
growth on plastic plates. Note 
the bright myosin staining dis- 
tributed at the posterior re- 
gion and actin staining at the 
leading edge of cells. (d-f) 
Myosin (d) and actin (e) stain- 
ing of RMLC null cell El2 
taken from plastic plates. 
Note the normal myosin stain- 
ing pattern in some cells, and 
only a brightly stained spot at 
the posterior cortex in others 
(d). Actin staining is rich in 
the anterior, similar to wild- 
type cells. (g-i) Myosin (g) 
and actin (h) staining of 
RMLC null cell E9 grown on 
plastic plates. The staining 
patterns are similar to those in 
El2 cells. Some cells exhibit 
normal myosin staining pat- 
tern, while the rest show only 
an intense myosin spot at the 
rear end. Actin staining is 
seen in the leading edge of E9 
cells. (j-l) Myosin (/3 and ac- 
tin (k) localization in a mlcR- 
cell undergoing cytoplasmic 
division on a solid substrate. 
Note the proper localization 
of myosin to the cleavage fur- 
row and actin to the leading 
edge of the cells. (m-o) Myo- 
sin (m) and actin (n) staining 
of wild-type JH10 ceils taken 
from suspension cultures and 
allowed to attach to the cover- 
slip for 10 rain. Myosin and 
actin localization is the same 
to those in plate-grown JH10 
cells. (p-r) Myosin (p) and ac- 
tin (q) localization in RMLC 
null El2 ceils taken from 2-d 
shaking culture and allowed to 

attach to the coverslip for 10 min. The cells have many bright patches and rod-like structures in the endoplasmic region, yet failed to 
exhibit cortical myosin staining (p). However, actin staining is intense in cell surface projections (q). Bars, 10 ram. 

structures distributed throughout the endoplasm. Plate- 
grown mlcR- ceils, on the other hand, often showed normal 
cortical myosin staining (Fig. 4, d and g) as well as localiza- 
tion to an apparent cleavage furrow when cells were going 
through cell division (Fig. 4 j ) .  However, a significant per- 
centage of plate-grown mlcR- cells (40-80% depending on 

the cell line) exhibited discrete spots of intense myosin stain- 
ing at or close to the cortex (Fig. 4, d and g). Myosin local- 
ization in wild-type cells is always more extensively dis- 
tributed along the cell cortex (Fig. 4 a). No cell was observed 
to have more than one spot. The "myosin spot" was most of- 
ten localized to the posterior end of the cells. Cells with this 
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Figure 5. RMLC null cells can complete receptor capping. 
Fluorescein-labeled con A was incubated with wild-type JH10 (A 
and B), RMLC null (C and D), and MHC null (E and F) cells for 
20 min. Fluorescently labeled caps indistinguishable from wild 
type started to appear within 10 min in RMLC null cells (C). In 
MHC nell cells, only patches but not caps of fluorescence were ob- 
served (E). Bar, 20 #m. 

Figure 6. RMLC null cells failed to complete development. Dic- 
tyostelium cells in HL:5 were inoculated onto freshly spread lawns 
of Klebsiella on SM plates. Plates were photographed after 6 d. De- 
velopment of RMLC null cells was arrested at the "mound" stage 
(a), while rescued cells completed development (b). Bar, 2 mm. 

"myosin spot" usually did not exhibit significant myosin 
staining elsewhere, although a few cells had both the myosin 
spot and normal cortical staining. 

mlcR- cells can form con A caps. When Dictyostelium 
cells lacking MHC (Pasternak et al., 1989; Fukui et al., 
1990) or the EMLC (Pollenz et al., 1992) were treated with 
FITC-con A, they were unable to cap their cell surface 
receptors. As can be seen in Fig. 5, mlcR- cells capped 
their receptors when exposed to FITC-con A under condi- 
tions where the MHC null cells failed to do so. The time 
course of cap appearance was not distinguishable from that 
of wild-type controls under the conditions we used. 

mlcR- cells cannot complete their development cycle. 
Upon starvation, mlcR- cells and the parental line JH10 
cells both aggregated on hydrophobic agar. JH10 cells and 
rescued cells started aggregation after 6-8 h, formed tight 
aggregates after 8-11 h and fruiting bodies after 24-26 h. 
mlcR- cells aggregated more slowly than wild-type cells, 
aggregating after 8-10 h, forming tight aggregates after 
12-14 h and never proceeded beyond the formation of 
mounds (Fig. 6). Migrating slugs or fruiting bodies were 
never seen. 

Purified RMLC- myosin forms abnormal aggregates after 
assembly. Myosin was purified from mlcR- cells using a 
standard protocol for Dictyostelium myosin (Clarke and 
Spudich, 1974). Based on SDS-PAGE/Western blot analysis, 
amounts of RMLC- myosin comparable to wild type were 
recovered at each step before the removal of actin by gel 
filtration. Following gel filtration, the myosin-containing 

fractions were assembled in 50 mM KC1, pelleted and 
resuspended in 500 mM KC1 buffer. After this step, in seven 
independent experiments, the resulting yield of myosin was 
typically about one fifth the amount obtained from the JH10 
parental cell line, although yields at prior steps were com- 
parable. This solubilized myosin we assayed never had more 
than 10% the actin-activated ATPase (10 + 7 nmol 
Pi/min/mg myosin) or 5 % the calcium-ATPase activity (26 
+ 8 nmol Pi/min/mg myosin) of wild-type myosin (actin- 
activated ATPase: 147 + 40 nmol Pi/min/mg myosin; 
Ca2+-ATPase: 800 + 91 nmol Pi/min/mg myosin). To ob- 
tain a crude estimate of the in vivo activity of the mutant my- 
osin, we assayed the Ca2÷-ATPase in cytoskeletons pre- 

Table L Ca2+-ATPase Activity of Triton-insoluble 
Cytoskeletons 

Cell Line Ca2+-ATPase 

nmol 
Pl/mg/min 

Wild type (JH10) 7.29 + 0.30 
45 E l2  (mlcR-) 2.64 5 :0 .23  
43 E9 (mlcR-) 2.2 5 : 0 . 9 9  
MHC null (mhcA-) 0.38 5 : 0 . 3 7  

Cytoskeletons were prepared from the different cell lines indicated as described 
by Kuczmarski et al. (1991). The final pellets were resuspended directly into 
Ca2+-ATPase reaction buffer (20 mM Tris-Cl, pH 8.0, 0.5 mM KCI, 10 mM 
CaCI2) and ATPase was measured according to Pollenz et al. (1992). 
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Figure 7. Assembly and disas- 
sembly of RMLC- myosin. 
(A) Salt-dependent assembly: 
wild-type (open circles) and 
RMLC- (solid triangles) Dic- 
tyostelium myosin was assayed 
for assembly by centrifugation 
at the varying KCl concentra- 
tions. The amount of protein 
in the superuatant was mea- 
sured. The assembly of 
RMLC- myosin has essen- 
tially the same salt depen- 
dence as that of wild-type 
myosin. (B) Salt-dependent 
disassembly: assembled wild- 
type (open circles) and 
RMLC- (solid triangles) Dic- 
tyostelium myosin was pel- 
leted by centrifugation, resus- 
pended at the indicated KCI 
concentration, and pelleted 
again in the airfuge. RMLC- 
myosin disassembles very 
poorly at all KC1 concentra- 
tions tested. 

pared from wild-type, RMLC null, and MHC null cells. As 
can be seen from Table I, cytoskeletons from mlcR- 
RMLC null cells had ~40% the ATPase activity of wild- 
type cytoskeletons, while cytoskeletons from MHC null 
cells essentially had no activity. Based on Western blot anal- 
ysis, mlcR- cytoskeleton preparations contained amounts 
of myosin comparable to that of wild-type cytoskeletons. Al- 
though it is impossible to obtain precise activity measure- 
ments in these crude preparations, it is clear that RMLC- 
cytoskeletons had Ca2*-ATPase activity significantly higher 
than cytoskeletons from MHC null cells, but lower than wild 
type. It should be noted that Ca2+-ATPase is a measurement 
of the ability of the myosin head to hydrolyze nucleotide, but 
is not physiologically relevant. Since the active site appears 
to be intact in vivo but has reduced activity when purified, 
these results suggest that RMLC- myosin ATPase activity is 
less stable during purification than wild-type myosin. 

Because of the reduced yield observed following the final 
assembly of the RMLC- myosin, we examined the assem- 
bly and disassembly properties of the purified RMLC- 
myosin, using an ultracentrifugation assay (Kuczmarski et 
al., 1987). As can be seen in Fig. 7 A, RMLC- myosin 
displayed a profile of salt-dependent assembly similar to 
wild-type myosin. In contrast, once assembled, the RMLC- 
myosin failed to disassemble efficiently at the salt concentra- 
tions assayed (Fig. 7 B). This suggested that the structures 
formed after the RMLC- myosin assembly might be ab- 
normal. 

We examined negative stained preparations of assembled 
wild-type and RMLC- myosin by electron microscopy. 

When samples were taken after only 2 min of assembly, 
RMLC- myosin formed thick filaments (Fig. 8, j -n)  similar 
to those observed with wild-type myosin (Fig. 8, e-i). How- 
ever, by 10 min of assembly, few isolated filaments were seen 
in preparations of RMLC- myosin. Instead, filaments ap- 
peared to associate, often at their ends, forming large, amor- 
phous aggregates (Fig. 8, b-c). By 30 min of assembly, only 
these aggregates were observed in RMLC- myosin (Fig. 8 
d), while wild-type myosin remained largely isolated fila- 
ments (Fig. 8 a). 

Discussion 

We have used targeted disruption of the rnlcR gene to pro- 
duce Dictyostelium cells that fail to express regulatory myo- 
sin light chain. Southern blot analysis of these cells indicated 
that a single copy of the transforming vector was inserted at 
the mlcR gene locus. Northern and Western blot analysis 
showed that no RMLC mRNA or polypeptide was expressed 
in the mlcR- cells. Despite the absence of RMLC, the level 
of MHC and EMLC polypeptides was unchanged in these 
cells, providing additional evidence for the lack of a feedback 
mechanism to coordinate the expression of myosin subunits 
(Pollenz et al., 1992). 

Phenotypically the mlcR- cells resemble the mhcA- cells 
in several ways, including defective cytokinesis in suspen- 
sion and failure to complete the developmental program 
(DeLozanne and Spudich, 1987; Wessels et al., 1988; Man- 
stein et al., 1989; Fukui et al., 1990). When cultured in sus- 
pension ruleR- cells failed to divide and became large and 

Figure 8. Structure of RMLC- myosin filaments assembled in vitro. (a) wild-type Dictyostelium myosin after assembly on ice for 30 min. 
(b-d) RMLC- myosin after assembly for 2 (b), 10 (c), or 30 min (d). Increased assembly time leads to increased numbers of aggregated 
structures compared to wild-type myosin which seldom forms amorphous aggregates. (e-n) gallery of isolated wild-type (e-i) or RMLC- 
{j-n) myosin filaments. The mlcR- myosin was only assembled for 2 min while the wild type was assembled for 30 min. Bar, 0.2 ~m. 
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multinucleate, mlcR- cells also failed to progress beyond 
the mound stage during multicellular development, mlcR- 
cells also share the phenotypic defect in cytokinesis with 
spaghetti-squash, the Drosophila cytoplasmic RMLC mu- 
tant (Karess et al., 1991) and Dictyostelium cells expressing 
reduced EMLC (7-11) as a consequence of overexpression of 
antisense EMLC mRNA (Pollenz et al., 1992). Thus, at least 
with respect to these processes, the RMLC is required for 
normal myosin function in vivo. 

However, unlike the mhcA- cells, the mlcR- are able to 
cap their cell surface receptors following cross-linking by 
con A. Since mhcA- cells fail to cap receptors, this process 
is believed to be myosin dependent (Pasternak et al., 1989; 
Fukui et al., 1990). The fact that mlcR- cells cap receptors 
suggests that, in vivo, myosin lacking the RMLC retains the 
activity or activities necessary for this process. In contrast, 
cells expressing reduced EMLC (7-11) (Pollenz et al., 1992) 
and mlcR- cells differ in their ability to cap surface recep- 
tors. 7-11 cells are unable to cap receptors while mlcR- 
cells appear capable of normal capping. 

Our observation that myosin is localized abnormally in 
both suspension- and plate-grown cells may provide one clue 
to explain the loss of myosin function in mlcR- cells. In 
suspension-grown mlcR- ceils, the myosin appears to be 
found in a more cytoplasmic rather than cortical location. In 
addition, the pattern of myosin staining is more punctate 
than that observed in wild-type cells, which appears more 
filamentous, suggesting that some mlcR- myosin may be in 
abnormal aggregates instead of normal thick filaments. It is 
unlikely that the abnormal myosin localization observed in 
suspension cultured cells is a nonspecific consequence of 
their large multinucleate morphology. Dictyostelium ceils 
which have a similar large, multinucleate morphology due 
to a greatly reduced expression of EMLC show normal corti- 
cal distribution of myosin (Pollenz et al., 1992). In addition, 
Kitanishi-Yumura and Fukui (1989) have induced large mul- 
tinucleate Dictyostelium cells by treatment with microtubule 
poisons and observed normal localization of myosin to cleav- 
age furrows that formed upon removal of the drug. The idea 
that inappropriate myosin localization contributes to the 
phenotypic defects in the mlcR- cells is also supported by 
the unusual disassembly properties of the myosin purified 
from these ceils. Although initial assembly of filaments by 
monomeric mlcR- myosin appears normal, the assembled 
myosin appears to rapidly form aggregates probably by as- 
sociation at the head/rod junction as seen in RMLC- 
smooth and skeletal myosins (Wagner and Giniger, 1981; 
Trybus and Lowey, 1988; Trybus et al., 1994). The ag- 
gregates formed no longer exhibit the disassembly properties 
of normal thick filaments and they may correspond to the ap- 
parent patches observed in suspension-cultured mlcR- 
cells, as well as the intense spot of myosin staining observed 
in plate-grown ruleR- ceils. 

The pattern of myosin localization in plate-grown mlcR- 
cells is quite different from the suspension-grown mlcR- 
ceils, but not completely normal. Many cells (between 20 
and 60%) show a normal pattern of cortical localization. In 
addition, cells undergoing cytoplasmic division on plates 
were all observed to have myosin localized properly to their 
cleavage furrows. However, between 40-80% of the mlcR- 
cells were observed to have a single, intense spot of myosin 
staining. The nature of this spot is unknown. Based on ap- 

pearance and localization, the myosin spot we see in the 
mlcR- cells may be similar to those found in cells trans- 
formed with a mutant myosin heavy chain that lacks the as- 
sembly regulatory domain (AC34) found in the COOH- 
terminal 34-kD domain of the heavy chain (Egelhoff et al., 
1991). These heavy chain mutants are defective in their abil- 
ity to disassemble once they have formed thick filaments. It 
is possible that the accumulation of myosin in the spot-like 
structures may sequester myosin, effectively removing myo- 
sin from its normal location. The spots could, for example, 
represent a site where abnormal myosin aggregates are tar- 
geted for turnover. However, since cells expressing mutant 
AC34 heavy chain are capable of cytokinesis in suspension 
and can complete the developmental program, the absence 
of RMLC results in a more severe deficiency in myosin func- 
tion than the AC34 heavy chain mutant. In AC34 heavy 
chain-expressing cells, the myosin is 80% Triton-insoluble, 
compared with 13% for wild type, suggesting that much of 
the myosin in these cells may be unable to disassemble and 
thereby reducing contractile activity at sites where it is nor- 
mally found. Because the defect in mlcR- cells is much 
more severe than AC34 expressing cells, and 20-60 % of the 
mlcR- cells have normal patterns of myosin distribution, it 
seems unlikely that the defects resulting from the absence of 
RMLC is due exclusively to improper myosin localization or 
inability of the mlcR- myosin to disassemble. 

Alternatively, the intense "myosin spot" could represent a 
transient structure involved in normal myosin function in 
vivo. In this scenario, the absence of the ILMLC would either 
stabilize this structure or increase the length of time myosin 
remains associated with it. The observation of only a single 
spot per cell and its consistent posterior cortical location 
strengthens the notion that the spot is a specific structure 
rather than a random myosin aggregate, mlcR- cells with- 
out the myosin spot could represent cells which have lost this 
structure, especially during cytoplasmic division. Further 
experiments are necessary to characterize the nature of this 
myosin spot, and to understand the lack of cortical localiza- 
tion of myosin in suspension-cultured cells. 

Biochemically, mlcR- myosin exhibits two abnormal prop- 
erties. First its enzymatic activity is significantly more la- 
bile than is that of wild-type myosin. The absence of sig- 
nificant Ca2+-ATPase activity raises the possibility that 
the protein might be significantly denatured during the 
purification process despite the fact that wild-type myosin 
was stable throughout the purification. Second, although 
purified mlcR- myosin assembles into reasonable thick fila- 
ments in vitro, the structure of these filaments rapidly de- 
generates, forming amorphous aggregates which no longer 
show KCl-dependent disassembly. This abnormal disas- 
sembly of RMLC- myosin may also provide at least a par- 
tial explanation for our inability to isolate enzymatically ac- 
tive RMLC- myosin, because in vitro assays of myosin 
ATPase activity are performed under conditions where the 
myosin is expected to be filamentous. Both smooth and 
skeletal muscle myosin from which the light chains have 
been removed in vitro have been shown to retain reasonable 
ATPase activities (Wagner and Giniger, 1981; Trybus and 
Lowey, 1988; Trybus et al., 1994). Lowey et al. (1993) have 
recently shown that skeletal muscle myosin from which both 
light chains have been removed in vitro has significantly re- 
duced motor activity despite the fact that it retains, at least 
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briefly, ATPase activity ,050% that of myosin reconstituted 
with both light chains. Following removal of the RMLC by 
trifluoperazine treatment, smooth muscle myosin shows in- 
creased ATPase activity (Trybus et al., 1994). Assuming that 
Dictyostelium myosin behaves in a similar fashion, it is likely 
that mlcR- myosin would have reasonable ATPase in vivo, 
at least for a while after synthesis, but that the length of time 
required to purify the myosin exceeds the length of time dur- 
ing which it is enzymaticaUy active. Indeed, our crude assay 
of Ca2÷-ATPase activity in cytoskeletons showed levels of 
activity as high as 40% of wild type in mlcR- cytoskele- 
tons, while rnhcA- cytoskeletons showed only a few per- 
cent the wild-type activity. This result suggests that the active 
site of RMLC- myosin is structurally intact, although we 
have no evidence of physiologically relevant actin-activated 
ATPase in vivo. However, it is clear from these studies that 
myosin lacking the RMLC is enzymatically less stable dur- 
ing purification than is myosin carrying the RMLC. Hence 
it may have a decreased half life and therefore decreased 
overall activity in vivo. 

It has been proposed that the light chains may amplify the 
movement resulting from ATP hydrolysis, effectively in- 
creasing the distance a myosin filament could move relative 
to actin for each ATP hydrolyzed. The recent data from 
Lowey et al. (1993), Uyeda and Spudich (1993), and Trybus 
et al. (1994) support this hypothesis. Myosin motor activity, 
as assayed by the rates of actin filament movement in an in 
vitro motility assay are reduced in myosins lacking the 
RMLC. The reduced ability of mlcR- cells to complete the 
contraction of the cleavage furrow during cytokinesis, and 
the inability to complete development, may be in vivo conse- 
quences of this possible role for the RMLC in force genera- 
tion. If so, the ability of mlcR- cells to cap cell surface 
receptors suggests either that receptor capping requires 
significantly less force generation, or that cytokinesis and 
morphogenesis are dependent on different aspects of myosin 
function than is receptor capping. It is interesting to note that 
EMLC-deficient cells which had normal myosin localization 
pattern failed to cap surface receptors (Pollenz et al., 1992). 

The results presented here suggest that the defects ob- 
served in mlcR- cells may arise from any of several differ- 
ent mechanisms or a combination of them. The first is the 
improper myosin localization resulting from aggregation of 
myosin which may exist in an abnormal assembly state. This 
would have the effect of reducing function by preventing my- 
osin from accumulating at sites where it would normally pro- 
vide contractile activity. A second mechanism might be de- 
creased enzymatic stability. Based on the three dimensional 
structure proposed by Rayment et al. (1993), removal of the 
RMLC would expose an ct-helical region of the neck. With- 
out the protection provided by the RMLC, this region may 
become denatured, affecting the overall structure of the 
myosin head, or it may facilitate the aggregation of myosin 
through association of the hydrophobic residues exposed by 
the absence of the RMLC. Third, myosin lacking the RMLC 
may be less efficient at generating force, due to a decreased 
effective step size resulting from increased flexibility of the 
neck region. Finally, we cannot eliminate the possibility that 
the RMLC has some additional function distinct from its role 
with myosin II, although there is no indication that such an 
alternative function exists. 

As recently demonstrated by Uyeda and Spudich (1993), 

myosin lacking the domain of the MHC required for RMLC 
binding (and therefore lacking the RMLC), rescued the 
cytokinesis defect of mhcA- cells, and at least partially re- 
stored multicellular development. The results reported here 
argue that the RMLC provides a significant function in the 
presence of wild-type MHC. If this function does not provide 
a selective advantage, it seems likely that myosin heavy chain 
mutations removing the RMLC binding site and its require- 
ment for the RMLC would have occurred during evolution. 
In addition to possible roles in amplifying the conforma- 
tional changes of the myosin head and stabilizing the enzy- 
matic activity, the RMLC is also thought to be an important 
regulatory component of myosin and its regulatory function 
may provide an evolutionary advantage. The mlcR- cells 
generated in these studies should prove valuable in future 
studies of the mechanism of myosin-linked regulation, serv- 
ing as a host into which mutant light chains can be intro- 
duced and the in vivo consequences of those mutations 
characterized. 
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