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Circadian rhythms, or biological oscillations of approximately 24 hours, impact almost all aspects of our 
lives by regulating the sleep-wake cycle, hormone release, body temperature fluctuation, and timing of 
food consumption. The molecular machinery governing these rhythms is similar across organisms ranging 
from unicellular fungi to insects, rodents, and humans. Circadian entrainment, or temporal synchrony 
with one’s environment, is essential for survival. In mammals, the central circadian pacemaker is located 
in the suprachiasmatic nucleus (SCN†) of the hypothalamus and mediates entrainment to environmental 
conditions. While the light:dark cycle is the primary environmental cue, arousal-inducing, non-photic 
signals such as food consumption, exercise, and social interaction are also potent synchronizers. Many of 
these stimuli enhance dopaminergic signaling suggesting that a cohesive circadian physiology depends 
on the relationship between circadian clocks and the neuronal circuits responsible for detecting salient 
events. Here, we review the inner workings of mammalian circadian entrainment, and describe the health 
consequences of circadian rhythm disruptions with an emphasis on dopamine signaling.
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INTRODUCTION

Circadian rhythms regulate biological processes 
ranging from gene expression to behavior. The period, 
amplitude, phase, and waveform of these oscillations 
are governed by an internal clock that has evolved in a 
variety of organisms to anticipate events such as sunrise 
and sunset [1,2]. Proper phase alignment of the circadian 

pacemaker to environmental timing cues is critical for an 
organism’s well-being and survival. Darwinian pressures 
have changed for humans as many of the emergent stress-
ors of modern society burden our ancient circadian phys-
iology. Varying environmental conditions experienced 
during shift work or transmeridian travel create desyn-
chrony between the time of day and the internal clocks 
[3]. Additionally, inappropriately timed light exposure 
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from portable hand-held devices present a chronic source 
of circadian and sleep disruptions [4]. When prolonged, 
such misalignments result in higher incidences of mood 
disorders, obesity, cardiovascular disease, and cancer 
[5]. As such, pathologies associated with circadian dys-
function are increasing at an alarming rate, creating the 
pressing need to better understand the basis of circadian 
physiology in order to advance the practice of psychiatry, 
nutrition, and medicine [6,7].

While the endogenous circadian clock remains func-
tional in constant conditions [8-10], it relies on environ-
mental signals (Zeitgebers) to synchronize the organism’s 
physiology to daily external rhythms, such as the earth’s 
24-hour light:dark (LD) cycle. As reviewed in [11], the 
synchronization of an organism’s internal rhythms to an 
external cycle, termed entrainment, requires the molec-
ular clock machinery to align endogenous rhythms with 
the exogenous daily cycles. In mammals, entrainment 
by light, termed photoentrainment, is mediated by the 
light-activated neural circuits originating in the retina that 
project to the suprachiasmatic nucleus (SCN) through the 
retino-hypothalamic tract [12-14]. Non-image-forming, 
irradiance information is primarily transmitted to the SCN 
by the melanopsin-expressing intrinsically photosensitive 
retinal ganglion cells (ipRGCs) [15-18]. Located in the 
basal hypothalamus dorsal to the optic chiasm, the SCN 
orchestrates rhythms throughout the rest of the brain and 
body as described in the following reviews [19-21]. The 
diverse cellular components of the SCN are both nec-
essary and sufficient for circadian rhythm maintenance 
as surgical ablation of this nucleus produces behavioral 
arrhythmia, while grafts of neonatal SCN into a SCN-ab-
lated host restores rest-activity rhythms [22-24].

For proper adaptation to a dynamic world, this circa-
dian timing system also requires the ability to anticipate 
salient events such as food or mate availability. While 
light is the primary entraining agent, arousal-inducing 
non-photic cues such as palatable foods, social inter-
action, and physical exercise also influence the phase 
of the SCN molecular clock [25,26]. Dopamine (DA), 
a neurotransmitter mostly known for its role in reward 
processing and motivation, is a significant modulator 
of the aforementioned behaviors that drive non-photic 
circadian entrainment [27,28]. Additionally, patients 
suffering psychiatric and neurodegenerative pathologies 
associated with DA signaling dysregulation such as de-
pression, bipolar disorder, schizophrenia, drug addiction, 
and Parkinson’s disease are known to have perturbations 
of circadian rhythms [29-33]. As such, DA is emerging as 
an important regulator of central and peripheral circadian 
rhythms and has been reviewed in the following publica-
tions [34,35]. In this review, we focus on how DA-medi-
ated neural circuits influence our daily rhythms and the 
attendant consequences of circadian misalignment on 

well-being, metabolism, and mental health.

NON-PHOTIC ENTRAINMENT

The regulation of circadian entrainment is accom-
plished through various neuropeptides and neurotrans-
mitters such as: vasoactive intestinal peptide (VIP), 
arginine vasopressin (AVP), neuromedin S (NMS), glu-
tamate, gamma aminobutyric acid (GABA), serotonin, 
Neuropeptide Y (NPY), and DA [36-40]. In addition to 
retina-dependent photoentrainment, light-independent 
neural circuits likewise directly influence SCN neurons to 
regulate circadian phase. The most prominent non-photic 
entrainment cues in mammals are behavioral arousal in-
duced by sleep deprivation, animal handling, or exposure 
to a novel running wheel [41,42]. Serotonin and NPY are 
known to directly change SCN molecular rhythms and 
induce phase shifts of circadian activity during the sub-
jective day, when the SCN is least sensitive to light and 
most sensitive to non-photic entrainment cues [43-46]. 
However, the precise mechanism of phase-resetting by 
behavioral arousal remains unknown. Below we discuss 
the potential involvement of dopamine signaling in me-
diating these behaviors and highlight several connections 
between changes in DA tone and circadian entrainment.

DOPAMINE SIGNALING AND CIRCADIAN 
RHYTHMS

Dopamine, a monoamine neurotransmitter well 
known for its role in reward and motivation, is also im-
portant for the detection of salient events such as food 
or mate availability [28,47-49]. To facilitate a myriad of 
physiological and behavioral outputs, DA modulates neu-
ral activity through a group of G-protein coupled recep-
tors distinguished by their cognate G-proteins—Gs-cou-
pled (D1 and D5), and Gi-coupled receptors (D2, D3, 
D4)—that are expressed in anatomically distinct regions 
throughout the brain and body [50-52]. Importantly, DA 
signaling associated behaviors such as drug self-adminis-
tration, food reward, and mating all fluctuate in the extent 
of their expression across the day:night cycle revealing an 
association with circadian regulation [34,53,54]. Having 
a well-coordinated neuronal communication between the 
dopaminergic and circadian systems is likely necessary 
for appropriately timed behavioral responses, adaptation 
to the environment, and survival.

The bi-directional nature of this link has gradually 
been uncovered in the last few decades. DA synthesis, 
release, and signaling within the retina, olfactory bulb, 
ventral tegmental area, and striatum are all regulated in a 
circadian manner [55-58]. DA has been shown to directly 
alter clock gene expression within extra-SCN circadian 
oscillators [59-61]. Early studies in Xenopus revealed an 
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important role for DA in the entrainment of retinal circa-
dian rhythms whereby Per2 expression, a core molecular 
component of the circadian clock, is induced in response 
to both light and DA [59,62]. Similarly, activation or in-
hibition of the D1 dopamine receptor (Drd1) in the mam-
malian retina enhances or attenuates the extent of light 
induced phase shifts, respectively [60]. Additionally, D2 
dopamine receptor (Drd2) null mice have significantly 
diminished suppression of wheel running activity by light 
[63]. Taken together these data support that DA signaling 
outside of the central pacemaker is an important mediator 
of circadian regulated behaviors.

Midbrain dopaminergic neurons of the ventral teg-
mental area (VTA) and substantia nigra (SN) are particu-
larly relevant to DA-induced behavioral modification due 
to their involvement in locomotion, addiction, and reward 
recognition [64-66]. Additionally, the expression of circa-
dian clock genes such as Per, Clock, and Bmal1 are found 
within both neuronal populations suggesting a molecular 
link to circadian regulation [54,67-69]. Selective manip-
ulation of VTA neurons regulates sleep-wake states by 
promoting salience-induced arousal, enabling the regula-
tion of ethologically relevant behaviors [70]. Lesioning 
the VTA of rats with 6-hydroxydopamine treatment has 
been shown to elongate circadian free-running period, 
alter the onset of drinking behavior, and decrease wheel 
running activity rhythms [71]. These changes in circadian 
behavior following alteration of the mesolimbic DA sys-
tem further highlight the significant interaction between 
these two systems. Additionally, the striatum, a midbrain 
DA-neuron projection site important for learning, reward, 
and motor control, has been shown to exhibit rhythmic 
circadian clock gene expression [72,73]. Within this brain 
region, depletion of DA innervation and pharmacological 
inhibition of Drd2 signaling disrupts the expression pro-
file of Per2, implicating a role for circadian regulators on 
reward driven processes [61,67]. This is further supported 
by the evidence that Per2 mutant mice exhibit heightened 
sensitivity to cocaine [53]. A complete understanding 
of how DA influences these extra-SCN oscillators will 
provide important insight into how substance abuse or 
neurogenerative disorders that impact the dopaminergic 
system are able to disrupt circadian rhythms. The link 
between these two systems is briefly described below and 
detailed in the following manuscripts [74-76].

When the SCN is compromised, nearly all circadian 
functions disappear [23]. However, non-photic stimuli 
such as restricted food access or chronic exposure to 
methamphetamine (MA) can restore rhythmic behavior 
in SCN lesioned animals. Interestingly, these SCN-inde-
pendent pacemakers of unknown origin are modulated 
by the dopaminergic system, which likely mediates ad-
ditional biological oscillations and their entrainment [77-
80]. For instance, scheduled feeding during a restricted 

portion of the day produces increased locomotion prior to 
the availability of food, a behavior known as food antici-
patory activity (FAA) [79,81,82]. FAA persists even after 
SCN ablation, suggesting the presence of an independent 
food entrainable oscillator (FEO) [41,83-85]. The dorsal 
striatum has been implicated as a mediator of FAA, while 
Drd1 null mice demonstrate reduced FAA implicating 
DA-Drd1 signaling as a modulator of this important an-
ticipatory behavior of food availability [79,86].

Similar to anticipation of food reward, daily adminis-
tration of MA, a DA enhancing psychostimulant, increas-
es locomotor activity immediately preceding the time 
of injection [87]. Strikingly, arrhythmic SCN-lesioned 
animals regain circadian rhythmicity via a methamphet-
amine-sensitive circadian oscillator (MASCO) when 
presented with ad libitum access to MA in their drinking 
water [77,80]. Furthermore, a recently described dopami-
nergic ultradian oscillator (DUO) was found to produce 
aberrant patterns of arousal when DA tone was elevated 
through selective activation of the VTA [78]. While these 
extra-SCN oscillators can compensate for a compromised 
SCN-based clock, it is possible that DA signaling also 
directly influences the intact SCN to relay information 
about salient events such as food or mate availability.

DOPAMINE IN THE SCN

Almost 30 years ago, DA signaling within the em-
bryonic SCN was first demonstrated to synchronize 
maternal-fetal circadian rhythms. Administration of 
dopaminergics to pregnant dams induced c-fos mRNA-
expression, a marker for neural activity, within the fetal 
SCN, while periodic injections of a Drd1 agonist were 
shown to set the phase of the fetal biological clock 
[88,89]. These treatments fail to induce molecular chang-
es within the SCN of the Drd1 null mice, confirming the 
importance of this Gs-coupled receptor in mediating the 
effects of DA on the circadian axis [90]. Despite per-
sistent expression of SCN-Drd1 mRNA in adult rodents, 
baboons, and humans, administration of Drd1 agonist 
alone is not sufficient to induce c-fos mRNA expression 
within the SCN or induce behavioral phase shifts of free 
running animals after postnatal development [91-93]. 
Based on these findings, it was concluded that sensitivity 
to DA signaling within the SCN is transient and is lost 
after the development of the retinohypothalamic tract 
[91,94]. However, recent advances in mouse genetics, 
designer actuators, and viral vector technologies have en-
abled investigators to challenge that notion and develop a 
more complete understanding of how Drd1-mediated DA 
signaling directly modulates the central circadian clock 
throughout adulthood.

Drd1-expressing neurons represent approximately 
60 percent of the cells within the SCN, including partial 
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the photic PRC is achieved by administering light pulses 
to free running animals at distinct time points across the 
circadian day (Figure 1a). The circadian day is defined as 
one activity-rest cycle, and by convention, the onset of 
activity is denoted as circadian time 12 (CT 12). Noctur-
nal animals exposed to a light pulse during the subjective 
day, known as the “dead zone”, experience no physiologi-
cal change within the SCN or in wheel running activity in 
the subsequent days (Figure 1b). However, a light pulse 
in the early subjective night (CT 14) produces a phase 
delay in the onset of locomotor activity (Figure 1c), while 
a pulse at CT 18 results in a phase advance (Figure 1b). 
Interestingly, animals exposed to non-photic cues such 
as restricted availability of food and behavioral arousal, 
exhibit a similar but antiphasic PRC, with large phase 
advances occurring during the subjective day [103-105]. 
Surprisingly, chemogenetic activation of Drd1-SCN neu-
rons mimics the behavioral phase shift to photic stimuli 
[40], suggesting that Drd1-expressing SCN neurons are 
able to influence photic sensitivity of the central circadian 
pacemaker.

overlap with NMS, VIP, and AVP-expressing neurons 
[95]. Acute treatment of mouse SCN explants with the 
Drd1 agonist, SKF 38393, lengthens the free running 
period of circadian molecular rhythms, suggesting that 
DA signaling remains functional in the adult SCN [96]. 
Use of advanced genetic tools has recently identified 
the behavioral phase and period-resetting properties of 
Drd1-expressing neurons within the adult mammalian 
SCN [40,95,97]. Optogenetic stimulation of channelrho-
dopsin (ChR2)-expressing Drd1-SCN cells is sufficient to 
entrain free-running mice to the time of stimulus [97] in 
a similar manner to the entrainment capacity of a sched-
uled palatable snack [98-100]. This finding is significant 
because an entrainable circadian pacemaker requires re-
setting by which the intensity, duration, and phase of the 
applied stimulus determines the extent and direction of 
the behavioral phase change [101,102].

Phase sensitivity of resetting is best summarized by 
a phase-response curve (PRC), which plots the ampli-
tude of phase change against the circadian phase when 
the phase shifting stimulus was provided. For instance, 

Figure 1. Phase response curve of circadian rhythms to light. a. Illustration of the photic PRC in mice. By conven-
tion, phase advances are recorded as positive values and phase delays as negative. Plot of wheel running actograms 
representing the locomotor response of to a brief light pulse during the b., subjective day, c., early subjective night 
(inducing a phase delay), and d., late subjective night (inducing a phase advance). Black bars represent wheel running 
activity; yellow dots indicate time of light pulses in DD; dark blue lines represent an extended regression line derived by 
activity onsets prior to the light pulse; red lines follow actual onset of activity after the light pulse. The duration of phase 
shift is quantified as the horizontal difference between the two regression lines on the day after the light pulse marked 
by the black arrows [40].
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rodents, introduction of a novel running wheel, exposure 
to sexually receptive partners, or elevated DA tone have 
all resulted in accelerated circadian photoentrainment, 
demonstrating that arousal-inducing stimuli influence the 
rate of circadian resynchrony [40,110,111].

Most strikingly, Drd1-null mice exhibit a signifi-
cantly diminished rate of photoentrainment to advances 
and delays of the LD cycle (Wild-type: ~ 6.5 days vs 
Drd1-KO: ~8.5 days) [40]. A normal photoentrainment 
rate is fully restored in these Drd1-null mice through 
viral-vector-mediated rescue of Drd1 expression selec-
tively within the SCN (SCN-Rescue: ~ 6.5 days; Figure 
3a-c). Tracing studies suggest a direct connection from 
the VTA to the SCN, consistent with previous findings 
that electrolytic lesion of midbrain dopaminergic neurons 
results in a 40 percent reduction of DA levels within the 
SCN [40,112]. Chemogenetic activation of the VTA-DA 
neuron population is sufficient to accelerate the rate of 
photoentrainment in response to a 6-hour advance in the 
LD cycle [40]. From these recent discoveries, it is evident 
that Drd1 signaling within the SCN remains functional 
through adulthood and that appropriately timed elevation 
of DA tone aids in the synchronization of endogenous 
rhythms to the environmental time cues. Because of the 
VTA’s established role in reward, this direct neuronal 
connection could prove to be a major source of circadian 
rhythmicity disruptions associated with substance abuse, 

An additional way to evaluate responsiveness to 
changes in environmental lighting conditions is through a 
shift in the LD cycle similar to what one would experience 
when jet-lagged. Transmeridian travel across several time 
zones creates a rapid change in environmental conditions 
leading to the general malaise and compromised daytime 
function associated with jet-lag disorder [3]. Jet-lag pri-
marily is a consequence of imposed internal desynchrony 
within the SCN resulting from an incongruence between 
the phase of the endogenous circadian pacemaker and the 
local time. Reducing the duration of this desynchrony is a 
paramount concern for shift-workers who are constantly 
exposed to irregular work and sleep schedules, increas-
ing their susceptibility to cardiovascular disease, ulcers, 
depression, and obesity [3,106]. As such, considerable 
effort has been placed into understanding the mechanism 
of circadian resynchronization in response to abrupt 
changes in environmental lighting conditions [40,107-
109]. Jet-lag is simulated in the laboratory by advancing 
the LD cycle (Figure 2a: simulating eastward travel) 
or delaying it (Figure 2b: simulating westward travel). 
Resynchronization of wheel running activity to these 
shifts occurs gradually with incremental phase changes 
(transients) each day until a stable phase of entrainment 
has been achieved. Manipulations of the LD cycle paired 
with analysis of activity rhythms have been used to re-
veal the factors that influence the rate of entrainment. In 

Figure 2. Jet-lag paradigms. Representative double-plotted actograms of an a. advance and b., delay of the LD 
cycle by 6 hours. Black arrows indicate the day of entrainment.
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modulator of metabolism in rats [118]. Consequently, 
consumption of hypercaloric diets impairs adjustment to 
photic resetting and reduces light mediated c-fos mRNA 
induction within the SCN [119]. Additionally, regularly 
timed daily access to a palatable snack (chocolate pellet) 
entrains behavioral rhythms in constant darkness, reduces 
light-induced phase shifts, increases DA content in the 
forebrain, and increases c-fos mRNA expression within 
DA neurons of the midbrain [120]. These important find-
ings uncover an underappreciated relationship between 
disrupted circadian rhythms and the dysregulation of the 
DA signaling. Future work must address how aberrant 
lighting conditions and rewarding foods impact the SCN, 
the consequence of this interaction, and how to reduce its 
negative impact.

CIRCADIAN DISRUPTION IN ADDICTION, 
MOOD DISORDERS, AND PARKINSON’S 
DISEASE

Based on the recent studies linking DA signaling to 
the circadian clock, and perturbations of circadian genes 
with drug addiction, it is critical to evaluate the connec-
tion between circadian rhythm disturbances and the abuse 
of addictive substances [121]. DA enhancing drugs such 
as cocaine or methamphetamine negatively impact circa-
dian entrainment and sleep [122,123]. Cocaine abuse in 
pregnant females is particularly detrimental to the proper 

mood disorders, and neurodegenerative diseases. Further 
research based on these findings could provide the insight 
needed to develop effective therapeutic strategies to fa-
cilitate entrainment, thereby effectively treating disorders 
exacerbated by circadian desynchrony to environmental 
timing cues.

CONSEQUENCES OF ABERRANT 
ENTRAINMENT CONDITIONS

For humans, the advent of electricity and artificial 
lights has disrupted the sun’s role in entraining circadian 
rhythms, resulting in serious health consequences includ-
ing a range of metabolic disorders that have been detailed 
in the following review [113]. Even brief exposure to dim 
light at night can lead to significant weight gain and met-
abolic disruption [114]. Interestingly, a genetic mutation 
of the circadian core gene Clock, results in elevated DA 
signaling, dampened feeding rhythms, and metabolic dis-
ease in mice, suggesting an important role for circadian 
rhythms in energy regulation [115]. Along these lines, 
access to high-fat, palatable food also disrupts the timing 
of food intake and lengthens the period of free-running 
activity and temperature rhythms in mice [116,117]. 
This alteration of circadian timing suggests a connec-
tion between energy dense food intake and the circadian 
pacemaker. Recently, circadian peak of dopaminergic 
activity in and around the SCN has been found to be a 

Figure 3. Drd1 expression in the SCN accelerates photoentrainment. a. Schematic representation of the Cre-de-
pendent AAV-DIO-Drd1-HA construct used to re-express Drd1 expression within the SCN. b. Diagram of bilateral 
stereotaxic delivery of Drd1 re-expression virus to the SCN. c. Group analysis of days to entrain following a six-hour 
advance in the LD cycle; F (2,62) = 19.42; P< 0.0001; One-way ANOVA with Bonferroni post hoc comparison; n= 13-
26/group; ***p < 0.0001.Data are represented as mean ± SEM. Reprinted from [40] with permission from Elsevier.
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DA signaling and circadian disruptions may aide in the 
development of novel chronotherapeutic strategies for 
psychiatric or some neurodegenerative disorders.

CONCLUSIONS AND OUTLOOK

Circadian rhythms perform a vital role in orches-
trating all aspects of physiology to ensure that rest and 
active states are properly aligned with the solar day. 
However, obligatory schedules of modern society disrupt 
natural oscillations of biological clocks. Disturbing these 
rhythms increases the likelihood of metabolic, mental 
and physical disorders, thereby increasing the burden on 
healthcare around the globe. A challenge for researchers 
and clinicians is to elucidate the precise mechanisms of 
circadian rhythm disruptions and how to reduce their 
negative impact on well-being.

While significant advances have been made in the 
field of circadian biology, pressing issues remain. For 
instance, the processing of light information from the 
retina to the SCN has been well characterized, however, 
the mechanism of how the SCN communicates with the 
rest of the brain and body is less understood as reviewed 
in [133]. A mechanistic understanding of how the SCN 
integrates and relays photic and non-photic information 
to generate high amplitude biological rhythms is neces-
sary to understand how daily physiological and metabolic 
rhythms deteriorate under certain conditions [134]. Fur-
thermore, it is still unclear whether restoring the SCN os-
cillation amplitude would be enough to alleviate patholo-
gies associated with circadian misalignment. In addition, 
maladaptive changes in the dopaminergic system underlie 
many neurological diseases such as depression, bipolar 
disease, and Parkinson’s disease, which share symptoms 
of circadian and sleep disruption. Thus, a mechanistic 
understanding of how dopamine signaling coordinates 
with the circadian system to govern daily physiological 
and behavioral functions will provide novel therapeutic 
avenues for these disorders. The integration of informa-
tion learned from translational animal experiments into 
human clinical studies will be the next critical step to-
ward identifying treatment plans to effectively alleviate 
symptoms of circadian rhythm disorders.
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