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Abstract

Background: Biting midge species of the genus Culicoides Latreille (Diptera: Ceratopogonidae) comprise more than
1300 species distributed worldwide. Several species of Culicoides are vectors of various viruses that can affect
animals, like the African horse sickness virus (AHSV), known to be endemic in sub-Saharan Africa. The ecological and
veterinary interest of Culicoides emphasizes the need for rapid and reliable identification of vector species. However,
morphology-based identification has limitations and warrants integration of molecular data. DNA barcoding based
on the mitochondrial gene cytochrome c oxidase subunit 1 (cox1) is used as a rapid and authentic tool for species
identification in a wide variety of animal taxa across the globe. In this study, our objectives were as follows: (i)
establish a reference DNA barcode for Afrotropical Culicoides species; (ii) assess the accuracy of cox1 in identifying
Afrotropical Culicoides species; and (iii) test the applicability of DNA barcoding for species identification on a large
number of samples of Culicoides larvae from the Niayes area of Senegal, West Africa.

Results: A database of 230 cox1 sequences belonging to 42 Afrotropical Culicoides species was found to be reliable
for species-level assignments, which enabled us to identify cox1 sequences of Culicoides larvae from the Niayes area
of Senegal. Of the 933 cox1 sequences of Culicoides larvae analyzed, 906 were correctly identified by their barcode
sequences corresponding to eight species of Culicoides. A total of 1131 cox1 sequences of adult and larval Culicoides
were analyzed, and a hierarchical increase in mean divergence was observed according to two taxonomic levels:
within species (mean = 1.92%, SE = 0.00), and within genus (mean = 17.82%, SE = 0.00).

Conclusions: Our study proves the efficiency of DNA barcoding for studying Culicoides larval diversity in field samples.
Such a diagnostic tool offers great opportunities for investigating Culicoides immature stages ecology and biology, a
prerequisite for the implementation of eco-epidemiological studies to better control AHSV in the Niayes region of
Senegal, and more generally in sub-Saharan Africa.
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Background
Biting midge species of the genus Culicoides Latreille
(Diptera: Ceratopogonidae) comprise more than 1300
species distributed worldwide [1]. Certain Culicoides
species are the biological vectors of important arbovi-
ruses of livestock worldwide, such as the African horse
sickness virus (AHSV), bluetongue virus (BTV), epizo-
otic hemorrhagic disease virus (EHDV), equine encepha-
losis virus (EEV) and Schmallenberg virus (SBV) [2].
African horse sickness virus is an arbovirus of equids
that is biologically transmitted by competent vectors of
the genus Culicoides [3]. This disease is recorded in Af-
rica and Arabian Peninsula and is ranked among the
most lethal of viral infections known to affect horses
with mortality rates in naive equine populations that can
reach 80–90% [3, 4]. Massive AHS epizootic outbreaks
occurred in Senegal in 2007 [5, 6]. Knowledge on the
ecology of Culicoides will be crucial for the development
and implementation of appropriate and effective vector
control strategies in order to reduce the impact of Culi-
coides-borne diseases. However, a major limitation is
that morphology-based methods for Culicoides species
identification are time-consuming and require taxo-
nomic expertise. Adult morphological identification may
involve dissection and microscopical mounting of speci-
mens. Taking into account that subadult stages of the
majority of Culicoides species still await discovery [7],
morphological species identification of Culicoides larvae
is not possible. Inaccurate Culicoides species identifica-
tion can have significant impacts on control attempts.
Considering these difficulties, it is essential to use

complementary and alternative methods to solve taxo-
nomic problems such as the identification of Culicoides
larvae. Although molecular tools may be expensive and
require specialized equipment, they have been useful
over the last decade to deepen knowledge in various
areas of biology ranging from systematics to ecology [8–
13]. Hebert et al. [9] proposed using the mitochondrial
gene cytochrome c oxidase subunit 1 (cox1) as a
DNA-based identification system for all animal species,
the so-called DNA barcoding approach. DNA barcoding
for species-level identification employs a small portion
(≈ 658 bp) of the cox1 gene to assign a specimen se-
quence to a voucher species library [9]. This has gained
wide acceptance as a supplementary method to resolve
taxonomic ambiguities [9, 14]. However, successful DNA
barcoding depends on the distinction between intra- and
interspecific genetic divergence. The performance of
DNA barcoding can vary within the same group of spec-
imens among geographical regions and ecosystems [15].
Species with large effective population sizes can have
high intraspecific genetic diversity, which could overlap
with interspecific divergence [16]. Furthermore, imperfect
taxonomy also could lead to erroneous identifications

[17]. Therefore, morphological and molecular identifica-
tion have both limitations and advantages, but in the ab-
sence of a large body of work on morphological
identification of the Culicoides immature diversity in the
Afrotropical region, advances in molecular identification
would be a crucial stepping stone.
In the present study, our objectives were: (i) to estab-

lish DNA barcode libraries for adult Culicoides species
collected in different sites in the Afrotropical region
[18]; (ii) to assess the accuracy of the cox1 gene in iden-
tifying of these Culicoides species; and (iii) to test the
usefulness of DNA barcoding for species identification
on a large dataset of Culicoides larvae from the Niayes
area of Senegal, West Africa. Our study establishes com-
prehensive DNA barcode libraries for Afrotropical Culi-
coides of interest prior to future taxonomic research
such as metabarcoding.

Results
Reference DNA sequence analysis
Data description and distance summary
Haplotype data analysis detected 170 unique haplotypes in
the DNA reference libraries (Table 1). The average
nucleotide frequencies for all 42 species were as follows: A
(adenine), 28%; T (thymine), 40%; G (guanine), 15.2%; and
C (cytosine), 16.8%. The analysis revealed that interspecific
Kimura-2-parameter (K2P) genetic divergence ranged be-
tween 0.045–0.201 with a mean genetic distance (MGD)
of 0.133; intraspecific K2P genetic divergence ranged be-
tween 0–0.107 with an average of 0.009 (Table 1).

Identification success rates
In the simulations, the nearest-neighbour (NN) approach
returned 97.39% correct and 2.61% incorrect identifica-
tions (Fig. 1). The threshold analysis (TA) returned the
same results as best close match (BCM) at the threshold
value 0.01 (79.56% correct and 20.44% incorrect identifica-
tions). With a threshold of 0.039 calculated by the func-
tion localMinima in SPIDER, the TA and BCM provided
94.68% correct and 5.32% incorrect identifications. With a
threshold of 0.044 (Additional file 1: Figure S1) generated
by the function threshVal in SPIDER, the TA and BCM
provided 95.21% correct and 4.79% incorrect identifica-
tions. The proportion of monophyly on a neighbor joining
(NJ) tree approach (Mono) showed a success rate at 100%
(Fig. 1).

Barcode gap analysis
In our reference DNA sequences, we counted how often
the maximum intraspecific distance exceeded the mini-
mum interspecific distance. Using length and which func-
tions in SPIDER to query how many times this occurred
in our reference DNA sequences, we found that this was
the case on 14 occasions (Additional file 2: Figure S2).
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Table 1 Haplotype characteristics and levels of intra- and interspecific diversity of reference DNA sequences

Taxon n nhap Intraspecific H Interspecific

C. austeni 1 1 – – 0.2

C. bolitinos 13 9 0–0.006 (0.001) 0.91 0.075–0.087 (0.077)

C. brucei 3 3 0.002–0.018 (0.007) 1 0.134–0.145 (0.141)

C. candolfii 2 1 0 0 0.188

C. distinctipennis 7 5 0–0.043 (0.012) 0.904 0.124–0.132 (0.128)

C. dubitatus 3 2 0–0.002 (0.001) 0.666 0.156–0.159 (0.157)

C. enderleini 21 20 0.002–0.05 (0.01) 0.995 0.104–0.12 (0.109)

C. engubandei 2 1 0 0 0.148

C. grahamii 3 3 0.022–0.031 (0.025) 1 0.166–0.180 (0.171)

C. gulbenkiani 3 3 0.004–0.009 (0.006) 1 0.161

C. imicola 17 13 0–0.004 (0.002) 0.963 0.101–0.114 (0.107)

C. isioloensis 2 2 0.002 1 0.163–0.166 (0.164)

C. kanagai 1 1 – – 0.174

C. kibatiensis 1 1 – – 0.153

C. kingi 7 6 0.004–0.009 (0.005) 0.952 0.092–0.097 (0.094)

C. kwagga 2 1 0 0 0.099

C. leucostictus 3 3 0.004–0.011 (0.007) 1 0.124–0.127 (0.126)

C. loxodontis 2 2 0.006 1 0.101–0.109 (0.105)

C. macintoshi 3 3 0.004 1 0.153–0.156 (0.155)

C. magnus 6 3 0–0.007 (0.002) 0.6 0.134–0.142 (0.136)

C. milnei 1 1 – – 0.169

C. miombo 13 4 0–0.002 (0.0005) 0.423 0.114–0.116 (0.114)

C. moreli 6 5 0.004–0.006 (0.003) 0.933 0.193–0.199 (0.195)

C. murphyi 15 6 0–0.002 (0.0004) 0.79 0.142–0.147 (0.144)

C. neavei 2 2 0.099 1 0.161–0.169 (0.165)

C. nevilli 9 9 0.011–0.013 (0.012) 1 0.045–0.164 (0.052)

C. nivosus 5 4 0–0.064 (0.016) 0.9 0.160–0.164 (0.162)

C. ovalis 1 1 – – 0.175

C. oxystoma 14 12 0–0.022 (0.005) 0.978 0.082–0.104 (0.088)

C. pseudopallidipennis 13 8 0–0.009 (0.001) 0.935 0.063–0.072 (0.068)

C. pycnostictus 2 2 0.009 1 0.153–0.156 (0.154)

C. ravus 3 2 0–0.033 (0.011) 0.666 0.132–0.137 (0.135)

C. schultzei 2 2 0.018 1 0.087–0.094 (0.09)

C. similis 7 4 0–0.107 (0.017) 0.809 0.132–0.164 (0.152)

Culicoides sp. #20a 6 5 0–0.004 (0.002) 0.933 0.137–0.145 (0.141)

Culicoides sp. #22a 5 1 0 0 0.101

Culicoides sp. #54a 1 1 – – 0.166

C. subschultzei 6 6 0.004–0.011 (0.006) 1 0.045–0.049 (0.047)

C. tororoensis 2 1 0 0 0.163

C. tropicalis 3 2 0–0.013 (0.004) 0.666 0.127

C. tuttifrutti 4 3 0–0.011 (0.003) 0.833 0.063–0.075 (0.071)

C. zuluensis 8 6 0–0.015 (0.004) 0.928 0.169–0.201 (0.185)
aCulicoides sp. #20, Culicoides sp. #22 and Culicoides sp. #54 are putative new species whose status needs still to be clarified in future taxonomic studies [18]
Abbreviations: n number of cox1 sequences, nhap number of cox1 haplotypes; Intraspecific, range of genetic divergence within taxa (mean), H haplotype diversity
values; Interspecific, range of genetic divergence between taxa (mean)
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Molecular identification for Culicoides larvae
DNA sequences of Culicoides larvae collected in the
Niayes area of Senegal were successfully obtained for
958 out of 1632 larvae (58.6%). PCR amplifications failed
for 99 out of 773 samples of stages L1-L2, while all se-
lected samples of stage L3-L4 were successfully ampli-
fied (859/859 samples). This might be explained by the
physical size of the different larval stages (L1 and L2
stages are < 2 mm). The sequences were edited in Gen-
eious R11 [19] and 933 cox1 sequences of better quality
were used in this study. The overall rate of cox1 se-
quences successfully matched within our reference DNA
sequences used as Search Set in BLAST search was
97.1%. Thus, 906 out of 933 cox1 sequences of larvae
were successful identified to Culicoides species. How-
ever, 27 cox1 sequences were unmatched within our
DNA barcode reference libraries. In order to find a
match, these cox1 sequences were used as a query in
NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). However,
no matches were found for these sequences.
The sequences matched corresponded to eight Culi-

coides species (Table 2). Of these species, Culicoides oxy-
stoma Kieffer had the highest percentage (66.8%),
followed by Culicoides nivosus de Meillon (21.5%), Culi-
coides distinctipennis Austen and Culicoides similis Car-
ter, Ingram & Macfie (both slightly above 3%) (Table 2).

DNA barcoding database analyses
A total of 1131 cox1 sequences were submitted to the
BOLD database under the project code “AFCUL” (details
see Additional file 3: Table S1). A hierarchical increase in
mean divergence was observed according to two taxo-
nomic levels: within species (mean = 1.92%, SE = 0.00)

and within genus (mean = 17.82%, SE = 0.00). In the bar-
code gap analysis using the BOLD Management and
Analysis System, situations where the distance to the
nearest neighbour was less than the max intra-specific dis-
tance were encountered in seven species (Additional file 4:
Table S2). Haplotype data analysis detected 360 haplo-
types in 1131 cox1 sequences for 40 Afrotropical Culi-
coides species.

Discussion
Our study presents the first DNA barcode analysis of
the genus Culicoides in the Afrotropical region incorpor-
ating adult and larval specimens. Biodiversity questions
have become an important issue, not only in the field of
conservation but also when species have an economic
and health impact such as insects involved in pathogen
transmission. Culicoides-borne pathogens and notably
African horse sickness in the Afrotropical region are of
great interest because of major outbreaks affecting
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Fig. 1 Barplots of measures of identification success. Abbreviations: NN, nearest-neighbour; TA, threshold analysis with 1% threshold; TA.threshVal,
threshold analysis with 4.4% threshold; TA.localMinima, threshold analysis with 3.59% threshold; BCM, best close match (1% threshold); BCM.threshVal,
best close match with 4.4% threshold; BCM.localMinima, threshold analysis with 3.59% threshold; Mono, proportion of monophyly on a NJ tree

Table 2 Nucleotide sequence similarity between Culicoides larvae
sequences and reference partial cox1 sequences

Culicoides species Percent similarity
Range (Mean)

No. of individuals
(% total larvae)

C. distinctipennis 98–99 (98.75) 32 (3.5)

C. enderleini 97–99 (98.27) 26 (2.9)

C. imicola 99 1 (0.1)

C. kingi 98–99 (98.94) 17 (1.9)

C. nivosus 97–100 (99.01) 195 (21.5)

C. oxystoma 97–100 (98.85) 605 (66.8)

C. pycnostictus 97 1 (0.1)

C. similis 96–99 (98.34) 29 (3.2)
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horses [2–5, 20, 21]. Moreover, recent studies conducted
in west and central Africa revealed high prevalence rates
of Mansonella perstans both in Culicoides specimens
and human populations [22–24].
Although of major economic and sanitary importance,

the current taxonomic and ecological knowledge of Culi-
coides limits the understanding of the epidemiology of the
diseases they transmit and therefore the implementation
of appropriate and effective vector control strategies. A
major limitation is that morphological methods for identi-
fying Culicoides species are tedious and require specialized
taxonomic expertise. In addition, species delimitation at
the adult stage is complicated by both closely related spe-
cies, for example the species of the Imicola group [18],
and large morphological variations observed within cer-
tain species, in particular C. oxystoma [18]. Although mor-
phological description and comparison of pupae of certain
species has been carried out [25], especially Culicoides
species related to the Similis group [26] and to the Imicola
group [27, 28], there are no morphological identification
keys for Culicoides larvae.
Generally, two methods have been used to identify Culi-

coides larvae based on the identification of emerging
adults: (i) emergence traps covering potential larval habi-
tats and allowing collection and identification of adult
midges [29–32]; and (ii) collection of samples from puta-
tive breeding sites, such as mud or cattle dung, stored in
laboratories for several weeks until adult midges emerge
and are identified [27–29, 33, 34]. However, these
methods are not suitable for rapid identification due to
the potentially lengthy time periods of sub-adults stages,
large species diversity and the maintenance efforts re-
quired to incubate samples until adult emergence. Indeed,
these two methods also have bias in increasing immature
mortality and therefore underestimating species diversity.
In addition, adult identification problems specific to cryp-
tic species or species with high polymorphism persist.
High-throughput identification of field-collected sam-

ples can enable insect vectors monitoring and related
eco-epidemiological studies. Species identification using
cox1 sequence similarity was proposed as a solution to the
limitations of morphological taxonomy. The utility of
DNA sequences for taxonomic or barcoding purposes is
based on the nucleotide divergence [9, 35] and need crit-
ical assessment before use. cox1 barcoding sequences can
be used to discover cryptic species, i.e. closely related and
similar morphologically, and, for this reason, overlooked
by traditional morphology-based approaches. DNA bar-
codes can also be used to link different life stages of in-
sects, e.g. larvae, pupae and adults. This is particularly
useful in situations where sympatry exists, or larvae are
difficult to rear, as frequently occurs for Culicoides.
A first attempt to identify Culicoides larvae using mo-

lecular techniques was conducted by Yanase et al. [36]

in a very restricted area in Japan and on a limited num-
ber of species. The provision of DNA barcode data for
Culicoides species, particularly species of medical and
veterinary importance in the Afrotropical region, fills an
important gap in our knowledge of the phylogeny of
these species and identification of immature Culicoides.
The analysis of the quality of our DNA reference data-
base through distance- and tree-based measures of the
identification success rates showed satisfactory results
(Fig. 1) and allowed its application to DNA sequences
from Culicoides larvae collected in various habitats in
the Niayes area of Senegal, West Africa, in order to
identify species at the larval stage. The abundance of the
larval stages for each species needs to be investigated in
relation to the type of larval habitat sampled.
Although this study highlights that the barcode data-

base developed here can be reliable for species-level as-
signments at the larval stage, the possible presence of
cryptic diversity within these species is to be taken into
account. Our study showed that the most abundant spe-
cies in the larval sampling was C. oxystoma. Considering
the vector role of C. oxystoma [37–40] its wide distribu-
tion (from Africa to South East Asia), previously de-
scribed ecological heterogeneity and morphological
plasticity [8, 41, 42], studies are needed to validate its
taxonomic status. Culicoides oxystoma might represent a
complex of species that require revision.
Of the eight Culicoides species identified at the larval

stage, C. imicola is regarded as the most important vec-
tor of African horse sickness [43, 44] and bluetongue vi-
ruses [45]; C. kingi is involved in the transmission of
Onchocerca gutturosa, a widespread parasite of cattle in
tropical regions [46]; and C. oxystoma is a well-known
vector of bovine arboviruses such as Akabane virus in
Asia [37, 47]. Culicoides oxystoma and C. kingi are sus-
pected of being vectors of African horse sickness in the
Niayes region of Senegal [38, 48] based on their abun-
dance and trophic behaviour. Larvae of C. oxystoma oc-
cupied several aquatic and semi-aquatic habitats, such as
pond edge, lake edge and puddle edge in the Niayes re-
gion [33]. Larvae of this species were also found in sev-
eral aquatic and semi-aquatic habitats in Japan and
India, such as paddy fields, stream edges and pond mar-
gins [36, 49, 50]. In contrast, the main larval habitat of
C. kingi in the Niayes region was lake edge [33]. Al-
though adults of C. imicola can sometimes be collected
in abundance in suction light traps set up at the vicinity
of farms or equids in the Niayes region of Senegal [51,
52], only one cox1 sequence obtained during this study
was identified as C. imicola. This confirms our previous
observations that C. imicola larvae in the Niayes region
have specific requirements and probably that favorable
breeding sites of C. imicola have been poorly sampled or
not sampled during our field investigations [33].

Bakhoum et al. Parasites & Vectors          (2018) 11:615 Page 5 of 10



Conclusions
Our study provides a new diagnostic tool to help identify
larvae of Culicoides at the species level in sub-Saharan Af-
rica. These results are important regarding species of
medical and veterinary interest, especially for vectors of
AHSV in the Niayes area of Senegal, and serve as a point
of reference for future investigations on larval ecology
studies and tentative development of larval control mea-
sures that need to be selective and environmental-friendly.
Besides providing reliable molecular data for species-level
assignments of Afrotropical Culicoides, our study proves
the efficiency of DNA barcode for studying Culicoides lar-
val diversity from field samples. Large-scale barcode data
for important taxa like Culicoides can provide a common
platform to researchers from a wide array of biological
studies such as taxonomy, ecology, behavior, life histories,
vector control and vector-virus relationship. However, it is
of prime importance that the name tagged with the gener-
ated sequences must be of high accuracy, confirmed with
the expertise of a trained taxonomist, to utilize DNA

barcode data for routine identification by other biologists
[53]. In addition to routine identification, DNA barcode
data can also provide insights into further taxonomic re-
search through elucidation of cryptic species and resolving
species complexes.

Methods
Reference DNA sequences
Reference DNA sequences constituted 230 cox1 sequences
representing 42 Culicoides species (Table 1). These species
were collected in different sites in the Afrotropical region
[18, 41, 54, 55]. We described summary statistics and
analyzed the quality of our reference DNA sequences
(230 cox1 sequences representing 42 Culicoides) by dis-
tance- and tree-based measures of identification success
rates using R software v.3.3.2 [56] with APE and SPIDER li-
braries [57, 58]. Every sequence in our reference DNA se-
quences was considered as unknown and used as a query
against the entire data set of identified sequences, and a

Parc de Hann (Ph)

Niague (Ng)

Pout (Pt)

Mbao (Mb)

SENEGAL

Ng5

Legend

Larval habitat sampled

Limit of department

Fig. 2 Geographical location of study sites in the Niayes region of Senegal, West Africa. Parc de Hann sites (Ph1 and Ph2) were classified as
freshwater lake edge habitats. Mb1, Ng2, Ng3, Ng4 and Ng5 were pond edge while Mb2, Mb3 and Ng1were saltwater lake edge. In Pout, all
habitats were puddle edge (Pt1, Pt2, Pt3 and Pt4)
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species name was assigned based on criteria [57]: nearest
neighbour (NN), threshold analyses (TA), best close match
(BCM), and monophyly of each species (Mono). These cri-
teria are not identification tools, but permit investigation
whether sequences can be used for species identification
[57, 59]. The barcode gap was calculated and plotted using
the maximum intraspecific distance and the minimum
interspecific distance. The barcoding gap [17] is an
important concept in DNA barcoding. It is assumed that
the amount of genetic variation within species is smaller
than the extent of variation between species. Genetic
distances were calculated using SPIDER employing the
Kimura-2-parameter (K2P) distance metric. Haplotype and
nucleotide diversity were calculated using DnaSP v.5 [60].

Culicoides larvae sampling
Culicoides larvae sampling was performed at four sites
in the Niayes region of Senegal, West Africa: Parc de
Hann, Mbao, Niague and Pout (Fig. 2). Among these, 14
larval habitats were monitored twice a month from Janu-
ary to December 2015, totaling 24 collection sessions.
The 14 larval habitats monitored were characterized as
follows: 2 larval habitats of “freshwater lake edge” in
Parc de Hann (Ph1 and Ph2), 3 in Mbao (Mb1 of “pond
edge”, and Mb2 and Mb3 of “saltwater lake edge”), 5 in
Niague (Ng1 of “saltwater lake edge”, and Ng2, Ng3,

Ng4 and Ng5 of “pond edge”), and 4 larval habitats of
“puddle edge” in Pout (Pt1, Pt2, Pt3 and Pt4) (Fig. 2).
For each habitat, one substrate sample of approxi-

mately 650 cm3 was collected in the upper layer of the
soil surface (0–5 cm) with a trowel, filtered with a fine
mesh sieve of 0.8 mm diameter and then investigated for
midge larvae using a direct flotation technique in satu-
rated sugar solution (850 g/l). Culicoides larvae were col-
lected and preserved in 70% ethanol. A maximum of 30
individuals, irrespective of the numbers collected, were
considered for molecular analyses at each of the sites
sampled. If fewer than 30 individuals were collected, all
individuals were analyzed (Fig. 3).

DNA extraction, polymerase chain reaction and sequencing
Genomic DNA of larvae Culicoides was individually
extracted using the NucleoSpin® Tissue DNA Kit
(Macherey-Nagel, Duren, Germany) according to the
manufacturer’s instructions and maintained at 20 °C until
further use. PCR amplification reactions were performed
in a 25 μl total reaction volume containing 1× buffer, 1
mM MgCl2, 0.2 mM of each dNTP (dATP, dCTP, dGTP
and dTTP), 0.2 μM forward primer LCO1490 (5'-GGT
CAA CAA ATC ATA AAG ATATTG G-3'), 0.2 μM re-
verse primer HCO2198 (5'-TAA ACT TCA GGG TGA
CCA AAA AAT CA-3') [61], 1.25 U of Taq DNA Poly-
merase (Qiagen, Hilden, Germany) and 0.4 ng/μl genomic

0

5

10

15

20

25

T
ot

al
 n

um
be

r 
of

 C
ul
ic
oi
de

s
la

rv
ae

Collection sessions

0

50

100

150

200

250

300

350

T
ot

al
 n

um
be

r 
of

 C
ul
ic
oi
de

s
la

rv
ae

Collection sessions

0

10

20

30

40

50

60

70

80

90

T
ot

al
 n

um
be

r 
of

 C
ul
ic
oi
de

s
la

rv
ae

Collection sessions

0

50

100

150

200

250

300

350

T
ot

al
 n

um
be

r 
of

 C
ul
ic
oi
de

s
la

rv
ae

Collection sessions

Parc de Hann Mbao

Niague Pout

Sampled Culicoides larvae

Sub-sampled Culicoides larvae
Legend:

Fig. 3 Number of Culicoides larvae collected and subsampled per site. A maximum of 30 individuals, irrespective of the numbers collected, were
considered for molecular analyses at each of the sites sampled. If less than 30 individuals were collected, all individuals were analyzed
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DNA. The PCR cycling conditions were as follows: an ini-
tial denaturation step at 94 °C for 5 min followed by 5 cy-
cles of 94 °C for 30 s, 45 °C for 40 s, 72 °C for 1 min, 35
cycles of 94 °C for 30 s, 51 °C for 30 s, 72 °C for 1 min,
and a final extension step at 72 °C for 10 min. Positive and
negative controls for the amplification reactions were car-
ried out at every PCR round. The PCR products were sep-
arated on 1.5% agarose gels and the products were
sequenced using the same primers as used in PCR amplifi-
cations (https://www.genewiz.com). All generated se-
quences were deposited in GenBank and BOLD.

Molecular identification for Culicoides larvae
Reference DNA sequences were transformed as a
BLAST database using makeblastdb of the BLAST soft-
ware v.2.2.31 [62]. To discriminate Culicoides species
within the larvae generated sequences, cox1 sequences
of Culicoides larvae were edited in Geneious R11 [19]
and used as a query in BLAST search in the BLAST
database, considering the different thresholds of diver-
gence generated and used in the identification success
rates previously described.

DNA barcoding database analyses
All DNA sequences in this study (except the sequences
of C. candolfii Delécolle, Paupy, Rahola & Mathieu [54]
(GenBank: KC986403.1 and KC986404.1) and C. dubita-
tus Kremer, Rebholtz-Hirtzel & Delécolle [55] (GenBank:
KY707796.1, KY707797.1 and KY707798.1) were submit-
ted to the BOLD database under the project code
“AFCUL” for acquiring accession numbers and
BOLD-IDs. Sequence alignment was performed using the
BOLD Management and Analysis System [63]. Overall
data sequences were compared using the Distance Sum-
mary and Barcode Gap Analysis tools on BOLD. In
addition, genetic distances were calculated with the BOLD
Management and Analysis System, employing the
Kimura-2-parameter (K2P) distance metric [64]. Further-
more, haplotypes were calculated using DnaSP v.5 [60].

Additional files

Additional file 1: Figure S1. The minimum cumulative error of false
positive and false negative identifications show the optimum threshold;
for our DNA reference libraries this was around 4.3 and 4.4%, respectively.
(PDF 100 kb)

Additional file 2: Figure S2. Line plot of the barcode gap for our DNA
reference libraries. For each individual in the dataset, the light sky-blue
lines represent the maximum intraspecific distance (bottom of line value),
and the minimum interspecific distance (top of line value). The red lines
show where this relationship is reversed, and the closest non-conspecific
is actually closer to the query than its nearest conspecific, i.e. the situation
where there is no barcoding gap. (PDF 3 kb)

Additional file 3: Table S1. Details of 1131 cox1 sequences
representing 40 Afrotropical Culicoides species submitted to BOLD
database under the project code “AFCUL”. (XLSX 56 kb)

Additional file 4: Table S2. Comparison between DNA sequences for
Afrotropical Culicoides species using the Barcode Gap Analysis tools on
BOLD. (XLSX 12 kb)
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