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Objective: Ketogenic diet (KD) and high-intensity interval training (HIIT) have preclinical 
benefits for type 2 diabetes (Db). However, the health risks of long-term KD use in diabetes 
should be ascertained and prevented. We hypothesized that KD-induced liver fibrosis in type 
2 diabetic mice could be ameliorated by HIIT.
Methods: Streptozotocin-induced type 2 diabetic mice were divided into high-fat diet 
(HFD) control (Db+HFD+Sed), KD control (Db+KD+Sed), HFD coupled with HIIT (Db 
+HFD+HIIT), and KD coupled with HIIT (Db+KD+HIIT) groups (n=6, per group). Control 
mice were kept in sedentary (Sed), while HIIT group mice underwent 40-minute high- 
intensity interval training three alternate days per week. After 8-week intervention, the 
indicators of body weight and insulin resistance, oxidative stress markers, hepatic fibrosis, 
genetic and protein expression of related pathways were tested.
Results: We found that fasting blood glucose level was reduced in the Db+HFD+HIIT, Db 
+KD+Sed, and Db+KD+HIIT groups. Insulin sensitivity was increased in diabetic mice of 
these groups, whereas ROS levels were decreased in mice that underwent HIIT. The 
immunohistochemical staining of liver, serum index, and hepatic parameters of diabetic 
mice in the KD group revealed liver fibrosis, which was significantly attenuated by HIIT. 
Besides, these effects of HIIT were the outcome of hepatic stellate cell’s inactivation, 
reduced protein expression of matrix metalloproteinases and tissue inhibitor of metallopro
teinases, and the inhibition of TGF-β1/Smad signaling.
Conclusion: KD had a profound fibrotic effect on the liver of type 2 diabetic mice, whereas 
HIIT ameliorated this effect. KD did not show any apparent benefit as far as glucose 
tolerance and homeostasis were concerned. Concisely, our results demonstrated that KD 
should be coupled with HIIT for the prevention and preclinical mitigation of type 2 diabetes.
Keywords: diabetes, ketogenic diet, high-intensity interval training, hepatic fibrosis, ROS, 
TGF-β1/Smad signal

Introduction
Type 2 diabetes mellitus is closely associated with obesity. According to the 9th 
edition (2019) of the International Diabetes Federation (IDF) Diabetes Atlas, 
around 463 million adults (20–79 years) were afflicted with type 2 diabetes (Db) 
worldwide.1 It was characterized by impaired insulin function or insulin production 
by the pancreatic beta cells.2 The elevated inflammation and reactive oxygen 
species (ROS) in type 2 Db also affected multiple organs, such as heart, blood 
vessels, eyes, kidneys, feet, and nerves, culminating in disability or premature 
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death.3–5 Although clinical interventions could treat type 2 
diabetes, it could be prevented in the first place through 
weight management and the adoption of a healthy 
lifestyle.6,7

In the past decades, the ketogenic diet (KD) as a new 
dietary intervention has gained a lot of attention for treat
ing obesity and type 2 diabetes, as it restricts calorie and 
liquid intake along with significant therapeutic effects. The 
underlying mechanism for these effects included augmen
ted mitochondrial efficiency and regulated the activation 
of AMPK, leptin and adiponectin levels, lipogenesis, keto
genesis, lipolysis, and gluconeogenesis.8–10 KD effectively 
reversed the fasting hyperglycemia, reduced the hepatic 
glucose production, and increased the hepatic insulin sen
sitivity within a few days without affecting body weight 
significantly.11–13 However, KD-fed mice showed 
increased serum triacylglycerol and cholesterol levels 
along with a higher hepatic lipid accumulation, which 
possibly increased the ROS levels.14,15 Moreover, some 
studies stated that KD induced nephrolithiasis, muscle 
cramps, bone fractures, and hepatic injury in mice.16,17 

Thus, the health risk imposed by the long-term use of 
KD for glycemic control in type 2 diabetic mice demands 
further investigation.

High-intensity interval training (HIIT) has become 
a widespread practice to burn fat. The essential framework 
of HIIT is identical. It included all-out work periods, 
followed by short rest periods.18 It was considered to be 
a highly effective method for the treatment and prevention 
of type 2 diabetes.19,20 As per the previous reports, HIIT 
mitigated hepatic injury in animals and humans.21,22 The 
activation of hepatic stellate cells (HSCs) played 
a decisive role in liver fibrosis.23 Increasing evidence 
demonstrated that transforming growth factor-beta 1 
(TGF-β1) was crucial for HSC activation.24 Moreover, 
previous studies have shown a close relationship between 
TGF-β1 and ROS in the pathological process of nonalco
holic steatohepatitis (NASH).25,26 Thus, we hypothesized 
that KD might induce TGF-β1-mediated HSC activation 
whereas HIIT might ameliorate this process through inhi
bition of ROS accumulation. We speculated that KD, 
coupled with HIIT (KD-HIIT), could be an effective 
approach to preclinical mitigation of type 2 diabetes.

In this study, streptozotocin (STZ)- and high-fat diet 
(HFD)-induced diabetic mice were fed with either HFD or 
KD and treated with or without HIIT. We found that 
glucose metabolism was significantly improved in diabetic 
mice fed with KD, but it was accompanied with hepatic 

fibrosis. However, hepatic fibrosis was attenuated by 
8-weeks of HIIT. Besides, long-term KD-induced hepatic 
fibrosis was accompanied by escalated levels of oxidative 
stress and TGF-β1. HIIT mitigated this process and inhib
ited hepatic Smad3 phosphorylation (ser 423/425) in type 
2 diabetic mice. Taken together, our study suggested that 
8-weeks of KD-HIIT considerably prevented type 2 dia
betes mellitus in STZ-HFD-induced diabetic mice.

Materials and Methods
Animals
Forty 5-week-old male C57BL/6J mice were provided by 
the Shanghai Laboratory Animal Company (SLAC, 
Shanghai, China). All male C57BL/6 mice received 
human care as per the standards set by the National 
Academy of Sciences and the Laboratory Animal Care 
and Use Guide (NIH Publication, 8th Edition, 2011). Mice 
were housed in the hygienic animal facility at 22±2°C 
temperature, 40–70% relative humidity with 12/12 light- 
dark cycle. Mice were fed with HFD or KD containing 
45% or 91.74% kcal derived from fat, respectively 
(SLAC, Shanghai, China). The body weight and fasting 
blood glucose of mice were evaluated before and after the 
experiment. All animal experiments were operated as per 
the procedures approved by the Animal Experiment 
Committee of East China Normal University (M20170203).

Animal Models of Type 2 Diabetes and 
Experimental Design
To induce type 2 diabetes, mice were injected with 
Streptozocin intraperitoneally (STZ, Sigma-Aldrich, 
100 mg/kg b.w., diluted by fresh sodium citrate buffer, 
pH=4.5), only once. Mouse tail-vein blood was collected to 
test the fasting blood glucose levels, once a week, by using 
a glucose monitor (Roche, Germany). After STZ administra
tion, mice were fed with HFD. Thirty-four mice with fasting 
blood glucose levels above 11.1 mmol/L for consecutive 
three weeks were characterized as type 2 diabetic mice. 
Considering the operability and accuracy of the experiment, 
the model mice were screened according to the uniformity of 
body weights. Twenty-four mice were randomly divided into 
four groups: high-fat diet control group (Db+HFD+Sed), 
ketogenic diet control group (Db+KD+Sed), high-fat diet 
with high-intensity interval training group (Db+HFD 
+HIIT) and ketogenic diet with high-intensity interval train
ing group (Db+KD+HIIT), containing 6 mice in each group. 
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The detailed experimental design is provided in 
Supplementary Figure 1.

High-Intensity Interval Exercise 
Intervention
Mice in the Db+HFD+HIIT and Db+KD+HIIT groups 
received HIIT through treadmill running exercise for 
three days per week for 8-weeks, while animals in con
trol groups kept in sedentary (Sed) in their cages 
throughout the experiment. The treadmill running (incli
nation 25°) exercise was conducted as described pre
viously but with slight modifications.27 Mice were 
acclimatized to exercise-environment by making them 
run on the treadmill for 10 min at the speed of 8 m/min 
for 5 days. HIIT included ten sets of 2 min high-intensity 
running, which equated to 85–90% of the maximum 
oxygen uptake, with 2 min active rest time (8 m/min) 
in each interval for a total 40 min. The intermittent speed 
was gradually increased from 15 m/min to 22 m/min, 
1 m/min per week, during the 8-week treadmill running 
exercise period.28,29 During this training, the room tem
perature was set to 22±2°C.

Glucose and Insulin Tolerance Test
After overnight (about 16 hours) fasting, mice (n=6 each 
group) were intraperitoneally injected with D-glucose solu
tion diluted in 0.9% saline (1 g/kg b.w. i.p, Sigma-Aldrich, 
USA). Glucose tolerance test (IPGTT) was conducted by 
using a glucose meter (Accu-Chek Aviva; Roche 
Diagnostics). Four days later, for insulin tolerance test 
(IPITT), after 4 hours of fasting, mice were injected with 
insulin diluted in 0.9% saline (0.75 U//kg b.w. i.p, Novolin 
R, Novo Nordisk) intraperitoneally. Blood glucose levels 
were determined in saphenous-vein blood after 0, 15, 30, 
60, 90, and 120 min, post glucose or insulin injection. The 
area under the curve (AUC) was determined by the 
GraphPad Prism software, as described previously.30

Serum and Liver Biochemical Analysis
After the experimental intervention, mice (n=6 each 
group) were sacrificed by cervical dislocation under 5% 
isoflurane as anesthesia. Serum samples were processed 
and stored at −80°C for further analysis. Nanjing 
Jiancheng Biotechnology Research Institute tested the 
malondialdehyde (MDA, A003-1-2), hydrogen peroxide 
(H2O2, A007-2-1), nitric oxide (NO, A013-2-1), glu
tathione peroxidase (GSH-PX, A005-1-2), and superoxide 

dismutase (SOD, A001-1-2) levels in mice serum or liver 
tissue samples. The content of hydroxyproline in the liver 
was expressed in µg/g wet weight of the liver and detected 
using the ELISA kit (CUSABIO, E08839m). All tests 
were conducted as per the manufacture’s instruction.

Liver Histology and Histological Grading 
of Fibrosis
After harvesting tissues of mice (n=6 each group), livers 
were extracted and immersed in 10% neutral buffered 
formalin for overnight and dehydrated using 70% ethanol. 
Liver tissue blocks were embedded in the paraffin, cut into 
5 μm thick sections, and transferred to slides. These tissue 
sections were stained with hematoxylin and eosin 
(Solarbio, G1120), Sirius Red (Abcam, ab150681) or 
Masson’s trichrome (Solarbio, G1345). The stained tissue 
sections were visualized, and images were captured using 
the optical microscope (Olympus Optical Co., Ltd., Tokyo, 
Japan). The macro examinations were carried out by two 
independent observers. The total fibrosis density score was 
determined by dividing the image intensity by the image 
area, as described previously.31

Immunohistochemistry
Collagen content was measured by immunohistochemistry. 
After routine deparaffinization and dehydration followed 
by peroxidase quenching. Microwave antigen repair was 
carried out for immunohistochemical staining. These sec
tions were incubated with goat serum for 1 h at room 
temperature followed by overnight incubation with col
lagen I antibody at 4°C (Abcam, ab34710, 1:100 dilution). 
After incubation, these tissue sections were washed with 
PBS and incubated with HRP-coupled secondary antibody 
for 1 h at room temperature. Immunoreactivity was visua
lized using DAB (NJJCBI, I025-1-1) staining. Lastly, the 
slides were counterstained using Harris hematoxylin 
(NJJCBI, D006-1-3). The staining intensity was quantified 
using Image-Pro Plus 6.0 (National Institutes of Health, 
USA), and integrated optical density (IOD) was measured 
using an optical microscope.

Immunofluorescence
Five-micrometer-thick liver sections were sealed with anti- 
α-SMA antibody (Proteintech, 14395-1-AP, 1:200 dilu
tion) and incubated at 4°C overnight followed by incuba
tion with secondary antibody coupled with Alexa fluor® 

594 (Thermo Fisher, A32740, 1:200 dilution) for 30 
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minutes at room temperature. Nuclei were visualized using 
4ʹ,6-diamidino-2-phenylindole (DAPI) staining. Images 
were captured using a Leica DMRB microscope equipped 
with a Canon EOS 600D and Canon EOS Utility 2 soft
ware version 2.14.

RNA Extraction and Real-Time PCR 
Analysis
Total RNA was extracted from pulverized liver samples 
(20 mg for each sample) using the TRIzol method 
(Invitrogen) and RNAeasy™ Plus mini columns 
(Beyotime), as per the manufacturer’s instruction. For real- 
time PCR (qPCR) analysis, RNA was reverse transcribed 
using a cDNA reverse transcription kit (Takara, Japan) and 
further analyzed using qPCR reaction mixture containing 
SYBR-green fluorescent dye (Takara, Japan). The 2−ΔΔCt 
method was adopted to determine the relative mRNA abun
dance by using the β-actin gene as an internal reference. The 
ABI-7600HTPCR thermocycler (Applied Biosystems, 
United States) was used for the qPCR analysis. 
Supplementary Table 1 lists the primers used for the qPCR 
analysis.

Western Blotting
Liver tissues (40 mg for each sample) were lysed in RIPA 
buffer (0.1% sodium deoxycholate, 0.5% NP-40, 150 mM 
NaCl, 50 mM Tris-Cl, pH 7.5). Bradford method (BCA 
Protein Assay Kit, 23227, Thermo Scientific™, USA) deter
mined the protein concentration of total homogenate. Around 
20–40 µg of protein sample was taken from each of the 
samples, resolved on 6–12% SDS-PAGE gel, and transferred 
to the PVDF membrane (Millipore). Proteins were detected 
using anti-α-SMA (Proteintech, 14395-1-AP, 1:1000 dilu
tion), anti-TGF-β (CST, #3711, 1:1000 dilution), anti- 
phospho-Smad3 (Ser423/425) (CST, #9520, 1:1000 
dilution), anti-Smad3 (CST, #9513, 1:1000 dilution), anti- 
GAPDH (CST, #97166, 1:1000 dilution) primary antibodies 
and horseradish peroxidase-conjugated secondary antibodies 
(ARIGO, ARG65251, 1:5000 dilution, ARG65250, 1:5000 
dilution). The images of protein bands were captured and 
analyzed by the FluorChem FC2 system (Alpha, Germany). 
GAPDH was used as a loading control.

Quantification and Statistical Analyses
Statistical analysis was performed using GraphPad Prism 
version 7.0 (GraphPad Software, La Jolla, CA, USA). 
Shapiro–Wilk test and Levene test were used to examine 

the data distribution and the homogeneity of variance. 
Two-way ANOVA with Bonferroni post hoc test was 
employed to compare groups (unless otherwise denoted). 
GTT and ITT data were analyzed using repeated-measures 
ANOVA, while blood glucose data were analyzed using 
the ANCOVA. N=6 each group, P-value < 0.05 was con
sidered as statistically significant. Results are shown as 
mean ± SD.

Results
The Effect of KD and HIIT on Glucose 
Homeostasis in Diabetic Mice
STZ- and HFD-induced diabetic mice were divided into 
four groups before initiating the experimental interven
tions. No significant differences were observed in the 
baseline body weights (Figure 1A) and fasting blood glu
cose levels (Figure 1C) between these four groups. 
However, ANOVA demonstrated a significant interaction 
between diet and HIIT after 8-weeks of HIIT intervention, 
affecting the fasting blood glucose levels (F(1,28)=13.2, 
P=0.0011). Post hoc analysis showed that fasting blood 
glucose levels were significantly improved in Db+HFD 
+HIIT (P=0.0005), Db+KD+Sed (P=0.0001), and Db 
+KD+HIIT groups (P=0.0001) than the Db+HFD+Sed 
group (Figure 1D). However, the interaction between diet 
(F[1,28]=10.95, P=0.0026) and HIIT (F[1,28]=2.297, 
P=0.1408) did not affect the weight of mice (Figure 1B). 
After an 8-week intervention, IPGTT (Figure 1E and F) 
and IPITT (Figure 1G and H) were performed. As per the 
outcomes of these tests, significant improvement in glu
cose tolerance and insulin sensitivity in the Db+KD+Sed 
(P=0.0001) and Db+KD+HIIT (P=0.0001) groups as com
pared to the Db+HFD+Sed group were observed. In addi
tion, the ITT-AUC was significantly decreased in the mice 
of the Db+HFD+HIIT group as compared to the Db+HFD 
+Sed group (P=0.0119). Thus, our data suggested that both 
KD and HIIT improved glycemic control and glucose 
homeostasis in diabetic mice.

The Effect of KD on Oxidative Stress in 
Diabetic Mice
The oxidative stress-induced damage was evaluated by 
determining the levels of MDA, NO, H2O2, SOD, and 
GSH-PX in the serum of diabetic mice. Two-way 
ANOVA showed a significant interaction between diet 
and HIIT (MDA: F(1,20)=19.8, P=0.0002; H2O2: F(1,20) 

=11.16, P=0.0033; NO: F(1,20)=7.05, P=0.0063; SOD: 

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                           

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2020:13 4212

Zhang et al                                                                                                                                                            Dovepress

https://www.dovepress.com/get_supplementary_file.php?f=275660.docx
http://www.dovepress.com
http://www.dovepress.com


F(1,20)=3.25, P=0.0039; GSH-PX: F(1,20)=9.59, P =0.0057). 
The Db+KD+HIIT group showed a significantly lower 
serum MDA, NO levels, and a higher serum SOD level, 

as per post hoc comparison (Figure 2B, C, and E). Besides, 
the Db+KD+Sed group showed increased MDA levels 
(P=0.0005), H2O2 (P=0.0017), NO (P=0.0001) (Figure 

Figure 1 Effect of the ketogenic diet and the ketogenic diet coupled high-intensity interval on body weight and glucose homeostasis in diabetic mice. The analysis of body 
weight (A) before the intervention, (B) after 8-week HIIT intervention; fasting blood glucose (C) before the intervention, (D) after HIIT intervention; (E, F) glucose 
tolerance test, and (G, H) insulin tolerance test, after HIIT intervention. Data were presented as means ± SD (n=6 each group) and *P <0.05, **P <0.01, compared to Db 
+HFD+Sed group, no sig. indicates no significance.

Figure 2 Ketogenic diet treatment-induced oxidative stress in diabetic mice. The diabetic mice were exposed to HFD or KD with or without HIIT for 8-week. Analysis of 
(A) serum H2O2, (B) serum MDA, (C) serum NO, (D) serum GSH-PX and (E) serum SOD in the mice of Db+HFD+Sed, Db+KD+Sed, Db+HFD+HIIT, and Db+KD+HIIT 
groups. Data were presented as means ± SD (n=6 each group). Groups were statistically compared using two-way ANOVA and Bonferroni post hoc tests. *P <0.05, **P 
<0.01, compared to Db+HFD+Sed group, ##P <0.01, compared to Db+KD+Sed group.
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2A–C), and reduced SOD levels (P=0.0015) (Figure 2E) as 
compared to the Db+HFD+Sed group. However, after 
8-weeks of HIIT intervention, the levels of MDA 
(P=0.0001), H2O2 (P=0.0022), NO (P=0.0006) in serum 
were significantly decreased (similar outcomes were 
observed in liver tissue, supplementary Figure 2A-B). 
Besides, the levels of SOD (P=0.0010), GSH-PX 
(P=0.0001) were markedly increased in the Db+KD 
+HIIT group as compared to the Db+KD+Sed group. 
These data suggested that the KD-HIIT significantly 
reversed the negative effect of KD on oxidative stress 
markers in diabetic mice.

HIIT Attenuated Ketogenic Diet-Induced 
Hepatic Steatosis and Hepatic Fibrosis in 
Diabetic Mice
We performed Masson trichrome, Sirius red staining, and α- 
SMA immunofluorescence of liver sections to prove the 
effects of HIIT on hepatic fibrosis in diabetic mice. KD’s 
intervention effectively reduced body weight and improved 
glucose homeostasis. However, it induced severe hepatic 
fibrosis, thick fibrotic septa, and pseudo-lobe formation in 
KD fed mice. As per the Sirius red and Masson staining, 
HIIT reduced liver fibrosis (Figure 3A). Two-way ANOVA 
analysis demonstrated a significant interaction between diet 
and HIIT (Sirius Red area (%): F(1,16)= 30.03, P=0.0001; 
fibrotic (%): F(1,16)=8.011, P=0.0121). In addition, post hoc 
analysis revealed that Sirius Red area (%) (Figure 3A and C) 
and fibrotic area (%) (Figure 3A and B) were significantly 
increased in the Db+KD+Sed group as compared to the Db 
+HFD+Sed group. However, KD-HIIT significantly 
decreased KD treatment led fibrotic area (%) and Sirius 
Red stained area (%) (P=0.001). Consistent with the mor
phological staining data, after HIIT intervention, the hepatic 
hydroxyproline content was significantly reduced in the Db 
+KD+HIIT group as compared to the Db+KD+Sed group 
(Figure 3E).

Immunofluorescent staining of the liver section from 
HFD-fed diabetic mice showed diminutive α-SMA (a mar
ker of HSCs activation) staining. Conversely, the liver 
sections of KD-fed diabetic mice showed increased α- 
SMA staining. However, α-SMA-positive areas were sig
nificantly reduced in liver sections of diabetic mice treated 
with KD and HIIT (Figure 3A and D). Taken together, 
these data indicated that KD-HIIT significantly attenuated 
KD-induced hepatic steatosis and fibrosis in diabetic mice, 
and it could be correlated to the HSCs activation.

HIIT Attenuated Hepatic Fibrosis by 
Ameliorating TGF-β1/Smad Signaling 
Pathway
Hepatic stellate cells (HSCs) were the primary effector 
cells in liver fibrosis.32 Activated HSCs were converted 
to fibrogenic myofibroblast-like cells, and collagen I act as 
the biomarker of these cells.33 In this study, we hypothe
sized that HIIT could attenuate hepatic fibrosis in diabetic 
mice by inhibiting HSC’s activation and matrix reduction. 
Thus, collagen production, HSCs activation, and matrix 
degradation in mice liver after 8-weeks of KD-HIIT inter
vention were evaluated. We observed a significant interac
tion between diet and exercise (F(1,20)=8.348, P=0.0091), 
and post hoc comparisons indicated that the collagen I was 
significantly increased in the Db+KD+Sed group while it 
was reduced in the Db+KD+HIIT group after the 8-weeks 
intervention (Figure 4A and B).

The activation of TGF-β1/Smad signaling plays 
a crucial role in hepatic fibrosis. The outcome of the 
qPCR analysis showed a significant increase in TGF-β1, 
collagen I, and its target genes, such as Acata2, Timp1, 
Timp2, Mmp2, Mmp9 levels in the Db+KD+Sed group; 
however, KD-HIIT treatment decreased the expression 
levels of these genes (Figure 4C). In addition, compared 
to the Db+KD+Sed group, though TGF-β protein expres
sion showed no significant change, both α-SMA and 
p-Smad3 (ser423/425) levels were significantly reduced 
in liver of Db+KD+HIIT group mice, as per the immuno
blot analysis (Figure 4D). These results collectively sug
gested that 8-weeks of HIIT training significantly 
ameliorated the KD-induced hepatic fibrosis and attenu
ated the TGF-β1/Smad signaling pathway activation in the 
liver of diabetic mice.

Discussion
Metabolic diseases are closely related to lack of exercise 
and unhealthy eating habits.11 Ketogenic diets (KDs) are 
high-fat, low-carbohydrate diets, which have been used 
therapeutically for decades, most notably in the epilepsy 
treatment.34 Recently, KD has gained much attention due 
to its efficient management in obesity and type 2 
diabetes.35 In current study, KD-fed diabetic mice showed 
substantial improvement in glycemic control (Figure 1C– 
G), which was in line with previous studies.35,36 However, 
its underlying mechanism remains unclear. Perry et al 
showed that the 3 days of low-calorie diet improved the 
glucose metabolism in a type-2 diabetes rat model by 
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reducing the hepatic glycogenolysis, acetyl-CoA-driven 
pyruvate carboxylase flux, and TAG-DAG-PKCε- 
mediated insulin resistance.37 In addition, other mechan
isms, such as mitochondrial biogenesis enhancement, 

FGF21 regulation, phospho-AMP-activated protein 
kinases, and histone deacetylase (HDAC) activation, 
could be involved.38–41 Although KD is widely used, its 
complete long-term effect remains ambiguous. Some 

Figure 3 High-intensity interval training attenuated ketogenic diet-induced hepatic fibrosis and histological changes in livers of diabetic mice. Analysis of mice liver (A), 
fibrotic area (%) (B), Sirius Red area (%) (C), α-SMA (%) (D) and hepatic hydroxyproline levels (E). Immunostaining was performed to determine the α-SMA expression (red, 
200×), and nuclear counterstaining was done using DAPI (blue). Scale bars: 100 μm. Data were presented as means ± SD (n=6 each group). Groups were statistically 
compared using two-way ANOVA and Bonferroni post hoc tests. **P <0.01, compared to Db+HFD+Sed group, #P <0.05, ##P <0.01 compared to Db+KD+Sed group.
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studies showed that long-term KD increased low-density 
lipoprotein cholesterol accumulation, inflammation, and 
liver steatosis in type 2 diabetes.42,43

In type 2 diabetic subjects, exercise played crucial 
roles, as it prevented obesity and insulin resistance. High- 

intensity interval training (HIIT) was contemplated as 
a time-effective exercise intervention with benefits similar 
to that of moderate-intensity aerobic exercise. Martinez- 
Huenchullan et al declared that HIIT improved systemic 
metabolism compared to constant-moderate endurance, 

Figure 4 High-intensity interval training attenuated ketogenic diet-induced liver fibrosis. (A) Collagen production was compared between different groups by collagen 
I antibody staining. (B) Percentages of immunoreactive (collagen (I) areas in liver tissue sections were measured and expressed as relative values obtained by comparing the 
Db+HFD+Sed group of mice. (C) Gene expression analysis of collagen production, HSCs activation, and matrix degradation in the liver of diabetic mice of different groups. 
(D) Western blot analysis of mouse liver lysates by using specific antibodies against α-SMA, TGF-β, p-Smad3 (ser 423/425), or Smad3. Data were presented as means ± SD 
(n=6 each group). Groups were statistically compared using two-way ANOVA and Bonferroni post hoc test. Scale bars: 100 μm. *P <0.05, **P <0.01, compared to Db+HFD 
+Sed group, #P <0.05, ##P <0.01 compared to the Db+KD+Sed group.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                           

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2020:13 4216

Zhang et al                                                                                                                                                            Dovepress

http://www.dovepress.com
http://www.dovepress.com


which might have resulted due to the normalization of 
AdipoR1 levels in muscle and increased uncoupling pro
tein 1 (UCP1) in subcutaneous adipose tissue.44 In addi
tion, its underlying mechanism could involve an increased 
level of glucose transporter protein 4 (GLUT4) through 
activated adenosine 5‘-monophosphate (AMP)-activated 
protein kinase (AMPK) and skeletal muscle 
hypertrophy.45,46 Our data also demonstrated that 8-week 
HIIT reduced the weight and improved the glucose home
ostasis in HFD-fed diabetic mice. Besides, previous stu
dies elucidated that exercise training markedly reduced the 
level of hepatic tumor necrosis factor-alpha (TNF-a) level 
and hepatic fibrosis markers in the liver through attenua
tion of F4/80-positive cells and chemokine expression.47,48 

Herein, we observed that KD-fed diabetic mice showed 
severe hepatic fibrosis, which was ameliorated by 8-weeks 
of HIIT intervention (Figure 3A–E). It indicated that KD 
had a fibrotic effect on the liver, which was ameliorated by 
HIIT.

Liver fibrosis was characterized by extracellular matrix 
accumulation that was induced by chronic liver injury. The 
underlying molecular mechanism for it involved the accu
mulation of activated α-smooth muscle actin (α-SMA) and 
hepatic stellate cells (HSCs) activation,49 although precise 
molecular mechanisms underlying liver fibrosis remains 
uncertain. In the past decades, multiple studies have 
shown the significance of the TGF-β1/Smad signaling 
pathway in liver disorders.24,50 TGF-β1, a key member 
of the TGF-β superfamily, had an apoptotic and cytostatic 
role in hepatocytes. In addition, TGF-β1 overexpression in 
the transgenic mice liver was associated with multiple 
organ fibrosis along with liver fibrosis.51 Therefore, inhi
bition of TGF-β1 and its downstream effectors may inhibit 
liver fibrosis effectively. Previous studies have demon
strated that regular exercise was crucial for diabetes mel
litus management and mitigation of liver fibrosis through 
regulating TGF-β1.48,52 In the current study, we observed 
that the TGF-β1 expression level was significantly 
increased in liver samples of KD fed diabetic mice 
(Figure 4C). However, KD-HIIT reduced the hepatic 
levels of TGF-β1 and its target gene’s (collagen I, α- 
SMA, TIMP, Mmp, and so on) activation in diabetic 
mice during the experimental period of 8-weeks. 
Therefore, our results indicated that the TGF-β1/Smad 
signaling pathway inactivation might have mediated the 
improvement of KD-induced hepatic fibrosis.

Oxidative stress was a pathogenetic factor for liver 
fibrosis, imbalance of which escalated the reactive oxygen 

species (ROS) levels and reduced the innate antioxidant 
defense mechanism of the human body.53 Previous studies 
have shown that ROS stimulated the collagen I production 
in HSCs/myofibroblasts.54–56 Collagen I mediated intracel
lular TGF-β1 signaling, which induced fibrosis.57 

Conversely, observational studies and clinical trials 
demonstrated the correlation between regular exercise 
and reduced oxidative stress. Alternatively, exercise train
ing exerted an antioxidant effect.58 Over the past few 
decades, a plethora of studies have investigated the pro
cess of oxidative stress and inflammation. The outcomes 
of these investigations have established the link between 
inflammation and oxidative stress.59,60 This was concor
dant with the findings in other studies where a significant 
increase of inflammation was detected after a very low 
carbohydrate diet intervention.14,61 In this study, we 
observed that the serum levels of pro-oxidant molecules 
in KD fed diabetic mice were significantly higher than the 
HFD-fed diabetic mice (Figure 2A–C). This is in line with 
the previous study, which has demonstrated a significant 
increase in oxidative stress after KD intervention. 
However, KD-HIIT significantly decreased the level of 
oxidative stress in mice serum by elevating the activity 
of antioxidant enzymes (Figure 2D–E). Thus, our results 
showed that regular HIIT played a vital role in KD- 
induced liver fibrosis by ameliorating ROS mediate intra
cellular signaling of TGF-β1 in the liver of diabetic mice.

Thus, as per the outcome of the current study, HIIT 
exerted a hepatoprotective effect against KD-induced 
hepatic fibrosis by ameliorating ROS mediate TGF-β1/ 
Smad signaling pathway in type 2 diabetic mice. 
Although the findings from this study provide support for 
our hypotheses, it should be acknowledged that several 
salient limitations apply. We were able to test only the 
effect of this intervention on STZ-HFD-induced diabetic 
mice and no causal effects were obtained by TGF-β micro
injections or gene manipulation. Thus, more experimental 
evidence is required to validate the outcomes of this study. 
Even then, this study opens a potential avenue for the 
clinical use of KD and exercise intervention in the treat
ment of diabetes mellitus without liver-damaging.

In conclusion, we demonstrated that although KD 
improved glucose homeostasis in type 2 diabetic mice, it 
caused severe liver fibrosis. The adverse effects of KD 
surpassed its benefits, such as glucose tolerance and home
ostasis. However, HIIT ameliorated this process through 
the impediment of the ROS mediate TGF-β1/Smad signal
ing pathway.
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