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Abstract

Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor, and the progno-
sis remains poor. Rearrangement of ROS7 gene, which was shown to have an oncogenic
potential, was previously discovered in GBM cell lines. In this pilot study, we aimed to iden-
tify the incidence of ROS1 rearrangement in GBM patient tissues to explore novel biomark-
ers for therapeutic strategy. Formalin-fixed and paraffin-embedded (FFPE) tissue sections
from 109 patients with GBM were screened for ROS1 rearrangement by anti-ROS immuno-
histochemistry (IHC) and ROS1 break-apart fluorescent in situ hybridization (FISH) assays.
0°-methylguanine-DNA methyltransferase (MGMT) gene promoter methylation and Isoci-
trate dehydrogenase 1 (/IDH1) mutation status were also assessed. All samples were inter-
preted by two experienced pathologists who were blinded to the clinical data. A total of 109
samples were collected and all samples were examined for ROS17 rearrangement by IHC
and FISH assays, and none was found to harbor ROS1 rearrangement. MGMT gene meth-
ylation was found in 42 (39.2%) cases, and IDH1 mutation was found in 6 (5.5%) cases. In
this study, ROS1 rearrangement was not identified in GBM patients, and thus it is difficult to
classify ROS1 rearrangement as a novel molecular subset in GBM patients for now.

Introduction

Glioblastoma multiforme (GBM) is the most common type of primary brain tumors and the
most aggressive subtype of high-grade gliomas. It is classified as grade IV in the World Health
Organization classification of tumors of the central nervous system [1, 2]. The current standard
treatment strategy for GBM patients consists of surgery followed by concurrent adjuvant radio-
therapy in combination with temozolomide. However, still less than 5% of patients survive lon-
ger than 5 years after diagnosis. The median overall survival is only 14.6 months with
radiotherapy plus temozolomide and 12.1 months with radiotherapy alone [3].
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During recent years, comprehensive molecular profiling studies have broadened our knowl-
edge of the underlying genetic and epigenetic aberrations that are associated with initiation
and progression of GBM. The incidence of chromosomal rearrangements such as interchromo-
soal, intrachromosoal and intragenic rearrangements is significantly higher in GBM than in
other tumor types [4]. For instance, epidermal growth factor receptor (EGFR) was shown to be
amplified in 43% of adult GBM, and intragenic deletions in EGFR associated with amplification
were commonly found in GBM [5, 6]. Besides chromosomal aberrations, frequent mutations
of PTEN (29%), TP53 (29%), EGFR (20%), NF1 (9%), RB1 (8%), phosphatidylinositol-4,
5-bisphospate 3-kinase, catalytic subunit-a (PIK3CA; 7%), and IDHI (5%) have been reported
[7]. However, majority of drugs that target key signaling pathways of GBM have not proved a
significant survival benefit in previous GBM patient cohorts [8].

Regarding epigenomic aberrations, the promoter methylation status of the O°-methylgua-
nine-DNA methyltransferase (MGMT) gene has been suggested as a distinct subset of GBMs.
Epigenetic MGMT gene silencing by promoter methylation is associated with loss of MGMT
expression and diminished DNA repair activity, which leads to increased sensitivity to temozo-
lomide, and thus longer survival [9-11].

ROS1 is a receptor tyrosine kinase of the insulin receptor family with constitutive kinase activ-
ity. ROS1 was found to be expressed in most glioblastoma cell lines, and characterization of
ROS1 cDNA revealed a structural class of transmembrane protein kinase [12-14]. Rearrange-
ment of ROSI gene, involving ROS! carboxy-terminal kinase fused to the amino-terminal por-
tion of a protein called FIG (Fused in Glioblastoma) was also found in glioblastoma cell line [15].
When 10 different cell lines from all grades of astrocytomas were screened for this fusion tran-
script, FIG-ROS1 was found in two GBM cell lines (U118MG and U138MG).Interestingly, this
FIG-ROS!1 fusion transcript retained the active kinase domain with oncogenic potential. Recently,
Stransky et al. reported the identification of CEP85L-ROS] in a glioblastoma patient sample [16].

ROS1 rearrangement was also found in other solid tumors such as non-small-cell lung can-
cer (NSCLC) and cholangiocarcinoma [17-20]. To date, nine different ROSI fusion partners
have been identified in NSCLC, all of which are potentially targetable due to the same cyto-
plasmic portion of the ROS1 tyrosine kinase domain [21]. Due to the biologic similarity of
ROSI and ALK, several ALK inhibitors have been shown to inhibit ROSI [22]. Preliminary
data from a phase 1 trial of crizotinib in the ROSI-positive NSCLC expansion cohort demon-
strated an overall response rate of 61% [23]. Therefore, identification of ROSI rearrangement
in GBM could offer a new therapeutic option to tackle this fatal disease.

In this study, we aimed to identify the incidence of ROSI rearrangement and evaluate
clinicopathological features associated with ROSI rearrangement in GBM patients.

Methods
Patient characteristics

Patients with histologically proven GBM (World Health Organization grade 4) with newly
diagnosed GBM were identified consecutively between January 2001 and December 2013. Of
these, 109 patients who had available tissue samples for biomarker analyses were selected for
this study. All patients provided written informed consent. Study protocol and informed con-
sent forms were approved by the ethics committee and the institutional review board of Sever-
ance Hospital.

ROS1 Fluorescence in situ Hybridization

To identify ROSI rearrangement, fluorescent in situ hybridization (FISH) assays were carried
out on formalin-fixed and paraffin-embedded (FFPE) tumors by using a break-apart probe to
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ROSI (Break-Apart Rearrangement Probe; Abbott Molecular) according to manufacturer’s
instructions. At least 100 nuclei per case were evaluated. FISH positivity for ROSI rearrange-
ment was defined as > 15% of tumor cells with a split signal. FISH studies were interpreted by
two experienced evaluators (SHK & JC) who were blinded to the clinical data.

ROS1 immunohistochemistry

For ROS1 immunohistochemistry (IHC) analysis, FFPE tissues sectioned at a thickness of 4uM
and stained using Ventana automated immunostainer BenchMark XT. The slides were dried at
60°C for 1h and deparaffinized using EZ Prep at 75°C for 4 min. Cell conditioning was carried
out using CCI solution at 100°C for 64 min. ROSI antibody (rabbit monoclonal, clone D4D6,
Cell Signaling Technology) was diluted to 1:50, treated, and incubated at 37°C for 32 mins. Sig-
nals were detected using OptiView DAB IHC Detection Kit (Ventana Medical Systems). Coun-
terstaining was carried out with Hematoxylin for 4 min at room temperature. Immunostained
slides were scored with intensities of 0, 1+, 2+, and 3+ as follows: intensity 0 was defined as no
detectable staining. Intensity 1+was defined as reactivity only detectableat high magnification
(x 20-40 objective). More intense reactivity was divided into moderate(2+) and strong (3+)
based on the ease of detectionat low magnification (x 4 objective).For interpretation of ROS1
expression, 3+ perinuclear staining was considered positive. IHC studies were interpreted by
two experienced evaluators (SHK & JC) who were blinded to the clinical data.

MGMT gene promoter methylation assay

MGMT gene promoter methylation was assessed in patients with available tissue. Genomic
DNA was extracted from 107 paraffin-embedded samples and the DNA methylation status of
CpG islands at the MGMT promoter was assessed by methylation-specific polymerase chain
reaction as previously described [11]. Unmethylated control DNA and methylated control
DNA with bisulfite treatment (Qiagen, Germany) were used as negative and positive controls,
respectively. Polymerase chain reaction products were separated on 8% polyacrylamide gels,
stained with ethidium bromide, and examined under ultraviolet illumination by investigators
blinded to clinical information.

Isocitrate dehydrogenase 1 (IDH7) sequencing analysis

IDH]1 assay was performed according to the method described by previously [24]. DNA was
isolated from each FFPE tumor tissue using a QIAamp DNA FFPE tissue kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’s instructions. The quantity of isolated genomic
DNA was evaluated using a NanoDrop 1000 spectrophotometer (Thermo Scientific, Wilming-
ton, DE, USA). The detection of IDH1 mutation was performed by polymerase chain reaction
(PCR) using forward and reverse primers that were designed to amplify exon 4 (codon R132)
of the IDH1 gene. IDH1 forward primer (5-ACC AAA TGG CAC CAT ACG A-3’) and
reverse primer (5-GCA AAA TCA CAT TAT TGC CAA C-3’) generated a 130-bp PCR
product. PCR amplification was performed using an AmpliTaq Gold PCR Master Mix
(Applied Biosystems, Foster City, CA, USA). The reaction mixture was subjected to an initial
denaturation at 95 C for 10 min, followed by 35 cycles of amplification consisting of denatur-
ation at 95 for 30s, annealing at 55 C for 30 s, and extension at 72 C for 60 s. After purification
and sequencing amplification, the sequencing products were analyzed by a 3730XL DNA
sequencer (Applied Biosystems).
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Cell line

For positive control of ROSI FISH assay, U118MG cell line (ATCC, Manassas, VA) maintained
in Dulbecco’s modified Eagle’s medium supplemented with 10% FBS and the 1% antibiotics
streptomycin at 37°C in a 5% CO2 environment, was used.

Statistical analysis

Progression-free survival (PFS) and overall survival (OS) were measured from the time of sur-
gery to disease progression or death, or date of last follow-up visit, and were analyzed using the
Kaplan-Meier method. Log-rank test was used to compare MGMT promoter methylation sta-
tus with survival. Cox proportional hazards model was used to perform univariate and multi-
variate analyses. P values of < 0.05 were considered statistically significant.

Results
Patient characteristics

A total of 109 patient samples with histologically proven GBM were available for analysis
(Table 1, Fig 1). The median age of all patients was 56 years (range, 20-84 years), and there
were 61 males (56%) and 48 females (48%). Total surgical resection was performed in 82
patients (75%), partial resection in 20 patients (18%) and biopsy was performed in 7 patients
(7%). With the median follow-up period of 24 months, the median OS was 21.0 months (95%
CI, 17.6-24.4) and the median PFS was 11.0 months (95% CI, 9.0-12.9) (Fig 2A and 2B).

Analysis of ROS1 rearrangement

FISH analysis of U118 MG showed ROSI rearrangement (Fig 3). We performed THC in 109
GBM patient samples and there was no positive staining for ROSI (Fig 4A). Next, we tested
with ROS1 FISH break-apart probes, but none met the criteria to be considered FISH-positive.
No sample had separation of 5' (green) and 3' (red) signals, and no sample had isolated 3' (red)
signals detected (Fig 4B).

Analysis of MGMT methylation and /IDH1 mutation

Among 107 patients whose MGMT methylation status was available, 42 (38.5%) patients had
methylated MGMT promoter and 65 (59.6%) patients had unmethylated MGMT promoter.
The methylation status could not be determined in the remaining 2 (1.9%) patients (S1 Fig).
IDHI mutation was found in 6 (5.5%) patients, all of whom had point mutations affecting
codon 132 of the IDH]I, located on chromosome locus 2q33. This mutation resulted in arginine
to histidine substitution (R132H mutation) in all four samples (S2 Fig).

Prognostic factors of survival

We analyzed univariate and multivariate analysis to identify prognostic factors of OS. Age, sex,
extent of resection and MGMT gene promoter methylation status were included in analysis.
Univariate analysis revealed that age, extent of resection, and MGMT gene promoter methyla-
tion status were significant prognostic factors. Multivariate analysis revealed that age and
MGMT gene promoter methylation status were independent prognostic factors for OS

(Table 2).
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Table 1. Clinicopathological characteristics of patients (n = 109).

Characteristics No (%)
Age, years

Median 56

Range 20-84
Sex

Male 61 (56)

Female 48 (44)
Surgery

Biopsy 7 (6.5)

Partial resection 20 (18.3)

Total resection 82 (75.2)
ROS1 rearrangement

Yes 0 (0)

No 109 (100)
MGMT promoter status

Methylated 42 (38.5)

Unmethylated 65 (59.6)

Unknown (invalid, indeterminate) 2(1.9)
IDH1 mutation

Mutated (R132H) 6 (5.5)

Wild type 103 (94.5)
Overall survival (months) 21

95% Cl 17.624.4
Progression-free survival (months) 11

95% Cl 9.0-12.9

Abbreviations: MGMT, O8-methylguanine-DNA methyltransferase; IDH1, Isocitrate dehydrogenase 1

doi:10.1371/journal.pone.0137678.t001

Discussion

In this study, we screened ROS1 rearrangement in GBM patients by both FISH and IHC for the
first time, and reported that ROSI rearrangement was not discovered in this GBM cohort. To
date, ROS!I rearrangement has been only identified in GBM cell lines and it is unclear if other
fusion variants exist in clinical samples.

Treatment of patients with GBM evolved slowly in the last decades. Although genetic and
epigenetic alterations have been found in GBM, drugs that specifically target signaling path-
ways such as receptor tyrosine kinase have not proved a significant benefit in survival in unse-
lected GBM patient cohorts [25]. Bevacizumab, an angiogenesis inhibitor, showed in two
recent randomized phase III trials to bring about 3 to 4month prolongation of progression-free
survival, without significant effect on overall survival [26, 27]. Therefore, efforts to find genetic
alterations that drive gliomagenesis and identify molecularly defined patient subgroups for tar-
geted therapies are imperative.

The discovery and characterization of ROSI rearrangement in solid tumors have raised sig-
nificant clinical interest because small molecule inhibitors may be effective to these tumors.
Currently, 9 fusion partners to ROSI have been identified (FIG, CCDC6, CD74, EZR, KDELR?2,
LRIG3, SLC34A2, SDC4, TPM3) all of which retain the ROS1 cytoplasmic kinase domain. The
oncogenic ROSI gene fusion in lung adenocarcinomas, which is identified in up to 3.4% of
patients, has expanded the list of themolecular subsets of lung cancers [21-23, 28-30]. Since
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Fig 1. Classical histologic findings of glioblastoma showing prominent pseudopalisading necrosis
are seen (hematoxylin and eosin x 200).

doi:10.1371/journal.pone.0137678.g001

ALK and ROSI share an approximately 49% amino acid sequence in the kinase domain, ALK
inhibitors have been proved to be effective in inhibiting ROSI activity [22]. Currently, there are
ongoing clinical trials of drugs targeting ROSI for non-small cell lung cancer patients with
ROSI rearrangement.

For cholangiocarcinoma (CCA), only FIG-ROS1 fusion transcript has been identified so far.
Gu et al. found out the presence of ROSI rearrangement in 8.7% of CCA patients and demon-
strated inhibition of growth by ALK inhibitor in ROSI rearranged CCA cells. These results sug-
gest that ROSI rearrangement in CCA is a promising druggable target with considerable
incidence [20]. ROSI rearrangement was also found in gastric cancer patients where IHC anal-
ysis revealed 23 (4.6%) positive cases among which 3 (0.6%) were FISH positive [31].

In our study, we used both FISH and IHC analyses for screening because RT-PCR method
can only detect known fusion variants. For screening methods, FISH and reverse transcriptase-
polymerase chain reaction (RT-PCR) have been used more commonly, although they are time
consuming, costly, and not suitable for rapid screening. Immunohistochemical analyses using
an anti-ROS1 rabbit monoclonal antibody (D4D6) have recently shown to accurately identify
ROSI-rearranged cancers showing 100% (8/8) sensitivity and 100% (138/138) specificity when
compared with break-apart FISH [28]. To date, only FIG-ROSI has been identified in GBM
cell lines and it is unclear whether ROSI fusion variants with oncogenic activity exist in clinical
samples.

The limitation of this study arises from a relatively small sample size. Reflecting upon the
incidences of ROSI rearrangements found in other tumor types, it is a rare phenomenon that
requires large-scaled screening efforts. Moreover, there may be a possibility of false-negative
THC test results due to a low level of the expressed ROS! fusion transcripts.
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Fig 2. Kaplan-Meier curve of (A) overall survival and (B) progression-free survival of all patients.

doi:10.1371/journal.pone.0137678.9002

Fig 3. ROS1 break-apart fluorescent in situ hybridization shown in U118MG cells.
doi:10.1371/journal.pone.0137678.9g003
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Fig 4. (A) Immunohistochemical staining of ROS1 showing negative immunoreactivity (B) ROS1 break-apart fluorescent in situ hybridization

100 m

showing negativity for ROS7 rearrangement.

doi:10.1371/journal.pone.0137678.9g004

Table 2. Univariate and multivariate analyses of prognostic factor of overall survival.

Variable No. of patients

Age (y)

<50 42

>50 67
Sex

M 61

F 48
Extent of resection

Total resection 82

Partial + biopsy 27
MGMT gene

Methylated 42

Unmethylated 65

Unknown 2

doi:10.1371/journal.pone.0137678.t002

Median, month (95% CI)

23 (17-28)
17 (14-21)

19 (15-22)
17 (11-22)

21 (16-25)
15 (12-17)

24 (19-28)
17 (15-18)
5 (4-7)

Univariate analysis

Overall survival

HR (95% Cl)

1.54 (1.04-2.31)

0.99 (0.68-1.47)

1.45 (1.04—2.32)

1.55 (1.04-2.32)

0.033

0.988

0.04

0.031

Multivariate analysis

Overall survival

HR (95% Cl)

1.71 (1.14-2.58)

1.76 (1.09-2.86)

1.72 (1.14-2.59)

0.005

0.022

0.009

Although ROS! rearrangement was not identified in our study cohort, it is notable that the
initial discovery of ROSI rearrangement in NSCLC was based on the identification in 1 cell line
[17]. It is uncertain that ROSI rearrangement may represent a potentialnew therapeutic oppor-

tunity for now, but biomarker discovery efforts should be continued to develop molecular
tumor classification and to improve outcome and management of patients with GBM.

Supporting Information

S1 Fig. MGMT methylation analysis showing methylation in case 1, and unmethylation in

case 2 and case 3 patients.

(TIF)
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S2 Fig. Mutation found at codon 131 (GCT) of isocitrate dehydrogenase enzyme isoforms
(IDH)1 resulting in Argl32His (c.395G>A) change.

(TIF)
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