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Abstract

Background: Dysregulated gene expression patterns have been reported in several mental disorders. Limited by
the difficulty of obtaining samples, psychiatric molecular mechanism research still relies heavily on clues from
genetics studies. By using reference data from brain expression studies, multiple types of comprehensive gene
expression pattern analysis have been performed on psychiatric genetic results. These systems-level spatial-temporal
expression pattern analyses provided evidence on specific brain regions, developmental stages and molecular
pathways that are possibly involved in psychiatric pathophysiology. At present, there is no online tool for such
systematic analysis, which hinders the applications of analysis by non-informatics researchers such as experimental
biologists and clinical molecular biologists.

Results: We developed the BEST web server to support Brain Expression Spatio-Temporal pattern analysis. There are
three highlighted features of BEST: 1) visualization: it generates user-friendly visual results that are easy to interpret,
including heatmaps, Venn diagrams, gene co-expression networks and cluster-based Manhattan gene plots; these
results illustrate the complex spatio-temporal expression patterns, including expression quantification and
correlation between genes; 2) integration: it provides comprehensive human brain spatio-temporal expression
patterns by integrating data from currently available databases; 3) multi-dimensionality: it analyses input genes as
both a whole set and several subsets (clusters) which are enriched according to co-expression patterns, and it also
presents the correlation between genetic and expression data.

Conclusions: To the best of our knowledge, BEST is the first data tool to support comprehensive human brain
spatial-temporal expression pattern analysis. It helps to bridge disease-related genetic studies and mechanism
studies, provides clues for key gene and molecular system identification, and supports the analysis of disease
sensitive brain region and age stages. BEST is freely available at http://best.psych.ac.cn.
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Background
The well-regulated gene expression in the human brain,
the highly heterogeneous and lifelong changing organ, is
the molecular basis of normal cognitive and behavioural
functions. The dysregulated gene expression patterns in
brain have been reported in several mental disorders, such
as schizophrenia [1], bipolar disorder [2] and Alzheimer’s
disease [3]. Limited by the difficulty of obtaining samples,
although excellent epigenetic studies such as the series of

works from the psychENCODE project have been re-
ported [4, 5], psychiatry molecular mechanism research
still relies heavily on clues from genetics studies.
Currently, several data tools provide abundant RNA

data from human brains to support gene expression ana-
lysis. The Genotype-Tissue Expression (GTEx) (https://
gtexportal.org) provides comparative results of gene ex-
pression quantifications in different tissues include hu-
man brain [6]; the Expression Atlas (https://www.ebi.ac.
uk/gxa/home) provides gene expression quantifications
across species and biological conditions [7]. Specific to
the human brain, the Allen Brain Atlas (http://human.
brain-map.org/) and BRAINSPAN (http://www.brain-
span.org/) support heatmap generation to view the gene
expression quantifications in multiple brain regions from
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different donors [8–10]. The Human Brain Transcrip-
tome (HBT, http://hbatlas.org/) provides genome-wide,
exon-level transcriptome data generated from both
hemispheres of postmortem human brains, and its “De-
velopmental Trajectories” module provides principal
component analysis of the expression of grouped genes
in six brain regions [11, 12].
By using reference data from the above resources,

multiple types of comprehensive gene expression pattern
analysis have been performed on psychiatric genetic re-
sults [13–16]. In such studies, the expression statuses of
interest genes were reviewed in different brain regions
(spatial pattern) and age stages (temporal pattern); the
potential functional combinations of genes of interest
were presented by their enrichment status in co-
expression gene clusters, which were generated by
Weighted Correlation Network Analysis (WGCNA) [17].
The analysis results can be shown as intuitive graphics,
such as expression heatmaps or enrichment heatmaps in
a spatial-temporal matrix, a co-expression network con-
structed by interest genes. These systems-level spatial-
temporal expression pattern analyses integrated genetic
data with gene expression data of normal adult brains
and identified specific brain regions, developmental
stages and molecular pathways that are possibly involved
in psychiatric pathophysiology. They also provided valu-
able evidence for further biological and clinical molecu-
lar research.
At present, there is no online tool for such systematic

analysis, which hinders the applications of analysis
among non-informatics researchers, such as experimen-
tal biologists and clinical molecular biologists. Thus, we
developed the BEST web server to support Brain Expres-
sion Spatio-Temporal pattern analysis. This web tool
performs gene expression pattern analysis with reference
to pre-integrated spatial-temporal expression data gener-
ated from healthy human brains. The analysis results are
presented as heatmaps, Manhattan plots, networks, and
other types of graphics. A user-friendly user interface
module was designed for input data submission, brows-
ing results and download.

Implementation
Reference data
Human single nucleotide polymorphisms (SNPs), genes and
brain spatio-temporal expression datasets
rsID and genomic location information of genome-
wide human single nucleotide polymorphisms (SNPs)
were obtained from the NCBI dbSNP database
(https://www.ncbi.nlm.nih.gov/SNP/, build 151) [18]
on the GRCh38 coordinate. Hugo gene nomenclature
committee(HGNC) official symbols and genomic loca-
tions of genome-wide human genes (both coding
genes and non-coding genes) were downloaded from

the Ensembl database (www.ensembl.org), assembly
GRCh38.p12 [19]. Eight human brain expression datasets
were obtained from BrainSpan Atlas [10, 12, 20, 21], Allen
brainmap [8], GTEx [6, 22], and other sources [23–26]. As
shown in Fig. 1, samples in expression datasets were cate-
gorized based on the corresponding brain region and the
age of individual from which it was obtained. In each data-
set, the average expression quantification of each gene was
calculated based on data from all samples in the same
spatio-temporal category. The detailed information of ref-
erence expression data and the spatio-temporal categories
are described in Additional files 1, 2, 3 and 4. In addition
to expression data for brain regions, cell-type-specific ex-
pression profiles, which provide specific expression gene
sets for astrocytes, endothelial cells, microglia, neurons,
and oligodendrocytes, were also used in BEST [27].

Co-expression modules
Weighted gene correlation network analysis (WGCNA)
was performed for five of the eight expression datasets
to identify clusters of co-expressed genes [17]. Accord-
ing to the guidelines of the WGCNA R package (Version
1.64–1, http://horvath.genetics.ucla.edu/html/Coexpres-
sionNetwork/Rpackages/WGCNA/), three expression
datasets with fewer than eight spatio-temporal categories
have not been used in WGCNA analysis. The “blockwi-
seModules” function in WGCNA was used to construct
co-expression networks and detect clusters, and the gene
cluster size was maintained between 30 and 5000. The
detected co-expression clusters (gene sets and the cor-
relation weights between genes) were stored for subse-
quent analysis. The statistics of co-expression clusters
are shown in Additional files 1, 2, 3 and 4.

Analysis and statistics
SNP mapping and gene-based P value calculation
BEST accepts the human gene list and SNP list (with/
without P value) as input. As shown in Fig. 1, inputs of
SNPs are mapped to genes according to their chromo-
somal locations, and the gene-based P value is computed
with an F-test based on a multiple linear principal com-
ponents regression module by using the MAGMA soft-
ware [28]; the test is corrected by using a user selected
method. Four correction methods are provided, includ-
ing Bonferroni, Sidak, false discovery rate (FDR)-Benja-
mini Hochberg (BH), and FDR-Benjamini Yekutili (BY).
Linkage disequilibrium (LD) between SNPs is fully
accounted for during the computation (28), and LD in-
formation for five populations, including African (AFR),
mixed American (AMR), East Asian (ESA), European
(EUR) and South Asian (SAS), was compiled from Phase
3 of the 1000 genomes project [29].
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Gene set-based brain spatio-temporal expression analysis
Input or mapped genes with P values are filtered before
expression analysis: genes mapped from inputs of the
SNP list with P value are filtered by user selected cutoffs
for adjusted P values; inputs of the gene list with P value
are filtered by the cutoff of 0.05. Filtered genes are
treated as a whole set, and the average expression quan-
tifications are calculated with reference to user selected
expression datasets. Inputs or mapped genes without P
values are analysed without any filter. Expression heat-
maps are generated according to the analysis result in a
matrix of brain regions by age periods (the spatio-
temporal matrix). Except for brain region and age period
related spatio-temporal analysis, cell-type-specific gene
set enrichment is also performed by using Fisher’s exact
test with the cutoff of 0.05, and an enrichment heatmap
is generated accordingly.

Co-expression gene cluster enrichment and co-expression
network construction
The input or mapped genes are compared with genes in
co-expression clusters. Similar to expression analysis, if
data were input with P values, the gene set will be

filtered before analysis. Specifically, for inputs with P
values, gene Manhattan plots are generated by using co-
expression clusters as x-axis. Co-expression gene cluster
enrichment analysis is performed on the input gene set
by using Fisher’s exact test with user selected correction
method and cutoff, and the enrichment heatmap is gen-
erated accordingly. The enrichment results may differ
when using co-expression clusters generated from differ-
ent expression datasets, and so a Venn diagram is calcu-
lated to present the numbers of significantly enriched
genes by using different reference data. The average ex-
pression quantifications of genes in enriched clusters are
calculated and presented as expression heatmaps. The
connectivity of input/mapped genes in enriched clusters
are counted, and the top 20 genes are treated as core
genes. Core genes in the top 5 enriched clusters of each
dataset are collected into one network file to construct
editable co-expression network graphics.

Implementation
BEST was developed using a server-client design. The
server side was implemented using gunicorn (https://
gunicorn.org/), the back-end computing is performed by

Fig. 1 The system architecture and overview of BEST web server
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using Python (version v3.6) and images are generated by
using R (version v3.3.2). The client side was built based
on the React framework (https://reactjs.org/) and Java-
Script libraries Bootstrap (https://getbootstrap.com/) and
jQuery (version v3.3.1) (https://jquery.com/). The Py-
thon framework flask (http://flask.pocoo.org/) was used
to launch the server. All reference data and job informa-
tion are saved in a MySQL database. The graphical net-
work output is enabled with the plugin Cytoscape
(version v3.3.2) [30]. Downloadable results of heatmaps,
Venn diagrams and plot diagrams are provided in PNG
format. BEST has been tested in most major web
browsers such as Chrome, Firefox, and Safari.

Results
BEST provides a user-friendly user interface. After input
data upload and parameter selection, a job can be simply
submitted. A job is often finished in several minutes,
and the results page will be accessed automatically; how-
ever, a user can also retrieve the result later by visiting
the results URL link that is generated after job submis-
sion. A case example is shown in the “A demo run”
module to demonstrate usage.

Input and parameters
BEST accepts the human gene list and SNP list (with/
without P value) as input. Genes should be entered with
their official symbol. SNP could be entered with their rs
ID or in VCF-like and plink-like format. The detail in-
formation of input format is shown in “Documents >
Tutorial” page. Three types of mapping rules, LD-
correlation information of five populations and four
types of correction methods could be selected in the
SNP to gene mapping. Eight human brain expression
data resources could be selected as reference data. Four
types of correction methods could be selected the co-
expression cluster enrichment too..

Output
As shown in Fig. 2, BEST provides heatmaps, Manhattan
plots, Venn diagrams, and networks to illustrate the
brain spatio-temporal expression patterns of input.

Expression heatmap of all inputs
As shown in Fig. 2a, the average expression quantifica-
tions of input in all spatio-temporal categories are pre-
sented in heatmap form. Although the spatial-temporal
categories of each reference dataset are different, BEST
generates heatmaps of the same structure (a matrix of
16 brain regions by 10 age stages) to facilitate the com-
parison between results with reference to different data-
sets. Specifically, for analysis with reference to RNA-Seq
data from Brainspan (dataset 1) and microarray data
from the Allen Brain Atlas (dataset 2), heatmaps in the

form of matrices of 25 brain regions by 9 age stages and
52 brain regions by 2 age stages are additionally pro-
vided, respectively.

Cluster-based Manhattan plots and cluster enrichment
heatmap
As shown in Fig. 2b, the distribution of inputs in co-
expression clusters is presented with a gene-based Man-
hattan plot, which uses co-expression clusters as x-axis
and the negative logarithm of gene-based P values as y-
axis. The enrichment status of inputs in co-expression
clusters is presented as a one row enrichment heatmap.

Enriched gene Venn diagram and cell-type enrichment
heatmap
The numbers of significantly enriched genes obtained by
using different reference datasets are compared in a Venn
diagram, as shown in Fig. 2c. It should be noted that the
Venn diagram only presents the statistics of results in ref-
erence to spatial-temporal categories in a matrix of the 16
brain regions by 10 age stages. The cell-type specific ana-
lysis results of all enriched clusters are shown in enrich-
ment heatmaps, with one cluster for each row.

Expression heatmap of enriched clusters
Except for average expression quantification of all inputs,
BEST calculates the average expression quantifications of
genes in each enriched cluster and presents them in ex-
pression heatmap form. As shown in Fig. 2d, different
gene clusters enriched by the same input gene set may
present different spatial-temporal expression patterns.

Core co-expression network of enriched genes
The enriched clusters in each dataset are prioritized by
corrected P values. As shown in Fig. 2e, the core co-
expression network of a maximum of the top 5 enriched
clusters (if they exist) for each dataset is present as an
editable graphic. The core network is constructed by at
most 10 input genes (if they exist) with the highest con-
nectivity in each cluster. Moreover, the network files
containing co-expression relationships of all input genes
in all enriched clusters could be found in the down-
loaded results folder.

Usage example
In the “A demo run” page, we provided a usage example
by using the best 10 k SNPs (identified by the original
study) of a genome-wide association study (GWAS) of
major depressive disorder (MDD) as input [31]. As
shown in Fig. 3, the demo data was uploaded with an rs
ID (with P-value) format. The mapping rule “within
gene” is selected for SNP gene mapping; the LD between
SNPs is accounted for according to reference data from
European populations in gene-based P value calculation.
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The gene-based P value is further corrected by Bonferroni
with the cut off 0.05. Expression dataset 1 (RNA-Seq data
from Brainspan), dataset 3 (microarray data from Allen
Brain Atlas) and dataset 5 (RNA-Seq data from Xu C
et al., 2018) are selected for expression pattern analysis.
All of these datasets include co-expression cluster infor-
mation, and so the Bonferroni correction method and a
cutoff of 0.05 are selected for cluster enrichment.
After analysis, 262 genes were mapped from inputs and

the detail gene list can be queried from the “Gene_set.txt”
in the downloadable results fold. These genes were
enriched respectively in five, one and four co-expression
clusters from the three selected data resources in the con-
text of 16 by 10 spatio-temporal matrix. Specific for

dataset 1, these genes were also enriched in eight clusters
in the context of 25 by 9 matrix. These enriched co-
expression clusters presented complex spatio-temporal
expression features. Take results with reference to dataset
1 in 16 by 10 matrix for example, as shown in Fig. 3a, the
most significantly enriched cluster is cluster 19, in which
the most significant gene is included. According to the ex-
pression heatmap (Fig. 3b), genes in this cluster are
expressed in multiple brain regions and a relative up-
regulation appears in the stage of neonatal to early child-
hood (in parietal, occipital, and cingulate cortex). Consid-
ering the correlation of early life events and adult
depression [32], the epigenetics status of genes in this
cluster may be involved in the molecular pathogenesis of

Fig. 2 Selected results of the demo run. a: Expression heatmap of all inputs; b: Cluster-based Manhattan plots and cluster enrichment heatmap; c:
Enriched gene Venn diagram and cell-type enrichment heatmap; d: Expression heatmap of enriched clusters; e: Core co-expression network of
enriched genes
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MDD. Among the 16 genes enriched in this cluster, the
LRRTM4 gene has the most connections in the co-
expression network (Fig. 3c). It may play important role in
the cluster-related biological processes.

Conclusion
BEST is a user-friendly web tool to provide gene expres-
sion spatial-temporal pattern analysis in human brain.
By using this data tool, users can perform a comprehen-
sive analysis on the results of genetic study (such as
GWAS or next-generation sequencing based study);
users can also obtain an expression pattern of any genes
of interest or SNPs which may have accumulated from
previous mechanistic studies or animal models.
In BEST, several human brain expression datasets were

compiled and processed as reference data of expression
pattern analysis. Gene expression profiling is categorized
according to sample brain region and age period. Matrices
of expression patterns in the brain regions by age periods
will provide more detailed clues on gene function. The cell
type specification of gene expression is also considered in
BEST, which will further expand the understanding of
input-related molecular processes.
Differently from most previous tools, BEST does not

focus on the expression status of a single gene: it ana-
lyses inputs in a more systematic and comprehensive
manner. While BEST treats input as a complete gene
set, it also categorizes input into several gene subsets
according to the gene expression correlation in the

reference dataset. Expression spatial-temporal pat-
terns of such subsets will provide richer and more
detailed information, and expression characteristics
that are offset by the up- and downregulation in the
whole set analysis will be more fully demonstrated.
The expression correlations within subsets are pre-
sented as a network which will reflect the relation-
ship between analysed genes and intuitively
demonstrate the potential importance.
All results in BEST are provided as downloadable

graphics, and the data by which the graphics were
generated, such as the network text files with a
Cytoscape applicable format, are also provided.
These result figures are easy to interpret; each
graphic illustrates an independent question, and the
combination of graphics provides more comprehen-
sive and logical interpretation.
To the best of our knowledge, BEST is the first data

tool to support comprehensive human brain spatial-
temporal expression pattern analysis; it will facilitate a
wide range of human brain related studies. BEST helps
to bridge disease-related genetic studies and mechanism
studies, provides clues for key gene and molecular sys-
tem identification, and supports the analysis of disease
sensitive brain region and age stages. The analysis results
of BEST will further provide evidence for clinical mo-
lecular studies related to brain diseases, such as disease
biomarker identification and drug development. To pro-
vide better supports, BEST will be reviewed annually for

Fig. 3 An usage example of BEST. a: Cluster-based Manhattan gene plots; b: Spatio-temporal expression heatmap; c: Gene co-expression network
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possible update. Besides of including new published
brain expression profiling as reference data, BEST will
attempts to integrate more types of brain functional
data, such as including gene expression coupled struc-
tural covariance network [33], when relative methods
were developed.

Availability and requirements
Project name: BEST
Project home page: http://best.psych.ac.cn
Operating system: Platform independent
Programming language: Python
Other requierments: none
License: Freely available to academic researchers.

Source code available upon request
Any restrictions to use by non-academics: BEST use

is restricted to academic and non-profit users

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3222-6.

Additional file 1: Table S1. The summary of reference expression data.
Table S2. The age periods in BEST. Table S6. The statistics of co-
expression clusters in different datasets

Additional file 2: Table S3. The Summary of Spatio-Temporal categor-
ies in reference datasets.

Additional file 3: Table S4. The addational Spatio-Temporal categories
in reference dataset 1.

Additional file 4: Table S5. The addational Spatio-Temporal categories
in reference dataset 2.
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