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Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide with
rising rates in parallel to obesity, type 2 diabetes, and metabolic syndrome. NAFLD
includes pathologies ranging from simple steatosis (NAFL) to non-alcoholic steatohepatitis
and cirrhosis (NASH), which may eventually develop into hepatocellular carcinoma (HCC).
Mechanically, lipids accumulation and insulin resistance act as the first hit, inflammation
and fibrosis serve as the second hit. Currently, the diagnosis of NAFLDmainly depends on
pathology examination and medical imaging, whereas proper gene signature classifiers
are necessary for the evaluation of disease status. Here, we developed three signature
classifiers to distinguish different NAFLD disease states (NAFL and NASH). Moreover, we
found that B cells, DCs, and MAIT cells are key deregulated immune cells in NAFLD, which
are associated with NAFLD and NAFLD-HCC progression. Meanwhile, AKR1B10 and
SPP1 are closely related to the above three immune cell infi ltrations and
immunosuppressive cytokines expressions in NAFLD and NAFLD-HCC. Subsequently,
we screened out AKR1B10 and SPP1 sensitive molecules TGX-221, which may provide a
possible therapy for NAFLD and NAFLD-HCC.

Keywords: non-alcoholic fatty liver disease, inflammation, signature classifiers, immune microenvironment,
drug sensitivity
INTRODUCTION

During the past century, Non-alcoholic Fatty Liver disease (NAFLD) has become one of the most
important causes of liver disease and it may become the leading cause of end-stage liver disease in
the next few decades (1–3). Currently, the global prevalence of NAFLD is estimated to be 24%, the
highest rates are reported in South America (31%) and the lowest in Africa (14%) (4). NAFLD is
strongly associated with metabolic syndromes, such as obesity, type 2 diabetes mellitus,
dyslipidemia, and hypertension (5, 6). Abnormal lifestyle (Caloric excess and sedentary lifestyle)
is the major cause of NAFLD. As the rates of obesity continue to rise, the prevalence of NAFLD is
constantly increasing in the past decade from 15% in 2005 to 25% in 2010 worldwide (4, 5).
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NAFLD is considered as a complex disease trait, and interactions
between the environment and a susceptible polygenic host
background determine disease phenotype and influence progression
(4). Lots of genome-wide association and large candidate gene studies
indicated that PNPLA3, TM6SF2, MBOAT7, LYPLAL1, APOB, and
GCKR variants were important genetic and epigenetic modifiers of
NAFLD progression in specific populations and races (7, 8).
However, the universal mechanism of NAFLD occurrence and
progression remains elusive (6). So far, the most recognized theory
is the ‘two-hit’ theory, namely, abnormal lipid metabolism and
inflammatory storm (9, 10). The first-hit is abnormal liver lipid
metabolism, resulting in excessive lipid influx or/and decreased lipid
clearance. In this progress, steatosis may be reversible and does not
necessarily cause permanent liver damage (11). The second-hit is the
inflammatory storm process, which may be caused by oxidative
stress, lipid peroxidation and cytokine action. Although the second-
hit occurs less frequently, it is more toxic and irreversible, as lobular
inflammation directly leads to ballooning degeneration and
perisinusoidal fibrosis, which promotes apoptosis and liver cell
death, and finally leads to scarring and progression to non-
alcoholic steatohepatitis (NASH) (10). Therefore, understandings
about two ‘hits’ molecular mechanisms and prognostic biomarkers
are essential to NAFLD prevention and treatment.

In our study, we developed three classifiers to classify different
NAFLDstates, exhibitingNAFLDassociated genes to reflectNAFLD
immune microenvironment deregulation and progression, and
predicting potential therapeutic targets and drugs.
MATERIALS AND METHODS

Data Processing
Forty-four patients in GSE33814, 73 patients in GSE48452 and 63
patients in GSE89632 were downloaded from Gene Expression
Omnibus (GEO), 45 patients in E-MEXP-3291 were from the
ArrayExpress database. We used the “SVA” package in R for
batch correction (12). HCC data were contained from The
Cancer Genome Atlas database (TCGA), including 374 HCC
samples and 50 normal samples.

The immunohistochemical pictures were acquired from the
HPA database (https://www.proteinatlas.org/), the survival
analysis from Gepia (http://gepia.cancer-pku.cn/) and co-
expression network from cBioPortal database. ImmuCellAI
(http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/) was used to
analyze the patient’s immune status (13). Besides, drug-
sensitive data were collected from GDSC database in GSCALite
(http://bioinfo.life.hust.edu.cn/web/GSCALite/).

Diagnostic Methods to Diagnose Different
States of NAFLD
The diagnoses of all samples (E-MEXP-3291, GSE33814, GSE48452,
and GSE89632) used were histologically validated by a board-
certified pathologist before molecular analysis. For histological
analysis, hematoxylin and eosin (H&E) and chromotrope aniline
blue (CAB) stained sections were used. Histological slides were
diagnosed using criteria from a scoring system for human NAFLD
Frontiers in Immunology | www.frontiersin.org 2
(14). Besides, in the TCGA database, HCC samples used were
histologically validated by a board-certified pathologist before
molecular analysis. The standards were defined by the American
Association for the Study of Liver Diseases (AASLD) (15).
Information on donors, including age and gender, can be seen in
Table 1.

Differential Analysis, GO\KEGG Analysis,
and Gene Set Enrichment Analyses (GSEA)
The genes differentially expressed (DEGs) were calculated and
labeled using the “Limma” package. Subsequently, DEGs were
analyzed by gene ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses. GO analysis consists of
three parts, including molecular function (MF), biological process
(BP), and cell component (CC). We determined that results are
statistically significant at a level of less than 0.05 using a p-value.
The GSEA was performed by GSEA software (version 4.0.3). We
utilized it to detect the difference in the set of genes expressed
between the high-risk and low-risk group in the enrichment of the
MSigDB Collection (h.all.v7.1.symbols.gmt). For each analysis,
gene set permutations were performed 1000 times.

Weighted Gene Co-Expression Network
Analysis (WGCNA)
To find modules highly correlated with NAFLD, WGCNA was
performed using the WGCNA R package and carried out on all
genes (16, 17). The Pearson correlation coefficient was used to
establish an unsupervised co-expression relationship based on the
connection strength adjacency matrix for gene pairs. This matrix
was increased to b = 7 based on the scale-free topology criterion.
Then the topological overlap matrix was used to analyze the
adjacency matrix of clustering GC patient gene expression data.
Finally, the dynamic tree cut algorithm was applied to the
dendrogram for module identification with the mini-size of
module gene numbers set as 50 and a cut height of 0.9. In the
module-trait analysis, GS value>0.3 and MM value>0.55 were
defined as a threshold. The WGCNA algorithm was described in
detail by Zhang Bin et al. (18).

Protein-Protein Interaction (PPI) Network
Construction
STRING database (https://cytoscape.org/) was used to construct a
protein-protein interaction network (PPI). We hid disconnected
nodes in the network and set the minimum required interaction
score to 0.4. Later, the Cytoscape software (Version 3.7.1) was
applied to visualize the PPI network. The data were imported into
CytoHubba plugin, which helped to identify key genes through five
different calculation methods, namely, EPC, MCC, DMNC, MNC,
and Degree (19). Then, the processed data were imported into
another plugin, MCODE, which helped to identify different
clusters (20).

The LASSO Logistic Regression
The LASSO logistic regression model analysis used the “glmnet”
package in R (12). We extracted the expression of 9 core genes
for each NAFLD sample. While selecting the optimal features of
January 2021 | Volume 11 | Article 609900
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high-dimensional data, the LASSO method that prevents
overfitting with strong predictive values and low mutual
correlation was used (21). Principal component analysis (PCA)
was performed before/after feature selection using the expression
profiles of 9 core genes. The cores genes, as optimal genes, which
were identified with non-zero regression coefficients, were used
to establish an mRNA-based signature classifier for predicting
different NAFLD states. A classifier index for each sample was
Frontiers in Immunology | www.frontiersin.org 3
created with the following formula: index = Exp gene1 *Coef1 +
Exp gene2 *Coef2 + Exp gene3*Coef3+ …

The efficiency of the classifier was assessed by mean squared
errors (MSE), accuracy, sensitivity (Se), specificity (Sp), positive
predictive value (PPV), negative predictive value (NPV), and
area under the receiver operating characteristic (ROC) curve.
These ROC curves were drawn and compared using the “pROC”
package in R (22).
TABLE 1 | Clinical Characteristics of E-MEXP-3291, GSE33814, GSE48452, GSE89632 and TCGA-HCC.

E-MEXP-3291 Normal (n=19) NAFL(n=10) NASH(n=16) p

Gender Male 9 5 3 >0.05
Female 10 4 12

Age (years) 43.26 (16-70) 44.66 (16-66) 55.93 (41-68) >0.05

GSE33814 Normal(n=10) NAFL(n=14) NASH (n=8) p

Gender Male 5 8 6 0.43
Female 5 6 2

Age (years) 51 (25–73) 61.5 (37–78) 55 (46–72) 0.37
Ballooning (0:1:2) 10:0:0 14:0:0 0:4:4
Fibrosis (0: 1:2:3:4) 9: 1:0:0:0 9: 4:1:0:0 0: 0:0:2:6
Inflammation (0:1:2:3) 6:3:1:0 1:7:5:1 1:3:3:1
Steatosis (0:1:2:3) 10:0:0:0 0:10:3:1 3:1:4:0
Matteoni (points) n/a 2 (1–2) 3 (0–4)
BMI 22.8(18.3-30.1) 25.5(19.8-39.2) 31(21.4-30.8)

GSE48452 Normal (n=41) NAFL (n=14) NASH (n=18) p

Gender Male 7 4 4 >0.05
Female 34 10 14

Age (years) 47.56 (23-80) 41.60 (24-65) 45.48 (30-58) >0.05
Steatosis (0-30%:30-50%:>50%) 41:00:00 5:05:04 0:3:15
Inflammation (0:1:2-3) 37:03:00 12:02:00 0:9:9
Fibrosis (0:1:2-4) 33:05:01 10:04:00 3:11:4
NAS (0-2:3-4:5-8) 41:00:00 11:03:00 0:3:15
BMI 35.36 (17-55) 48.28(40-60) 45.97(24-70)

GSE89632 Normal (n=24) NAFL (n=20) NASH (n=19) p

Gender Male 11 14 9 >0.05
Female 13 6 10

Age (years) 37.21(22-58) 44.7(30-60) 43.47(23-68) >0.05
Ballooning (0:1:2) 17:0:0 20:0:0 0:13:6
Steatosis (0-30%:30-50%:>50%) 17:0:0 9:7:4 5:7:7
Inflammation (0:1:2-3) 7:0:0 19:0:0 0:11:8
Fibrosis (0:1:2-4) 10:6:0 17:3:0 4:5:10
NAS (0-2:3-4:5-8) 7:0:0 16:3:0 0:9:10
BMI 25.88(18-33) 28.78(22-41) 31.77(23-49)

TCGA Database Category Number of patients

Gender Female 122
Male 255

Age(years) <65 224
≥65 153

Grade I 55
II 180
III 124
IV 13

Stage 1 175
2 87
3 86
4 5

Status Alive 249
Dead 128
Januar
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RESULT

Identification of DEGs in NAFLD Patients
The whole research design was illustrated in Figure 1. Firstly, we
identified genes which were expressed differently at different stages
of NAFLD. The data of NAFLD obtained from GSE33814 and E-
MEXP-3291, including 32 normal samples, 29 non-alcoholic fatty
liver (NAFL) samples, and 28 NASH samples. 174 DEGs from
Normal-NASH group and 117 DEGs from NAFL-NASH group
were included in the analysis, which met the screening standard of
our study (p<0.05, |log2FC) | >1.0). The expression distributions of
these DEGs were displayed in Figure 2A-B. Subsequently, we
searched for the common genes of these two groups. A total of
111 DEGs were included, consisting of 91 up-regulated and 20
down-regulated DEGs (Figure 2C).

GO and KEGG Pathway Enrichment
Analysis and Gene Set Enrichment
Analysis (GSEA)
To investigate themechanismofNAFLDprogression, we performed
GO/KEGG analysis among Normal-NASH and NAFL-NASH
group. In the up-regulated group, intersected GO terms were
significantly enriched in extracellular matrix organization,
extracellular structure organization and cell chemotaxis, which
were closely related to tumorigenesis. (Figures 3A, B, G, H). And
KEGG analysis showed intersected pathways were enriched in
cancer-related pathways, such as PI3K−AKT, ECM−receptor
interaction, Focal adhesion and Human papillomavirus infection
signaling pathway (Figures 3C, I). In down-regulated group, the
results showed intersected GO terms were significantly enriched in
cellular response to copper ion, stress response to copper ion, cellular
Frontiers in Immunology | www.frontiersin.org 4
response to cadmium ion and detoxification of copper ion (Figures
3D, E, J, K). Meanwhile, KEGG analysis showed that pathways were
enriched in Mineral absorption, Drug metabolism − cytochrome
P450 and Retinol metabolism (Figures 3F, L).

To further explore the mechanism of NAFLD progression, we
performed GSEA which took c7.1 as a reference gene set. The
overlapping pathways between Normal-NASH group and
NAFL-NASH group were shown in Table 2. The results
recognized that pathways were significantly associated with
tumorigeneses, such as epithelial-mesenchymal transition
(EMT), angiogenesis and p53 pathway (Figures 3M, N).

Therefore, the above results indicated that the extracellular
matrix may play an extremely important role in the progression
of NAFLD.

WGCNA and Module Identification
of NAFLD
WGCNAwas performed to construct co-expressed networks and
identify co-expression modules. We obtained RNA expression
data and clinical characteristics from GSE48452 and GSE89632.
Co-expression analysis was carried out to construct the co-
expression network. In our study, the power of b = 7 (scale-
free R2 = 0.9) was selected as the soft thresholding parameter to
ensure a scale-free network (Figure 4A). A total of 30 modules
were identified through hierarchical clustering (Figure 4B).
Similar module clustering was constructed by using dynamic
hybrid cutting (threshold=0.2). Among the 30 modules, the
grey60 module was the highest positive module correlated to
ballooning (R2 = 0.7, p=6e-20), steatosis (R2 = 0.54, p=4e-11),
inflammation (R2 = 0.52, p=3e-10) and nonalcoholic fatty liver
activity score (NAS) (R2 = 0.62, p=4e-15). The orange module
FIGURE 1 | The workflow of the present study.
January 2021 | Volume 11 | Article 609900
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A

B

C

FIGURE 2 | Acquisition of differentially expressed genes (DEGs). (A) Heatmap of Normal-NASH group and NAFL-NASH group; (B) Volcano map of Normal-NASH
group and NAFL-NASH group; (C) Venn diagram between Normal-NASH group and NAFL-NASH group.
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FIGURE 3 | GO\KEGG and GASE in non-alcoholic fatty liver disease. (A–C) Up-regulated Normal-NASH group. GO analysis (including molecular function (MF),
biological process (BP), and cell component (CC) (A); Top 5 of GO analysis (B); KEGG pathway analysis (C); (D–F) Down-regulated Normal-NASH group. GO
analysis (including molecular function (MF), biological process (BP), and cell component (CC) (D); Top 5 of GO analysis (E); KEGG pathway analysis (F); (G-I) Up-
regulated NAFL-NASH group. GO analysis (including molecular function (MF), biological process (BP), and cell component (CC) (G); Top 5 of GO analysis (H); KEGG
pathway analysis (I); (J–L) Up-regulated NAFL-NASH group. (GO analysis (including molecular function (MF), biological process (BP), and cell component (CC)
(J); Top 5 of GO analysis (K); KEGG pathway analysis (L); (M, N) Top 10 interactive pathway of GASE in Normal-NASH group (M)/NAFL-NASH group
(N) (GSE33814 and E-MEXP-3291).
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showed the highest positive correlation with fibrosis (R2 = 0.63,
p=1e-15). Besides, lightsteelblue1 was highly negatively correlated
to fibrosis (R2 = 0.48, p=3e-8), steatosis (R2 = 0.4, p=4e-6),
inflammation (R2 = 0.42, p=9e-7) and NAS (R2 = 0.43, p=5e-7).
The yellow module showed a highly negative correlation with
ballooning (R2 = 0.41, p=1e-6) (Figure 4C). The positive modules
were shown in Figure 4D and the negative modules in Figure 4E.

In the module-trait analysis, GS value > 0.3 and MM value >
0.55 were defined as trait-related genes. Subsequently, we
intersected the trait-related genes obtained from WGCNA
analysis and 111 DEGs obtained from expression difference
analysis and finally obtained 29 trait-expression-related genes.

Identification of Core Genes and
Construction of Protein-Protein Interaction
(PPI) Network
As inflammation plays a central role in NAFLD, we constructed a
PPI network with 29 trait-expression-related genes and 5 elevated
inflammatory factors obtained from differential analysis. In the
STRING database, we defined the removal standard to 0.4 and
removed the independent genes. Later, 19 filtered genes were
Frontiers in Immunology | www.frontiersin.org 7
divided into four modules (Ballooning Associated, Inflammation
Associated, Fibrosis Associated, and Glycolysis Associated)
(Figure 5A). The interactive relationship of 19 filtered genes in
the whole network was determined using the Cytoscape software
(CytoHubba plugin and MCODE plugin). Firstly, the data were
imported into CytoHubba plugin, which helped to identify key
genes through 5 different calculation methods, namely, EPC,
MCC, DMNC, MNC, and Degree (Table 3). Subsequently, the
data were imported into another plugin,MCODE, which helped to
identify different clusters. The results showed that MT1G, MT1X,
MT1F, MT1H and MT1M were in cluster 1 while FABP4, SPP1,
MMP7 and CCL2 were in cluster 2 (cutoff k-score = 2). Finally, we
performed a correlation analysis of these 9 core genes (MT1G,
MT1X, MT1F, MT1H, MT1M, FABP4, SPP1, MMP7 and CCL2)
and found that they were closely related to each other (Figure 5B).

Construction of LASSO Logistic
Regression Classifiers
To develop classifiers to distinguish different NAFLD states, we
performed LASSO logistic regression based on the expression of
the 9 core genes (MT1G, MT1X, MT1F, MT1H, MT1M, FABP4,
TABLE 2 | Intersected pathway between Normal-NASH group and NAFL-NASH group via GSEA analysis.

NAME Normal-NASH Rank NAFLD-NASH RANK TotalRank

NES NOM p-value NES NOM p-value

APICAL_JUNCTION 1.7019578 0.006302521 1 1.8813994 ≤0.001 1 1
WNT_BETA_CATENIN_SIGNALING 1.5594031 0.033126295 4 1.7948854 0.001945525 2 2
EPITHELIAL_MESENCHYMAL_TRANSITION 1.5607316 0.002070393 3 1.6032957 0.001980198 5 3
MYOGENESIS 1.5583161 0.034836065 5 1.7363774 0.002028398 4 4
P53_PATHWAY 1.6230526 0.008264462 2 1.5556473 0.01980198 7 5
HEDGEHOG_SIGNALING 1.5503728 0.04338843 7 1.7384652 0.005769231 3 6
APOPTOSIS 1.5512007 0.002145923 6 1.5238415 0.01992032 8 7
ANGIOGENESIS 1.4463018 0.029661017 10 1.59207 ≤0.001 6 8
KRAS_SIGNALING_UP 1.4812572 0.015118791 8 1.4351604 0.0392562 10 9
UV_RESPONSE_DN 1.4586604 0.029106028 9 1.5220932 0.014084507 9 10
January 2021 | Vo
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TABLE 3 | Genes filtered by Cytoscape software (CytoHubba plugin and MCODE plugin).

NAME MCC RANK DMNC RANK MNC RANK Degree RANK EPC RANK Total Rank

MT1G 1 1 1 3 7 1
MT1H 2 2 2 4 8 2
CCL2 6 7 7 1 1 3
SPP1 7 6 5 2 2 4
MT1F 3 3 3 6 9 5
MT1M 4 4 4 7 11 6
MT1X 5 5 6 9 10 7
MMP7 10 8 8 10 5 8
FABP4 12 9 9 12 4 9
IL7R 9 15 15 8 3 10
CFTR 8 16 16 5 6 11
GPC3 11 13 13 11 12 12
CXCL6 14 10 10 14 13 13
CLIC6 15 11 11 15 17 14
KRT7 16 12 12 16 18 15
HKDC1 13 18 18 13 14 16
CD24 17 14 14 17 15 17
AKR1B10 18 17 17 18 19 18
SLC12A2 19 19 19 19 16 19
▀▀▀ MOCDE1.
▀▀▀ MCODE2.
icle 609900
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SPP1, MMP7 and CCL2). Our calculation followed the 10-fold
cross-validation method and randomly divided the patients into
groups- training group: testing group = 6:4.

For Normal-NASH group, 6 genes (CCL2, FABP4, MT1G,
MT1H, MT1M, and SPP1) were identified as optimal features by
Frontiers in Immunology | www.frontiersin.org 8
non-zero regression coefficients (Figure 5C). The classifier’s
lambda.min = 0.107641 and the mean squared errors (MSE) =
0.082318791. Later, a gene-based classifier index was created
with the following formula: Index=CCL2*(-0.225381325) +
FABP4*(1.739726652) + MT1G*(0.78448675) + MT1H *
A

B

D E

C

FIGURE 4 | WGCNA to Identify trait-related modules and genes. (A) Calculating soft-thresholding power. Left: scale-free fit indices using different soft-thresholding
powers (b). Right: mean connectivity using different soft-thresholding powers; (B) The dendrogram clustered by Dynamic Tree Cut algorithm; (C) The heatmap
profiling the correlations between module eigengenes and the clinical characteristics; (D) Scatter plot of trait-related modules (Up-regulated); (E) Scatter plot of trait-
related modules (Down-regulated).
January 2021 | Volume 11 | Article 609900
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O P Q

FIGURE 5 | Construction and validation of LASSO logistic regression classifiers. (A) Protein-Protein Interaction interactions among 19 DEGs; (B) Correlation analysis
of nine core genes; (C-F) In Normal-NASH group, parameter selection in the LASSO model (C); principal component analysis before (D)/after (E) parameter
selection; Receiver operating characteristic analyses in the training, the testing and the total group (F); (G-J) In Normal-NAFL group, parameter selection in the
LASSO model (G); principal component analysis before (H)/after (I) parameter selection; Receiver operating characteristic analyses in the training, the testing and the
total group (J); (K-N) In NAFL-NASH group, parameter selection in the LASSO model (K); principal component analysis before (L)/after (M) parameter selection;
Receiver operating characteristic analyses in the training, the testing and the total group (N); (O-Q) Receiver operating characteristic analyses between classifier and
PNPLA3 in Normal-NASH group (O)/Normal-NAFL group (P)/NAFL-NASH group (Q).
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(0.451076017) + MT1M*(-1.083839703) + SPP1*(1.009899707) +
(-21.10137666). Figure 5D presented the results of PCA before
feature selection and Figure 5E presented the results of PCA with
genes identified by LASSO methods, which indicated that samples
with different NAFLD states (Normal/NASH) are more easily
distinguished by Normal-NASH classifier. The accuracy of the
Normal-NASH classifier was 0.8878 in the training group, 0.9219
in the testing group, and 0.9012 in the total group. Based on the
accuracy, Se, Sp, PPV, NPV, and AUC values showed that sample
recognition efficiency of the classifier was high (Table 4). The ROC
curve showed that AUC was 0.944 in the training set, 0.965 in the
testing group, and their difference was not significant (Delong
method (23) P = 0.5125, Figure 5F).

For Normal-NAFL group, 9 genes (MT1G, MT1X, MT1F,
MT1H, MT1M, FABP4, SPP1, MMP7, and CCL2) were
identified as optimal features by non-zero regression coefficients
(Figure 5G). The classifier was lambda.min = 0.001001753 and
MSE=0.197118182. Later, a gene-based classifier indexwas created
with the following formula: Index=CCL2*(-0.190052713) +
FABP4 * (0.675427091) +MMP7*(-0.91795346) +MT1X *
(-0.181266023) + MT1F*(-0.777987595) + MT1G* (0.1359410
39) + MT1H * (1.336138959) + MT1M*(-0.42412614) + SPP1 *
(0.605956212)+ (-1.012626846).Figure5Hpresented the results of
PCA before feature selection and Figure 5I presented the results of
PCAwith genes identifiedbyLASSOmethods,which indicated that
samples with different NAFLD states (Normal-NAFL) are more
easilydistinguishedbyNormal-NAFLclassifier. Theaccuracyof the
Normal-NAFL classifierwas 0.7292 in the training group, 0.7031 in
the testing group, and 0.7188 in the total group. Based on the
accuracy, Se, Sp, PPV, NPV, and AUC values showed that sample
recognition efficiency of the classifier was high (Table 4). The ROC
curve showedthat theAUCwas0.720 in the trainingset, 0.730 in the
testing group, and their difference was not significant (Delong
method (23) P = 0.9051, Figure 5J).

For the NAFL-NASH group, 8 genes (MT1G, MT1F, MT1H,
MT1M, FABP4, SPP1, MMP7, and CCL2) were identified as
optimal features with non-zero regression coefficients (Figure
5K). The classifier was lambda.min = 0.006254024 and MSE =
0.123431321. Later, a gene-based classifier index was created with
the following formula: Index=CCL2*(-0.166311656) + FABP4 *
(0.494621105) +MMP7*(1.434246184) + MT1F*(2.35905055) +
MT1G*(1.159066248) + MT1H * (-2.090099881) + MT1M*
(-0.843261703) + SPP1*(0.442308223) + (-29.40911129). Figure
Frontiers in Immunology | www.frontiersin.org 10
5L presented the results of PCA before feature selection and Figure
5M presented the results of PCA with genes identified by LASSO
methods,which indicated that sampleswithdifferentNAFLDstates
(NAFL/NASH) are more easily distinguished by NAFL-NASH
classifier. The accuracy of the NAFL-NASH classifier was 0.7662
in the training group, 0.7647 in the testing group, and 0.7656 in the
total group. Based on the accuracy, Se, Sp, PPV, NPV, and AUC
values showed that the sample recognition efficiency of the classifier
was high (Table 4). TheROCcurve showed that theAUCwas 0.915
in the training group, 0.915 in the testing group, and their difference
was not significant (Delong method (23) P = 0.9956, Figure 5N).

Besides, many studies showed that PNPLA3 is one of the
genetic risk factors with more evidence in the NAFLD
progression (7, 24, 25), so we performed ROC curves to
compare the ability of PNPLA3/classifiers to distinguish
different NAFLD states. The results showed that classifiers
have better accuracy and reliability (AUC=0.953, 0.730, 0.910)
than PNPLA3 (AUC=0.579, 0.639, 0.565) to distinguish NAFLD
states (Normal/NAFL/NASH) (Figures 5O–Q).
Correlation of the Classifier Index
and Clinical Characteristics
Considering the correlation among classifiers and NAFLD states,
we tried to explore the relationships between classifier index and
clinical characteristics. In the Normal-NASH group, the classifier
index was significantly associated with ballooning grade
(p=5.853e-05), inflammation (p=9.136e-10), steatosis (p=1.049e-09),
fibrosis (p=1.399e-07) and NAS (p=2.06e-10). As the classifier
index increased, the level of ballooning/inflammation/steatosis/
fibrosis/NAS elevated (Figure 6A). In Normal-NAFL group,
classifier index was significantly associated with steatosis
(p=2.836e-06) and NAS (p=0.002). However, classifier index
showed no significant relationship with ballooning/fibrosis. As
the classifier index increased, the level of steatosis/NAS elevated
(Figure 6B). In NAFL-NASH group, results showed classifier
index was significantly associated with ballooning (p=7.079e-04),
inflammation (p=4.707e-06), steatosis (p=0.029), fibrosis
(p=6.971e-05), and NAS (p=1.076e-06) (Figure 6C). Meanwhile,
the level of ballooning/inflammation/steatosis/fibrosis/NAS
elevated as classifier index increased. The above results showed
that our classifier can also be used to predict the NAFLD patients
with different clinical characteristics.
TABLE 4 | Validation of LASSO logistic regression classifiers.

NAME Group SE SP PPV NPV Accuracy AUC

Normal-NASH Train 0.814 0.9455 0.9211 0.8667 0.8878 0.9438
Test 0.8636 0.9524 0.9048 0.9302 0.9219 0.9654
Total 0.8308 0.9485 0.9153 0.8932 0.9012 0.9526

NAFL-NASH Train 0.7027 0.825 0.7879 0.75 0.7662 0.9149
Test 0.8214 0.6957 0.7667 0.7619 0.7647 0.9146
Total 0.7538 0.7778 0.7778 0.7538 0.7656 0.9104

Normal-NAFL Train 0.4242 0.8889 0.6667 0.7467 0.7292 0.7201
Test 0.5333 0.8529 0.7619 0.6744 0.7031 0.7304
Total 0.4762 0.8763 0.7143 0.7203 0.7188 0.73
January 202
1 | Volume 11 | Article
AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, positive predictive value; Se, sensitivity; Sp, specificity.
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Relationship Between Classifiers
and Immune Score
To explore the relationship between the classifier and immune
microenvironment, we performed correlation analysis among the
classifier index and three indexes (StromalScore, ImmuneScore and
ESTIMATEScore, which were acquired from “estimate” package in R
software). In the Normal-NASH group, StromalScore, ImmuneScore,
and ESTIMATEScore were higher than those of the normal group
(Figure 6D). Besides, classifier index showed a medium correlation
with StromalScore (Pearson R = 0.46, p = 7.6e-10), ImmuneScore
(PearsonR=0.31,p=7.7e-05)andESTIMATEScore (PearsonR=0.39,
p = 2.9e-07) (Figure 6E). There was no difference in StromalScore,
ImmuneScore and ESTIMATEScore in the Normal-NAFL group. In
the NAFL-NASH group, StromalScore, ImmuneScore, and
ESTIMATEScore of the NASH group were higher than those of the
NAFL group (Figure 6F), and the classifier index showed a high
Frontiers in Immunology | www.frontiersin.org 11
correlation with StromalScore (Pearson R = 0.57, p < 2.2e-16), low
correlation with ImmuneScore (Pearson R = 0.27, p = 0.0024) and
medium correlation with ESTIMATEScore (Pearson R = 0.4, p =
3.3e-06) (Figure 6G).

Therefore, our classifier can also be used to predict the immune
microenvironment of patients with different disease states.

Correlation Between Progress-Related
DEGs and Clinicopathological Traits
To identify progress-related genes, we performed an Upset plot
among clinicopathological-related DEGs (ballooning, steatosis,
inflammation, fibrosis, NAS) and 19 filtered genes obtained from
the STRING database. We found 6 intersected genes, namely,
AKR1B10, SPP1, CD24, UBD, FABP4, and STMN2 (Figure 7A).
Subsequently,weexplored the relationshipbetweenAKR1B10/SPP1/
CD24/UBD/FABP4/STMN2 expression and clinicopathological
A

B

D E

F G

C

FIGURE 6 | The relationship between the classifier index and clinical characteristics. (A-C) Boxplots of the relationship between classifier index and clinical
characteristics in Normal-NASH group (A), Normal-NAFL group (B), NAFL-NASH group (C); (D)Boxplot of the relationship between classifier scores and immune
microenvironment scores in Normal-NASH group; (E) Diagram validating correlation between classifier scores and immune microenvironment scores in Normal-
NASH group; (F) Boxplot of the relationship between classifier scores and immune microenvironment scores in NAFL-NASH group; (G) Diagram validating
correlation between classifier scores and immune microenvironment scores in NAFL-NASH group.
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characteristics.As shown inpictures, theabovegeneexpressionswere
remarkably correlatedwith steatosis (Figure 7B), ballooning (Figure
7C), inflammation (Figure 7D), fibrosis (Figure 7E), and NAS
(Figure 7F). As the level of clinical characteristics increase, these
genes expressions also increase. Therefore, we defined these 6 genes
(AKR1B10/SPP1/CD24/UBD/FABP4/STMN2) as progress-related
genes that play a vital role in the progression of NAFLD.
Correlation of Six Progress-Related Genes
With HCC
Previous studies showed that up to one-third of patients with
NASH might progress to HCC (26, 27), so we explored the role
Frontiers in Immunology | www.frontiersin.org 12
of six progress-related genes (AKR1B10/SPP1/CD24/UBD/
FABP4/STMN2) in HCC. In previous research, we found that
these progress-related genes were closely related to
tumorigenesis and HCC progression (Figure 8A). Moreover,
based on the TCGA database, we found that progress-related
genes were enriched in tumor-related pathways, such as
apoptosis, cell cycle, and EMT (Figure 8B).

In the TCGA database, we found that six progress-related
genes were up-regulated in the HCC (Figure 8C). To explore the
relationship between six progress-related genes and prognosis,
we performed survival analysis and the results showed that high
expression of SPP1 (p=0.00011) and AKR1B10 (p=0.011) were
associated with a low survival rate (Figure 8D). In HPA
A B

D

E F

C

FIGURE 7 | Screening of progress-related genes. (A) UpSet plot including trait related genes and PPI-related genes; (B-F) 6 progress-related genes’ expression in
different degree of steatosis (B), ballooning (C), inflammation (D), fibrosis (E), NAS (F). (* P< 0.05, ** P< 0.01, *** P< 0.001).
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database, the expression of SPP1/AKR1B10 was also abnormally
elevated in HCC (Figure 8E). Therefore, SPP1/AKR1B10 may be
closely related to progress and prognosis in Normal-NAFL-
NASH-HCC progression.
Frontiers in Immunology | www.frontiersin.org 13
The Immune Landscape of NAFLD
and HCC Patients
Subsequently, we explored the immune landscape of NAFLD
and HCC. In NAFLD, the results showed that the immune
A B

D E F

G IH J

K L

M

C

FIGURE 8 | Immune landscape and treatment prediction in NAFLD patients and HCC patients. (* P< 0.05, ** P< 0.01, *** P< 0.001). (A) Literature-based of six
progress-related genes in HCC-associated signaling pathways; (B) Enriched pathways of 6 progress-related genes in TCGA database; (C) Expression of progress-
related genes between normal patients and HCC patients in the TCGA database; (D) Survival analysis of AKR1B10 and SPP1; (E) Protein expression of AKR1B10
and SPP1 between normal patients and HCC patients; (F) Boxplots visualizing the difference of immune cell infiltration in Normal/NAFL/NASH patients;
(G) Correlation analysis of immune cells in Normal/NAFL/NASH patients; (H) Boxplots visualizing the difference of immune cell infiltration in normal/HCC patients;
(I) Correlation analysis of immune cells in Normal/HCC patients; (J) The intersection of immune cells between NAFLD patients and HCC patients; (K) The relationship
between immunosuppressive cytokines expression and AKR1B10/SPP1; (L) Chi-square test of immunosuppressive cytokines expression in the progress of NAFLD;
(M) Drug sensitivity analysis of AKR1B10 and SPP1.
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infiltration of the following cells increased (CD4_naïve cells, Tr1
cells, Th1 cells, Central memory cells, Dendritic Cells (DCs), B
cells, NK cells, CD4 T cells, and CD8 T cells), while the immune
infiltration of Tfh cells and Neutrophil decreased (Figure 8F). To
investigate the underlying relationships among these immune
cells, we evaluated the correlation between each other. We found
that Neutrophils and Tfh cells appeared to have the most positive
correlation (R = 0.46), while Neutrophils and CD8+ T cells had
the most negative correlation (R = -0.62) (Figure 8G). The above
results indicated that in the course of Normal-NAFL-NASH, the
immune microenvironment was gradually activated and reached
its peak at the time of NASH, which was consistent with the
conclusion that NASH is an inflammatory disease (28).

In HCC, the immune infiltration of the following cells
increased (CD8 naive cells, Tr1 cells, nTreg cells, iTreg cells,
Th1 cells, Tfh cells, Central memory cells, DC cells, B cells, and
CD4 T cells), while the immune infiltration of these cells decreased
(Cytotoxic cells, Exhausted T cells, Th2 cells, Th17 cells, MAIT
cells, Monocyte, Macrophage, NK cells, and Neutrophil)(Figure
8H). Besides, we found that Exhausted T cells and Cytotoxic cells
appeared to have the most positive correlation (R = 0.67), while
Neutrophils and Th1 cells had the most negative correlation (R =
-0.72) (Figure 8I). These results showed that the immune
microenvironment of HCC was in a suppressed state.

Given that intersected immune cells between NAFLD and
HCC may affect the progression and prognosis of the disease, we
performed survival analysis and found that Cytotoxic cells
(p=0.007), MAIT cells (p=0.017), Tfh cells (p<0.001), Th2 cells
(p=0.004), B cells (p=0.006), and DCs (p=0.034) were closely
related to survival (Figures 8J, S1A).

Therefore, these results indicated that immune status changed
from immune-activation to immune-suppression in the process
of NASH to HCC. Besides, our study may provide therapeutic
targets (Cytotoxic cells, MAIT cells, Tfh cells, Th2 cells, B cells
and DCs) for NAFLD to slow down progression and
improve prognosis.

Correlation of AKR1B10/SPP1 With
Immune Microenvironment
Subsequently, we explored the relationship between prognosis
related genes (SPP1/AKR1B10) and survival-related immune
cells (Cytotoxic cells, MAIT cells, Tfh cells, Th2 cells, B cells,
and DCs). The results showed that the expression of AKR1B10
was positively correlated with the content of DCs (R = 0.18, p =
0.00039) and MAIT cells (R = 0.22, p = 1.7e-05), the expression of
SPP1 was also positively correlated with the content of DCs (R =
0.39, p = 5.3e-15) and MAIT cells (R = 0.21, p = 6e-05)
(Figure S1B).

Later, we explored the relationship between NAFLD progression
and immunosuppressive cytokines’ expressions. Based on previous
research, we downloaded Cancer-Immunity Cycle associated
immunosuppressive cytokines from the Tracking Tumor
Immunophenotype website (29). We defined p<0.05 and R≥0.3 as
the threshold to screen out co-expressed immunosuppressive
cytokines of SPP1/AKR1B10 (Figures S1C-E). The results showed
that the ratio of genes involving the negative regulation of the
Frontiers in Immunology | www.frontiersin.org 14
Cancer-Immunity Cycle increased, indicating activities of the
Cancer-Immunity Cycle gradually decreased in progress of
NAFL-NASH-HCC (Figures 8K, L).

The above results indicated that SPP1/AKR1B10 might play a
vital role in the change of the immunemicroenvironment. Besides,
based on the GDSC database, we performed a drug sensitivity
analysis on six progress-related genes. It found that TGX-221 was
a common sensitive drug of AKR1B10 and SPP1, which may play
a role in inhibiting or delaying the progression of NAFLD and
improve the prognosis of NAFLD-HCC (Figure 8M).
DISCUSSION

Non-alcoholic Fatty Liver disease (NAFLD) is currently considered
as the first cause of chronic liver disease accounting for 25% of cases
worldwide (4). NAFLD is generally divided into two stages: the early
stage is non-alcoholic fatty liver (NAFL) with pathological features
of isolated steatosis, no or minimal inflammatory activity, and no
evidence of cell damage. In the progress of NAFL to non-alcoholic
steatohepatitis (NASH), namely second stage, inflammation and
liver cell damage characterized by hepatocyte swelling appear in the
liver, accompanied by various degrees of fibrosis (30, 31). Lipid
accumulation, liver cell damage, immune system dysfunction and
fibrosis are all involved in NAFLD, which may eventually progress
to HCC (32). Early detection and diagnosis are of great importance
in NAFLD treatment. Up to now, NAFLD diagnosis mainly relies
on imaging examination and liver biopsy, which lacks ability to
precisely assess disease status and predict NAFLD progression.

Based on 111 intersected DEGs between Normal-NASH group
and NAFL-NASH group, we performed GO and KEGG pathway
analysis to explore underlying mechanism of NAFLD. The results
showed that enriched pathways were involved in tumorigenesis,
such as extracellular matrix organization, extracellular structure
organization and PI3K-AKT signaling pathway. Meanwhile, most
overlapping pathways in GSEA were also related to tumorigenesis
among Normal-NASH group and NAFL-NASH group, such as
EMT, angiogenesis and p53 pathway (Figure 2, 3). These results
indicated that extracellular matrix may play an important role in
the development of NAFLD

Subsequently, we constructed a PPI network of NAFLD. Based
on specific gene functions, we divided PPI network into four
modules: Ballooning Associated, Inflammation Associated,
Fibrosis Associated, and Glycolysis Associated. This was roughly
the same as the development process of NAFLD (26, 27).
Although patients in “first-hit” can reverse histological steatosis
to a normal state, when progressing to NASH (second-hit),
patients have been in an irreversible state. Thus, early detection
and timely treatment are of great importance to stop and reverse
NAFLD progression. So far, the diagnosis of the NAFLD state still
mainly depends on pathology, whereas it is expensive and
inconvenient to operate (33–35). In past years, some models,
such as hepatic-portal venous pressure gradient (HVPG),
computed tomography (CT), MRI, and MR elastography
(MRE), were built to diagnose NAFLD disease state (36).
However, low sensitivity and high false-positive rates limit their
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clinical use. Given the important link between genes and NAFLD
progression (37), proper gene signature classifiers may provide
simple and accurate evaluation methods for NAFLD status.

Here, based on nine core-gene expressions (MT1G, MT1X,
MT1F, MT1H, MT1M, FABP4, SPP1, MMP7 and CCL2) filtered
by WCGNA and Cytoscape, we developed three classifiers to
successfully identify different NAFLD states (sensitivity Normal/
NAFLD (47%), NAFLD/NASH (75%), Norma/NASH (83%) and
specificity Normal/NAFLD (87%), NAFLD/NASH (77%),
Normal/NASH (94%), Figure 4, 5). Whereas compared with
serum aspartate aminotransferase (AST), previous studies
showed suboptimal diagnostic utility (sensitivity 42% and
specificity 80% using ALT > 30U/L as a cutoff) in diagnosing
Normal/NASH (36). Our classifiers seemed to show limited
sensitivity in distinguishing Normal/NAFLD, which might be
attributed to few gene expression changes between simply
steatosis and normal liver, as liver is physiologically the organ
of lipids accumulation and metabolism. Along with these results,
three gene-based classifiers could feasibly and robustly predict
NAFLD states from a biological perspective.

Later, we proved classifiers could effectively distinguish
clinical characteristics (ballooning, inflammation, steatosis,
fibrosis and NAS) in Normal/NASH and NAFLD/NASH
group. In Normal/NAFL group, the classifier score was
associated with steatosis and NAS, while no inflammation and
fibrosis may be due to little inflammation and fibrosis occurring
in patients in first-hit. Meanwhile, the classifier score was closely
associated with an immune microenvironment score in Normal-
NASH/NAFL-NASH, which indicated classifiers could also
predict states of the immune microenvironment (Figure 6).

To clarify the relationship between genes andNAFLD progress,
we performed an upset-plot between pathological-related DEGs
and 19 genes obtained from STRING database. Six progress-
related genes (AKR1B10/SPP1/CD24/UBD/FABP4/STMN2)
were found remarkably correlated with steatosis, ballooning,
inflammation, fibrosis, and NAS in the progress of Normal/
NAFL/NASH. Subsequently, we explored the relationship
between these six progress-related genes and NAFLD-HCC
prognosis. Previous studies showed that these six progress-
related genes play a vital role in tumorigenesis, such as PI3K-
AKT pathway (38),p53 pathway (39), and STAT pathway (40).
Meanwhile, in the TCGA database, the six progress-related gene
expressions were increased in HCC patients, and SPP1/AKR1B10
was negatively related to overall survival. AKR1B10 was reported
to metabolize a variety of substrates, such as retinal, lipid
peroxidation products, and exogenous biological agents (41–44).
As storage of retinyl in cytoplasmic lipid droplets is the most
distinctive feature of hepatic stellate cell (45), therefore, the
abnormal expression of AKR1B10 may lead to the activation of
HSC and promote the progression of NAFLD (46). Furthermore,
studies have demonstrated that AKR1B10 was also related to
tumor growth and metastasis, which may explain the lasting role
in NAFL-NASH-HCC progression (47–49). Secreted
phosphoprotein 1 (SPP1), also known as osteopontin (OPN), is
a secreted glycoprotein that has multiple functions and affects
proliferation, differentiation, migration and inflammation (50–
Frontiers in Immunology | www.frontiersin.org 15
52). Abnormal SPP1 expression was related to various cancer
progressions [colorectal cancer (53, 54), lung cancer (55), and
HCC (56)] via inducing inflammation and reshaping the
microenvironment. As SPP1 and AKR1B10 were closely related
to the Norma-NAFL-NASH process and the prognosis of HCC,
these two genes may be key genes in the progression of Normal-
NAFL-NASH-HCC.

As deregulated immune microenvironment was proved to have
a profound effect on the progression of NAFLD progression via
inflammation, we tried to explore immune microenvironment
changes in Normal-NAFL-NASH-HCC. The results showed that
immune activated cells (CD4 T, CD8 T and NK) infiltrations
gradually increased, indicating an immunostimulatory
microenvironment remodeling during Normal-NAFL-NASH
progress. On the contrary, immune activated cell infiltration
decreased and immunosuppressive cell infiltrations gradually
increased in HCC, indicating a suppressive immune
microenvironment. The deregulated ratio of immune cells and
cytokines reshaped microenvironment, which may be a key factor
in the conversion of NAFL/NASH/HCC (57–59). Therefore, we
performed a survival analysis of immune cells to look for
prognosis-related immune cells and six immune cells (Cytotoxic
cells, MAIT cells, Tfh cells, Th2 cells, B cells and DCs) were
identified as being survival-related.

Later, we explored the relationship between AKR1B10/SPP1
and six immune cells. The results showed that AKR1B10 was
positively related to DCs and MAIT cells. And SPP1 was
positively related to B cells, DCs, and MAIT cells. In B cells,
which account for half of the total number of lymphocytes in the
liver, the infiltration gradually increases during the progression
of NAFLD. Previous studies showed CCl4-induced B-cell
deficient mice have reduced liver fibrosis, which indicated that
B cells had the pro-fibrotic capability (60, 61). As mentioned
earlier, the key character of NASH was the loss of the liver’s
tolerance to the microenvironment, which turned the liver into a
pro-inflammatory immune phenotype and subsequently released
pro-inflammatory cytokines to induce DCs maturation, and
finally increased adaptive immune responses by CD4+/CD8+ T
cells activation and infiltration (62, 63). Therefore, DCs serve as a
central cell bridge connecting the innate immune system and
adaptive immune system responses, which work as antigen-
presenting cells in the liver. Besides, consuming CD11c + DCs
or CD103 + DCs reduced proinflammatory cytokine and liver
fibrosis in MCD-induced NASH or thioacetamide-diet–induced
liver fibrosis models proved DCs also played a pro-inflammatory
role in the NAFLD process (28, 64, 65).

Human mucosal-associated invariant T cells (MAIT cells) are
highly enriched in liver and highly conservative at the
evolutionary level. They express semi-constant T cell receptors
(TCR), which can specifically recognize microbial-derived
vitamin B metabolites, and then release a large number of
inflammatory cytokines and granzymes (66, 67). The role of
MAIT cells in NASH process is not yet clear. Previous studies
showed that MAIT cells increase during acute injury or infection,
which promoted inflammation and protected the body (68).
However, when disease progresses or turns into a chronic
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disease, MAIT cells start to decrease. Meanwhile, the gene
expression pattern of MAIT cells will change. MAIT cells in
Autoimmune liver disease (AILD) patients had evolved into an
exhausted, pro-fibrotic phenotype, and promoted the
development of HSC-mediated liver fibrosis (69, 70).
Compared to normal samples, although MAIT cells reduced in
HCC, tumor-derived MAIT cells down-regulated genes enriched
in the cytokine secretion and cytolytic effect pathways (NFKB1
and STAT5B) and up-regulated genes such as IL8, CXCL12 and
HAVCR2 (TIM -3) promote tumor development (71).
Therefore, MAIT cells may harm the individual’s immune
defense in chronic diseases, especially in NAFLD/HCC. The
correlation between AKR1B10, SPP1, B cells, DCs, and MAIT
cells indicated the possible interactive network structure that
may explain and control metabolic disorders and fibrotic
phenotypes from NASH to HCC. Therefore, we selected
AKR1B10 and SPP1 co-sensitive drugs TGX-221 as a possible
therapy to inhibit or delay the progression of NAFLD and
improve the prognosis of NAFLD-HCC.
CONCLUSION

In conclusion, we established 3 gene-based signature classifiers
that may serve as biomarkers to predict disease state in NAFLD.
In our analysis, we also discovered changes in the immune
microenvironment, the key immune cells (B cells, DCs, MAIT
cells) and genes (AKR1B10, SPP1) in the progression of NAFLD.
Besides, TGX-221 may be a potential therapeutic drug for the
treatment of NAFLD and NAFLD-HCC.
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NAFL group (C); NASH group (D); HCC group (E).
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