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ABSTRACT With high productivity and stress tolerance, numerous grass genera of the Andropogoneae have emerged as candidates
for bioenergy production. To optimize these candidates, research examining the genetic architecture of yield, carbon partitioning,
and composition is required to advance breeding objectives. Significant progress has been made developing genetic and genomic
resources for Andropogoneae, and advances in comparative and computational genomics have enabled research examining the
genetic basis of photosynthesis, carbon partitioning, composition, and sink strength. To provide a pivotal resource aimed at
developing a comparative understanding of key bioenergy traits in the Andropogoneae, we have established and characterized an
association panel of 390 racially, geographically, and phenotypically diverse Sorghum bicolor accessions with 232,303 genetic
markers. Sorghum bicolor was selected because of its genomic simplicity, phenotypic diversity, significant genomic tools, and its
agricultural productivity and resilience. We have demonstrated the value of sorghum as a functional model for candidate gene
discovery for bioenergy Andropogoneae by performing genome-wide association analysis for two contrasting phenotypes represent-
ing key components of structural and non-structural carbohydrates. We identified potential genes, including a cellulase enzyme and a
vacuolar transporter, associated with increased non-structural carbohydrates that could lead to bioenergy sorghum improvement.
Although our analysis identified genes with potentially clear functions, other candidates did not have assigned functions, suggesting
novel molecular mechanisms for carbon partitioning traits. These results, combined with our characterization of phenotypic and
genetic diversity and the public accessibility of each accession and genomic data, demonstrate the value of this resource and provide
a foundation for future improvement of sorghum and related grasses for bioenergy production.
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ALTHOUGH numerous plant species have been evaluated
as potential bioenergy feedstocks, many of the most

promising candidates belong to a tribe of grasses, the Andro-
pogoneae, that includes many agriculturally important spe-
cies, such as maize, sorghum, and sugarcane. The genetic

improvement of bioenergy candidates within this tribe is
challenging because little is understood about the genetic
architecture of many of their most relevant bioenergy traits.
Further complicating this improvement, the Andropogoneae
have distinct phenotypic characteristics, such as a type II cell
wall (Vogel 2008), C4 photosynthetic mechanisms, and var-
ious carbon partitioning patterns (Braun and Slewinski
2009), which limit the pertinence of basic research in
C3 non-grass model organisms, e.g., Arabidopsis. Addition-
ally, many of the proposed candidates, such as switchgrass
(Panicum virgatum) and members of the Saccharum genus,
including sugarcane, have complex genomes, which limits the
generation anddissemination of genetic andgenomic resources.
The designation of a functional model grass species and the
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subsequent development of a community resource for the ge-
netic dissection of carbon partitioning, biomass composition,
and other yield-related bioenergy traits is needed to increase
collaboration and accelerate bioenergy improvement.

Sorghum bicolor (L.) Moench has emerged as one of the
preferred candidates for bioenergy feedstocks, and has war-
ranted continued investment for development as a dedicated
bioenergy crop due to its high productivity, widespread
adaptability, and relative ease of genomic analysis (TERRA
2015). Sorghum is a drought-tolerant C4 grass with a diverse
gene pool that can be exploited for a variety of traits, includ-
ing those most desirable for bioenergy production. Currently,
the existing sorghum germplasm contains four predominant
types: grain, sweet, forage, and biomass. Each of these has a
preferred ideotype with varying proportions of grain, stalks,
leaves, non-structural sugars, etc. This range of phenotypic
diversity not only allows sorghum to serve as a functional
model to study various bioenergy and biomass-related traits
in Andropogoneae but it also allows sorghum to be optimized
to serve as raw material for promising conversion technolo-
gies (Calviño and Messing 2012).

Currently, grain, sweet, and biomass sorghums all serve as
feedstocks for various conversion technologies. Grain sor-
ghum, which accumulates starch in the seed, is used as a
key feedstock for starch–ethanol conversion throughout the
United States (Wu et al. 2010). Sweet and biomass sorghums,
which are respectively characterized by the accumulation of
non-structural and structural carbohydrates in the stalk, pro-
vide promise for high-yielding, sustainable bioenergy produc-
tion. Biomass sorghums have recorded yields of up to 30 dry
tons per hectare while sweet sorghums have shown the po-
tential to produce 6000 liters of ethanol per hectare (Wu et al.
2010). Both sweet and cellulosic types have great potential
for various bioenergy production methods already in use
across locations worldwide. Understanding the genetic mech-
anisms underlying their differences will be key to maximizing
their potential as bioenergy crops.

The distinguishing factor among the different sorghum
bioenergy types, and the other bioenergy candidates in gen-
eral, is how each partitions, translocates, and stores carbon,
although the biochemical pathways, machinery, and their
genetic controls that allocate carbon to various compositional
constituents (i.e., lignin, cellulose, and hemicellulose) are not
fully understood (Vogel 2008). Structural carbohydrates, in-
cluding cellulose, hemicellulose, and pectin, along with the
phenolic polymer lignin, are the major components of cell
walls (Vogel 2008), while the primary constituents of non-
structural carbohydrates in sorghum are sucrose, fructose,
glucose, and starch (Saballos 2008). While variation within
the structural carbohydrate profile has been documented in
sorghum (Murray et al. 2008a), few studies have examined
the genetic architecture and control of these traits in sorghum
or other grasses.

Association studies in sorghum have revealed genetic con-
trols of many phenotypes, including height (Brown et al.
2008;Murray et al. 2009), flowering time (Mace et al. 2013a),

panicle architecture (Brown et al. 2006), seed size (Zhang
et al. 2015), and various domestication traits (Morris et al.
2013a). Most of the studies have been conducted to elucidate
the genetic architecture of complex traits as they relate to grain
production, not bioenergy production. Because breeding for
bioenergy crops with high biomass or fermentable sugars re-
quires a conceptual adjustment from the traditional dwarfed
cereals (Salas Fernandez et al. 2009), a characterized resource
specifically arranged to represent critical bioenergy pheno-
types not only allows for greater progress in the explication
and exploitation of sorghum’s natural genetic diversity but also
the diversity of the broader Andropogoneae tribe.

To facilitate the use of genomic research for improved
renewable energy through enhanced biomass-related traits,
we created a focused genomic resource, the Sorghum Bio-
energy Association Panel (BAP). With a total of 390 acces-
sions and 232,303 SNPs, the BAP captures sufficient diversity,
yet restricts the panel to bioenergy types to allow for more
efficient and informative association mapping. In this study,
we introduce the BAP and demonstrate its useful diversity for
understanding key bioenergy phenotypes. We also examine
the relationship of carbon partitioning between structural,
represented by neutral detergent fiber (NDF), and non-
structural carbohydrates, represented by non-fibrous carbo-
hydrates (NFC). Because these traits of carbon allocation are
defining characteristics between sweet and biomass sor-
ghum, understanding the genetic controls allows for more
efficient improvement by enabling marker-assisted breeding
and genomic selection for both types of bioenergy sorghum.
Our goal in this research was not only to identify candidate
genes that may be the future targets of crop improvement but
also to lay a broader foundation of genetic and genomic
resources for future studies that seek to maximize the po-
tential of sorghum and other Andropogoneae as bioenergy
crops.

Materials and Methods

Selection and representation of genetic resources

To ensure the accuracy and availability of this panel for future
research, all of the accessions have PI inventory numbers and
may be requested through theUSDepartment of Agriculture’s
Germplasm Repository Information Network (GRIN) (Sup-
plemental Material, File S1). This panel can be divided into
two subsets: sweet and biomass types (File S1), which rep-
resent to the two most important bioenergy types. Sweet
lines were defined as having a Brix value of over 10% at
the milk development stage or at physiological maturity.
The sweet lines consist of 152 accessions, and the 238 bio-
mass types make up the remaining accessions. Sweet acces-
sions include cultivars from previously defined panels: the
sweet sorghum association panel (Murray et al. 2009) and
the US historic sweet sorghum panel (Wang et al. 2009). The
additional sweet accessions and the biomass lines were cho-
sen based on diversity of worldwide geographic distribution,
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racial categorization, and agronomic characteristics (File S1).
The 390 lines comprise accessions fromallfivemajor sorghum
races (bicolor, caudatum, durra, guinea, and kafir) with rep-
resentatives from the entire African continent, Asia, and the
Americas (File S1). Several important lines were also added,
including lines sequenced at the Joint Genome Institute and
the first source of the reference genome, BTx623 (Paterson
et al. 2009).

Field design, phenotypes, and phenotyping protocols

The BAP was phenotyped in Florence, South Carolina, at the
Clemson University Pee Dee Research and Education Center
in 2013 and 2014. Trials were planted on 76 cm rows at a
planting density of approximately 96,000 plants/ha in loamy
sandsoil onMay16,2013andMay6,2014, andwere irrigated
at the time of planting and on an as-needed basis. Two
complete randomized blocks or replicates of the BAP were
planted in each year. Due to the extreme height ofmany of the
accessions, which were taller than the irrigation pivot, no
irrigation took place approximately 90 days after planting.
Seed obtained through GRIN (http://www.ars-grin.gov) was
treated with a chemical slurry of Concep II, NipIt, Apron XL,
and Maxim XL. This seed treatment allowed for the applica-
tion of Bicep II Magnum for weed control at a rate of 3.5
liters/ha prior to seed germination. Atrazine at a rate of 4.7
liters/ha was applied before plants had reached a height of
45 cm. Additionally, 125 kg/ha of layby N was applied ap-
proximately 30 days after planting. Besides the chemicals
used as part of the seed treatment, no other insecticides or
fungicides were applied.

Anthesis was determined when 50% of the plot had begun
to shed pollen. Height measurements were taken at physio-
logical maturity, or at a set harvest date of October 1, from the
base of the stalk to the apex of the panicle, or, if no paniclewas
present, to the apex of the shoot apical meristem. When
possible, each plot was harvested at physiological maturity
of the genotype, with the exception of genotypes that did not
flower, which were harvested as a single time point. At the
time of harvest, three plants were cut at the base of the stalk,
panicles were removed, and fresh weights were recorded. To
remove the confounding effects of tillering on a per area basis,
yield and compositional data were generated using three
representative plants. Based on planting density, this repre-
sents approximately 0.5 m of row length. Biomass samples
were dried at 40�. Dry weight was recorded once samples had
obtained a constant weight. Dry tons per hectare were ex-
trapolated based on the dry weight of the samples at the
approximate planting density of 96,000 plants/ha. Composi-
tional data, which included NDF, NFC, acid detergent fiber
(ADF), and lignin, were generated by analyzing the dried
samples with a Perten DA7250 near-infrared spectroscopy
(NIR) instrument (https://www.perten.com). The custom
NIR curves were developed by the Perten Applications team
using wet chemistry data from 107 unique samples and ten
blind technical replicates generated by Dairyland Labs
(http://www.dairylandlabs.com). Lignin andADF (a cumulative

measurement of lignin and cellulose) wet chemistry data were
generated using the Association of Official Agricultural Chemists
(AOAC) protocol 973.18 whereas NDF (a cumulative measure-
ment of cellulose, hemicellulose, and lignin) and NFC (a cu-
mulative measure of non-structural carbohydrates) data were
generated using AOAC protocol 2002.04.The wet chemistry
samples were selected based on phenotypic and spectra di-
versity, a protocol recommended from the Perten Applica-
tions team. Yield and composition were compared in the
BAP to the Sorghum Association Panel (SAP) (Casa et al.
2008), a previously defined sorghum panel focusing on
grain sorghum. Dry weights and compositional components
in the SAP were calculated based on five representative
plants at a rate of 131,000 plants/ha. Compositional data
for the SAPwere generated using a NIR analysis provided by
Chromatin, Inc. (https://www.chromatininc.com). All com-
positional data are presented as a percentage of dry matter
(DM). GRIN provided racial and geographic origin informa-
tion. To provide a control phenotype as confirmation of the
genomic data, pericarp pigmentation, which is conditioned by
a known gene (Ibraheem et al. 2010), was characterized from
the seed provided by GRIN following previously outlined
methods (Rooney 2000). Phenotypes for the BAP are located
in File S2.

Genotyping, SNP calling, filtering, and imputation

For each entry, five seeds from each plant were grown for
2 weeks in a growth chamber, and DNA was extracted from
whole seedlings using a DNeasy Plant Mini kit from Qiagen.
Genotyping-by-sequencing (GBS) libraries were generated
using an ApeKI digestion, and following previously outlined
protocols (Elshire et al. 2011). Sequencing was performed on
an Illumina HiSequation 2000, with 95 barcoded individuals
and one negative control included in each lane. Single-end
reads for the 343 individuals have been deposited in the NCBI
Sequence Read Archive (SRA) under the BioProject identifi-
cation number PRJNA298892.

Raw sequencing reads were filtered and processed using
the TASSEL 5.0 pipeline (Bradbury et al. 2007), and BWA (Li
and Durbin 2009) was used to align the filtered sequences
to sorghum reference genome version 2 available from
Phytozome (Paterson et al. 2009; Goodstein et al. 2012).
A minimum aligned read depth of 10 was required for calling
SNPs in any individual. (See File S3 and File S4 for details,
sample command lines, and Perl scripts.)

After trimming and filtering raw data for quality, we
retained over 350 million 64-bp sequencing reads, which
corresponded to 1.8 million unique mapped tag locations in
the sorghum genome, and 327,121 putative SNP sites. After
filtering low-coverage SNPs, individuals with too many miss-
ing sites, and sites with a minor allele frequency below 5%,
232,303 SNPs in 343 accessions were retained. Missing ge-
notypes were fully imputed with the software fastPHASE
(Scheet and Stephens 2006), with 20 independent starts of
the EM algorithm. There is a mean distance of 2–3 kb be-
tween each SNP, which is consistent with the level and
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density of SNP discovery in the previously published SAP
(Morris et al. 2013a). The fully imputed data set was used
for all association analysis and heritability.

To make comparisons between the BAP and the SAP, raw
data from both panels were merged, and then filtered using
similar methods. However, for these analyses, SNPs were
filtered with a minor allele frequency of 1% with a coverage
of at least 60% of individuals, and imputed loci with less than
80% confidencewere consideredmissing. The final analyses of
allele frequencies and expected heterozygosity were performed
on 187,766 common SNPs between the BAP and the SAP.

Genetic differentiation and population structure

Levels of genetic differentiation between grain, sweet, and
biomass sorghumswere calculatedusingWright’s FST (Wright
1969). For these estimations, we used non-imputed SNP
data, and selected sites with a minimum of 80 individu-
als per type present, as well as a minimum minor allele

frequency of 5%. To determine if mean FST values were sig-
nificantly different from zero, permutation tests were per-
formed where individual genotypes (across all polymorphic
sites) were randomly permuted into groups of the same size
1000 times, and the mean FST was recalculated to determine
a null distribution.

Genomic comparisons between the SAP and the BAP were
calculated using R statistical software (R Development Core
Team 2011). The expected heterozygosity was calculated
using the R-package “pegas” (Paradis 2010). Heterozygosity
was calculated on a per SNP basis and in a 20-kb sliding
window with a 2-kb overlap. The 20-kb region was chosen
based on the established linkage disequilbrium (LD) in sor-
ghum (Hamblin et al. 2004;Mace et al. 2013b). To determine
significance, permutation tests were performed by randomly
assigning individuals into groupings of the same size as the
original BAP and SAP for 100 permutations. The difference in
heterozygosity between the two panels was recalculated for

Figure 1 (A) Genome-wide het-
erozygosity calculated for the BAP
(top) and SAP (bottom) with a
500-kb sliding window. (B) Aver-
age heterozygosity in 20-kb
windows with a 2-kb overlap
for the region on chromosome
6 containing the Ma1 gene,
Sobic.006G057900, in the BAP
(top) and the SAP (bottom). (C) Av-
erage heterozygosity in 20-kb win-
dows with a 2-kb overlap for
the region on chromosome 7
containing the Dw3 gene,
Sobic.007G047300, in the BAP
(top) and the SAP (bottom).
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each permutation, and P-values were generated by counting
the number of permuted values that were equal to or greater
than the observed heterozygosity difference. SiteswithP-values
lower than 0.01 were considered significant.

Population structure was estimated using the program
STRUCTURE (Pritchard et al. 2000). The genetic data were
thinned to 1 SNP every 20 kb using the vcftools v0.1.13 thin
function (Danecek et al. 2011). This left approximately
1 SNP per linkage group. Final structure analysis was per-
formed with 16,476 loci from the 343 individuals with ge-
nomic data. Analysis was performed with K-values ranging
from 1 to 12. Five independent replicates were generated
for each K-value with a 10,000 run burn-in period followed
by 200,000 sampling iterations. Principal component anal-
ysis was conducted using the EIGENSTRATmethod (Patterson
et al. 2006) (version 6.0.1) using the “Smart PCA” Perl
command.

Genome-wide association scans

Single-SNP tests of association were performed using models
implemented in the R-package GAPIT (Team 2011; Lipka
et al. 2012). Association scans were performed using a gen-
eral linear model (GLM), a mixed linear model (MLM) with
internally calculated kinship and population structure, an
MLM with kinship and an externally calculated population
structure via STRUCTURE, and the compressed mixed linear
model (CMLM) (Zhang et al. 2010), which internally controls
for population structure and kinship among individuals and
uses cluster analysis to assign individuals to groups. The
MLMs and the CMLM both incorporate a kinship (K) matrix
and population structure (Q-matrix), which has been shown
to increase statistical power and reduce false positives (Yu
et al. 2006). Before presenting genome-wide association
study (GWAS) results, the model fit was compared by exam-
ining the QQ plots (File S5), and the CMLM was selected as
the model with superior fit. To further reduce the chance of
false positives, significance levels in these tests were deter-
mined using the Bonferroni correction method, resulting in a
significance cut-off of approximately 3.0 3 1027. Due to an
earlier than expected frost in 2013, only 211 individuals were
included for genomic analysis. In 2014, a total of 331 individ-
uals were used in genomic analysis.

LDwascalculated locallywithina1-mbregionsurrounding
each significant locus. Within each region, a pairwise LD
between each SNP was calculated using the R-package Ge-
netics. The extent of LDwas determined to decay when the r2

value was less than 0.1 (File S6). Genes potentially linked to
any significantly associated SNP were identified by scanning
version 2.1 of the S. bicolor genome (Goodstein et al. 2012).
Gene function was determined using the Panther Classifica-
tion System (Mi et al. 2013) and the European Bioinformatic
Institute’s PFAM identification (Finn et al. 2014). Candidate
genes were selected based on functional annotations pro-
vided by Phytozome, the Panther Classification System, and
the PFAM database. SNP effects were predicted by the soft-
ware snpEff (Cingolani et al. 2012).

Phenotypic analysis

Phenotypic analysis was conducted using R statistical soft-
ware (Team 2011). Maximum, minimum, mean, and stan-
dard deviation values for the BAP were calculated using the
mean values of both replicates per year. Phenotypic values in
the SAP were calculated based on two replicates in 2013.

Figure 2 Population structure results with six defined subpopulations.
The purple cluster represents bicolor accessions. The green cluster has
the fewest number of members, and is mainly made up of guinea acces-
sions. The pink cluster represents caudatum accessions. The yellow cluster
represents durra accessions that are mainly from Ethiopia. The blue clus-
ter includes individuals that cluster with kafir types. This grouping is
usually associated with photoperiod insensitivity. The orange cluster rep-
resents accessions from Ethiopia, but no racial data were available for
these lines.
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Accessions that did not flower (i.e., photoperiod sensitive
accessions) were not included in the anthesis analysis.

Correlations were determined using the phenotypic mean
of the two replicates per year. Pearson correlations and the
subsequent P-values were calculated using R statistical soft-
ware with the “cor.test” function. Marker-based estimation of
narrow-sense heritability was calculated with the “heritabil-
ity” package (Team 2011; Kruijer et al. 2015).The phenotypic
means for each year were treated as replicates in the input.
Since the narrow-sense heritability calculation uses the ge-
nomic markers (Kruijer et al. 2015), a random subset of
100 individuals with complete datasets (ADF, NDF, NFC,
lignin, height, and dry weight) from 2013 and 2014 were
used in the calculations to avoid discrepancies based on ge-
notypes. The centered relatedness matrix used with the
marker-based heritability analysis was generated from
GEMMA (Zhou et al. 2013).

To ensure that phenotypic values (and therefore genomic
associations) were not confounded with the block effect, a
model was developed for the phenotypic values that included
effects of accession andblock. Since theblocks containedup to
400 accessions, there may have been field heterogeneity that
impacted the phenotypic values. Using the predicted values
from the model above (basically the average of the two
observations) hopefully minimized the impact of the field
heterogeneity. To ensure that the phenotypic values were
not confoundedwith field heterogeneity, an additional model
was developed for the phenotypic values that also included
covariates associated with the field effect. For this study, the
covariates chosen were anthesis and height (see the descrip-
tions below). Fortunately, these covariates turned out to have
almost no relationship (not statistically significant) with the
primary phenotypes of interest, and even after adjusting for
the covariates, the phenotypic values of the accessions
remained essentially unchanged (File S7). File S7 also con-
tains the model used for the analysis and the scatterplots for
the actual and predicted phenotypic values. Therefore, we
concluded potential field effects were not creating a system-
atic bias in the phenotypic data, and used the predicted phe-
notypic value for each accession from the model including
block effects in the subsequent association analyses. For the
GWAS results, values were standardized by subtracting the
mean, dividing by the standard deviation, and then averaging
across replicates.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article.

Results

Genomic diversity and differentiation

To identify genomic regions differentiated between the SAP
and BAP, expected heterozygosity was calculated for individ-
ual SNPs and within a 20-kb sliding window with a 2-kb
overlap. There were 187,766 common SNPs between the
panels. Of these SNPs, 14,841 loci differed in expected het-
erozygosity by more than 25%. To look at global patterns in
differentiation between the two resources, the SNPs were
divided into sliding windows of 20 kb representing genomic
regions within the estimated LD distance, and the mean
heterozygosity for each block was compared (Figure 1). This
resulted in 26,110 regions in which 525 differed in the
expected heterozygosity bymore than 25%. Since grain types
have been selected for early maturity in temperate environ-
ments for grain maturation and bioenergy types have been
selected for delayed flowering and increased biomass, it
would be expected that regions surrounding major maturity
genes would differ in the expected heterozygosity. To test this
hypothesis, the expected heterozygosities of the 20-kb flanks
surrounding knownmaturity genes [Ma1 (Murphy et al. 2011),
Ma3 (Childs et al. 1997), andMa6 (Murphy et al. 2014)] and a
known dwarfing gene [Dw3 (Multani et al. 2003)] were com-
pared between the two panels. The regions surrounding Ma1,
Ma3, and Dw3 in the BAP and SAP were significantly different
whereasMa6 was not. There was low SNP coverage around the
Ma6 locus, which may explain why the Ma6 locus was not
differentiated between the two data sets. Although the SAP
had a greater average heterozygosity near Ma1, regions sur-
rounding Ma3 and Dw3 had higher average heterozygosities
in the BAP than the SAP (Figure 1). These data highlight the
fundamental differences in the two panels and suggests that
there may be unexploited genetic diversity in the BAP due to a
selective bottleneck for dwarfed, early maturing grain acces-
sions in temperate environments.

Because sweet and biomass sorghum are the primary types
used for bioenergy production, determining how differentiated

Table 1 Phenotypic comparisons between the SAP and BAP

Phenotype

BAP SAP

N Average Minimum Maximum Standard deviation N Average Minimum Maximum Standard deviation

Anthesis (days) 217 97 66 153 24 369 68 50 111 7
Height (cm) 390 341.2 75.0 536.0 86.8 383 147.3 63.5 414.5 57.7
Dry weight (tons/ha) 390 19.4 3.3 70.9 11.3 344 7.7 2.21 28.6 3.9
ADF (% of DM) 387 41.5 14.0 54.9 7.9 379 37.5 24.8 61.2 5.5
NDF (% of DM) 387 67.1 47.1 81.2 7.1 379 62.9 43.2 78.4 6.1
NFC (% of DM) 387 27.6 13.9 50.0 8.0 369 20.3 10.5 45.5 6.4
Lignin (% of DM) 387 6.6 1.6 10.5 1.6 NA NA NA NA NA
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these two types are could provide insights into the genetic
architecture of compositional components. However, the level
of differentiation (as measured by FST) between the sweet and
biomass types of sorghum was overall very low (mean FST =
0.024, where 0 is no differentiation and 1 is complete differ-
entiation), although it was significantly greater than the null
distribution (File S8). The maximum value of FST is 0.276,
highlighting that there were no fixed differences between
types in the data set despite significant phenotypic differences.

Population structure

Previouswork in theSAPhas shownthatpopulationstructure is
related to the categorization of sorghum to the five botanical
races and numerous geographic regions of sorghum coloniza-
tion (Casa et al. 2008; Brown et al. 2011). Previous work has
also demonstrated that these phenotypically based classifica-
tions are genetically supported (Brown et al. 2011). Based on
these observations it would be expected that similar popula-
tion patterns would appear in the BAP. Definitive patterns
emerged supporting the previous findings that race and geo-
graphical origin help define subpopulation categorization (Fig-
ure 2). Figure 2 shows the STRUCTURE results from K= 6 of
343 individuals in the BAP. As expected, each of the five bo-
tanical races emerges as a subpopulation. Additionally, a sixth
cluster appears that divides the Ethiopian accessions into two
distinct groups. Since Ethiopia is the center of diversity for
sorghum, it is not unexpected that distinct subpopulations
could emerge when analyzing population structure. Racial
data were not provided by GRIN for any of the accessions in-
cluded in the orange cluster (Figure 2). Since racial classifica-
tion is determined, at least in part, by panicle architecture and
seed characteristics, it was not possible to establish racial clas-
sifications for this group due to the limited panicle emergence
in the photoperiod-sensitive accessions. Interestingly, the most
distinct group, the guinea population in the green cluster, clus-
ter heavily together and have the lowest proportion of mem-
bership. Principal component analysis also showed clustering
of the West African guinea types as well as the unclassified
Ethiopian accessions. Additional STRUCTURE and principal
component analysis results are in File S9.

Phenotypic means, distributions, correlations,
and heritability

Tohighlight the differences between thegrain-dominatedSAP
and the BAP, data were collected for phenotypes important

for bioenergy sorghums. Comparison between the two panels
revealed distinct patterns of phenotypic selection for each of
the two types (Table 1). The average anthesis date in the BAP
was almost 30 days longer than the SAP. This would have
been even greater if photoperiod-sensitive lines had been in-
cluded in the analysis. The average height was nearly 2 m
greater in the bioenergy panel than in the grain panel. Also,
the accumulation of above-ground biomass was significantly
greater in the bioenergy panel. The composition traits as a
proportion of drymatter (DM) did not differ as much between
the two panels; however, when extrapolating the composi-
tional components based on the dry weight, differences be-
tween two panels become more apparent. For example, the
average accumulation of NDF/ha would be nearly 13 tons vs.
6 tons in the SAP. Not surprisingly, NFC as a percentage of DM
is higher in the BAP than the SAP. Since 139 of the acces-
sions in the BAP are classified as sweet types that have been
selected to accumulate non-structural carbohydrates, it is
reasonable to expect that the BAP would have a higher per-
centage and maximum value for the accumulation of non-
structural sugars.

Of thephenotypes collected in theBAP, themarker-assisted
narrow-sense heritability estimates were generally high.
Overall, the heritability of each phenotype is similar to pre-
viously published work (Table 2). However, anthesis herita-
bility was much higher in the BAP than previously published
studies (Murray et al. 2008a). This may be because many of
the accessions in the BAP rely on photoperiod induction to
initiate reproductive tissue formation. Since the heritability
estimation used data from only one geographic location, the
heritability estimate likely does not reflect the actual impact
of the various latitudes and day lengths on photoperiod-
sensitive lines. If anthesis values were collected in an envi-
ronment with a shorter day length and the same analysis
conducted to calculate heritability, these values would prob-
ably be much lower. The compositional phenotype heritabil-
ities were similar to previously published results (Murray
et al. 2008a).

Validation of the GWAS results using seed color as
a control

Pericarp pigmentation in sorghum seeds is awell-studied trait
that is known to be controlled by an MYB transcription factor
(Y1; Yellow seed1) (Rooney 2000; Ibraheem et al. 2010;
Morris et al. 2013b). Since this gene has been mapped in

Table 2 Heritability and correlations of phenotypes in the BAP

Phenotype H2 calculation h2 estimation Anthesis Height Dry weight ADF NDF NFC Lignin

Anthesis 0.86 0.90 — 0.724*** 0.687*** 0.530*** 0.163* 20.088 0.579***
Height 0.72 0.82 0.724*** — 0.549*** 0.430*** 0.245*** 20.141** 0.527***
Dry weight 0.39 0.32 0.687*** 0.549*** — 0.009 20.088 0.183*** 0.056
ADF 0.55 0.62 0.530*** 0.430*** 0.009 — 0.837*** 20.866*** 0.872***
NDF 0.51 0.54 0.163* 0.245*** 20.088 0.837*** — 20.963*** 0.721***
NFC 0.50 0.56 20.088 20.141** 0.183*** 20.866*** 20.963*** — 20.704***
Lignin 0.57 0.70 0.579*** 0.527*** 0.056 0.872*** 0.721*** 20.704*** —

* Significance at 0.05 probability; **significance at 0.01; ***significance at 0.001.
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the SAP (Morris et al. 2013b), pericarp pigmentation was
used as a control in this study to validate the genetic data.
As expected, all of the models in GAPIT (GLM, MLM, and
CMLM to control for population structure and kinship) iden-
tified a single region within the transcript of the Y1 locus
(Sobic.001G397900) that was strongly associated with seed
color in the BAP (Figure 3).

Association mapping for structural and non-
structural carbohydrates

Association mapping revealed genomic regions strongly as-
sociated with NDF and NFC. Since these phenotypes are
inversely related to one another, it would be expected that
many of the same significant loci identified for one phenotype
were also present in the other phenotype. The association

scans from NDF and NFC demonstrate this relationship
(Figure 4).

Using the CMLM from GAPIT, the association scans
revealed a total of eight significant SNPs, representing five
loci and 22 genes (File S10). LD was calculated locally for
each significant SNP (File S6). Significantly associated SNPs
within the distance of LD decay of on another were consid-
ered a single locus; also, any gene within the LD estimate was
considered linked, and plausibly implicated in the determi-
nation of the phenotype. Of the eight significant SNPs, two
are intragenic missense variants, indicating the higher likeli-
hood that specific genes contribute to the phenotype.

A total of five regions were identified through the associ-
ation methods: two loci were located on chromosome 4, and
three on chromosome 6. Although most loci identified had

Figure 3 A single locus, the Y1 MYB
transcription factor, was identified in all
three models as expected. This pheno-
type represents a control to validate cor-
rect SNP calling, imputation, and GWAS
methodology.
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plausible explanations of their impact on biomass composi-
tional components, one of the regions on chromosome 4 is
particularly interesting. AnSNP in this region causes an amino
acid change to a vacuolar iron transporter. The SNPs in this
linkage group appear to create a distinctive haplotype struc-
ture. There were three haplotypes in this region (Figure 5).
The mean NFC of haplotype III was 41.8% while the mean
value of haplotype I was only 25.5% NFC. Haplotype II,
which only differed from haplotype I by a single base pair,
also had a low NFC value (21.5%). Of the individuals with an
NFC of over 40% DM (29 individuals), 11 individuals have
haplotype III. The top five individuals all have haplotype III at
this location. Historically important sweet lines such as Rio,
Wray, Leoti, and Sugar Drip each possessed haplotype III at
the specified locus (Figure 5). The strong association with
NFC coupled with the clustering of historically important
accessions provides evidence that this region impacts the
accumulation of nonstructural carbohydrates in Sorghum
bicolor, and could be important for bioenergy sorghum
improvement.

Due to the potentially confounding effects of height and
maturity on accumulation of structural and non-structural
carbohydrates, the candidate genes were compared to the
locations of known maturity genes (Ma1 – Ma6) (Mace and
Jordan 2010) and known dwarfing genes (Dw1 – Dw4) (Mace
and Jordan 2010) . There was no co-localization among any
of the maturity genes or dwarfing genes with any of the
significantly associated regions. Furthermore, there was no

overlap among the nearly 221 candidate genes identified for
maturity (Mace et al. 2013a) and the candidate genes for
structural or non-structural carbohydrates identified in this
study. In addition, GWASs were conducted on height and
flowering time from the data in the BAP; no significant SNPs
co-localized with the results from NFC and NDF (File S11).

Candidate gene identification

Each region identified through the GWASs has plausible
candidates for biomass composition (Table 3). Most notably,
SNP S4_63347613, shown in haplotype III (Figure 5), causes
an amino acid change from an alanine to a valine in a vacu-
olar iron transporter family protein. Previous studies have
shown that sucrose accumulation in plants regulates an iron-
deficient response (Lin et al. 2016). Furthermore, in a
previous comparison of divergence between sweet and grain
types, this region underwent a segmental duplication from
their most recent common ancestor, suggesting possible
neofunctionalization of the two vacuolar iron transporter
between sweet and grain sorghum (Jiang et al. 2013). Ad-
ditionally, a vacuolar-processing enzyme was identified in
this region. Vacuoles serve a major role in sucrose accumu-
lation and mobilization in plants (Leigh 1984). The other
region on chromosome 4 contains four genes, one of which,
a B-box zinc finger protein, shares homology with a salt
tolerance homolog. Sugar accumulation has been shown to
be a molecular response to salt stress in sorghum (Sui et al.
2015).

Figure 4 A total of eight unique SNPs,
five loci, and 22 genes were identified
using the CMLM for NFC and NDF. SNPs
with a P-value of less than 3.00 3 1027

were considered significant.
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The region identified on chromosome 6 had two genes
coding for cellulase enzymes, Sobic.006G122200 and
Sobic.006G122300. These genes hydrolyze glycosidic bonds
in complex carbohydrates, such as cellulose, which is the
major component of NDF. These SNPs were associated with
increased levels of non-structural carbohydrates and de-
creased levels of structural carbohydrates. These glycoside
hydrolase family 5 proteins could be involved in the degra-
dation of structural components of the cell wall. These were
the only two genes to have GO terms associated with carbo-
hydrate metabolic process (GO:0005975). Additionally, a
transducin/WD40 family protein was identified from a signif-
icantly associated SNP 773 bp upstream. Transducin/WD40
proteins have been shown to increase biomass accumulation
(Gachomo et al. 2014). Although the genes identified in this
study are plausible candidates for biomass compositional
components, further evidence will be needed to dissect the
true effect of these allelic variants.

Discussion

Sorghum as a functional model for bioenergy and the
value of the BAP

Of the potential bioenergy Andropogoneae candidates, sor-
ghum has emerged as one of the preferred species for direct
commercialization as a bioenergy crop and as a functional
model for other Andropogoneae. Sorghumhas natural advan-
tages as a model for this family of grasses because of its
relatively small diploid genome (�730 Mb), significant
breeding history, and substantial natural diversity. This ex-
tensive genetic and phenotypic diversity provides the foun-
dation for gene discovery and crop improvement. It also
allows sorghum to serve as a model for other bioenergy
Andropogoneae because of its adaptability to various bioen-
ergy conversion technologies. Due to its high levels of sugar
accumulation and its close evolutionary history, it can also
serve as a relevant reference for the Saccharum genus. Since

there are no reported genomic incompatibilities among the
four types of sorghum, genes identified that improve bioen-
ergy sorghum performance in the BAP could be incorporated
into grain and forage types as well.

The BAPwas constructed by using publicly available racial
and geographic as well as agronomic data from field evalu-
ations. Since previous studies have shown that the racial
classifications are genetically supported (Brown et al.
2011), the hypothesis was that by selecting lines incorporat-
ing the major botanical races, we would be able to capture a
sufficient amount of genetic diversity. The botanical races are
correlated with geographic regions. After we selected indi-
viduals based on racial distribution, we supplemented under-
represented regions with accessions with known geographic
origins. Phenotypically, we restricted accessions to tall, pho-
toperiod-sensitive, late-maturing accessions. We also chose
accessions screened for resistance to a major sorghum dis-
ease, anthracnose. This was an attempt to remove the con-
founding effects of varying resistances and susceptibilities,
since the presence of the disease could alter the carbon com-
position profile of the individual accession. Although we
tightly constrained the amount of diversity for flowering
time, height, and disease susceptibility, we captured an ap-
propriate amount of genomic diversity compared with other
panels. Finally, historically important lines used in breeding
and lines that were sequenced at the Joint Genome Institute
were included. All accessions are available for public distri-
bution through the GRIN system.

The development of a genetic and genomic resource spe-
cifically designed to capture the natural genetic and pheno-
typic diversity of sorghum for carbonpartitioning andbiomass
composition increases the efficiency and efficacy of associa-
tion genetics and incorporation of favorable alleles into a
breeding pipeline. Although nested association mapping
(NAM) populations and multi-parent advanced-generation
inter-cross (MAGIC) populations have been shown to improve
thedetectionof small effect loci and reduce the false-discovery
rate (Cavanagh et al. 2008; Yu et al. 2008), these populations
severely restrict the diversity and thus the detection of novel
gene candidates or rare, favorable alleles. In addition, diver-
sity panels developed for conservation of genetic resources
and analysis of genetic diversity impede many efforts to iden-
tify causal genes either because of the confounding effects as
a consequence of the diversity or the lack of statistical power
from a low phenotypic frequency. The BAP’s construction
limits the confounding effects associated with flowering time
and height (Flint-Garcia et al. 2005) by limiting the panel to
tall, late-flowering, photoperiod-sensitive accessions. Fur-
thermore, the selection of accessions with known phenotypic
diversity increases the likelihood that variants are at higher
frequencies in the mapping population, which increases the
probability of a true positive association (Myles et al. 2009).
The creation, evaluation, and characterization of a diversity
panel with the public dissemination of data provides in-
sights to create better constructed NAM, MAGIC, recombi-
nant inbred lines (RILs), or candidates for whole-genome

Figure 5 Three haplotypes on chromosome 4. This region was signifi-
cantly associated with NFC in the CMLM in 2014. Yellow indicates the
more frequent allele, and blue indicates the less frequent allele. Haplo-
types I and II correspond to low values of NFC while haplotype III corre-
sponds to high levels of NFC.
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resequencing. Overall, the BAP was created to overcome the
limitations with other genomic resources, and the effective
mapping of two key phenotypes show the advantages of us-
ing the BAP for critical bioenergy traits, but future studies
should implement better field designs for improved statistical
analysis. An important insight from this study is that the large
number of accessions allowed a thorough analysis of the as-
sociations, but resulted in a design with very large block size.
Even though we corrected for possible field heterogeneity
from the large block size, additional studies using this re-
source should use superior designs such as an incomplete
block design with multiple row plots. This allows for adjust-
ment due to competition effects and other field variants.With
more appropriate design, the BAP has the potential to serve
as a critical resource for the continued advancement of sor-
ghum as a preferred bioenergy feedstock.

Conclusions

The objective in this study was to expand the existing foun-
dation of genetic and genomic resources for bioenergy re-
search in non-model Andropogoneae. By creating the
sorghum BAP, we provide a genetic and genomic resource
that not only provides a foundational knowledge for deter-
mining the genetic architecture of traits important for bioen-
ergy but also expands the current germplasm in the sorghum
community. Although this panel limits phenotypic variance of
the included accessions to bioenergy-like ideotypes, genetic
and phenotypic diversity of the overall species was main-
tained. The strong heritabilites and the low correlations of
the compositional phenotypes to dry weight suggested that
composition can be improvedwithout affecting the total yield
(Murray et al. 2008b). The association analysis identified
regions of the genome that could be targeted to improve bio-
mass quality. However, others have suggested that increasing
total yield is more important than improving composition
quality for maximizing extractible energy per unit input
(Murray et al. 2008a). Since increasing sink strength has
been shown to advantageously affect yield (Bihmidine et al.
2013), understanding the genetic controls of the composi-
tional components could allow for improved sink strength
with a positive yield outcome. By identifying genomic regions
independently affecting yield and composition, researchers
could simultaneously select for both yield and increased qual-
ity instead of selecting for one or the other. This would allow

researchers to increase yield and compositional quality con-
currently, promoting an increase in breeding efficiency and
bioenergy optimization. Furthermore, determining the ge-
netic controls of carbon allocation in sorghum may be useful
in elucidating the genetic mechanisms controlling biomass
yield, sugar accumulation, and other compositional constitu-
ents in other C4 grasses.

By analyzing phenotypic and genomic data from the BAP,
researchers can better design experiments to study the genet-
ics of bioenergy sorghum. Providing corroborating evidence
on how sorghum populations are structured not only rein-
forces previous studies (Casa et al. 2008; Morris et al. 2013a)
but also provides valuable information pertaining to how
certain botanical races of sorghum may perform in a bioen-
ergy context. The establishment, characterization, and sub-
sequential genomic analysis of this resource have highlighted
regions of the genome and possible candidate genes for tar-
geted improvement in bioenergy sorghum. These candidate
genes need further validation, such as analysis of segregating
populations, targeted gene sequencing, and functional tests.
The need for the grass community to develop appropriate
resources for gene identification with functional annotations
is imperative for the continued improvement of bioenergy
feedstocks. The creation and analysis of this foundational
resource provides researchers with valuable tools and essen-
tial knowledge for continued experimentation with bioen-
ergy sorghum and other Andropogoneae. Providing easily
accessible accessions with genomic information allows for
greater efficiency of research by encouraging collaboration
and the dissemination of information. The establishment,
characterization, and analysis of the BAP facilitate the ad-
vancement of sorghum for bioenergy production and optimi-
zation worldwide, and provide a foundational resource for
the development of renewable energy.
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SORGHUM BIOENERGY ASSOCIATION PANEL: 
 COMMAND LINES FOR SNP CALLING AND IMPUTATION 

 

 

 
I.  TASSEL 5.0 Command lines for Raw Data Processing and SNP Calling: 

 

# Tag Counts – Sorting the reads by barcode and restriction site 
 
$ mac2unix.sh BAP_2014_key.txt  

$ mkdir TagCounts 

$ ~/tassel5.0_standalone/run_pipeline.pl -Xmx50G -fork1 -

FastqToTagCountPlugin -i 

/Volumes/Kresovich/DataArchives/DNA/GBS/Sbicolor_RawData/ -k 

../BAP_2014_key.txt -e ApeKI -s 700000000 -c 1 -o TagCounts/ -

endPlugin -runfork1 >TagCounts/FastqToTagCount.log 

2>TagCounts/FastqToTagCount.err 

 
# Merge Multiple Tag Counts 
 
$ mkdir mergedTagCounts 

130-127-150-127:TASSEL_102014 lizcooper$ 

~/tassel5.0_standalone/run_pipeline.pl -fork1 -

MergeMultipleTagCountPlugin -Xmx32g -i TagCounts/ -o 

mergedTagCounts/MasterBAPtags.cnt -c 10 -endPlugin -runfork1 

>mergedTagCounts/MergeMultipleTags.log 

2>mergedTagCounts/MergeMultipleTags.err 

130-127-150-127:TASSEL_102014 lizcooper$ 

~/tassel5.0_standalone/run_pipeline.pl -fork1 -

TagCountToFastqPlugin -Xmx32g -i 

mergedTagCounts/MasterBAPtags.cnt -o 

mergedTagCounts/MasterBAPtags.fq -c 10 -endPlugin -runfork1 

>mergedTagCounts/TagsToFastq.log 

2>mergedTagCounts/TagsToFastq.err 

 
# Tag Alignment – This step uses the outside alignment program BWA 
 
$ mkdir bwa_alignment 

130-127-150-127:TASSEL_102014 lizcooper$ bwa aln -t 2 

~/Sorghum_Genome/Sbicolor_v2.1_255.fa 

mergedTagCounts/MasterBAPtags.fq >bwa_alignment/mergedBAPtags.sai 

130-127-150-127:TASSEL_102014 lizcooper$ bwa samse 

~/Sorghum_Genome/Sbicolor_v2.1_255.fa 

bwa_alignment/mergedBAPtags.sai mergedTagCounts/MasterBAPtags.fq 

>bwa_alignment/mergedBAPtags.sam 

 

$ sed 's/Chr0//g' bwa_alignment/mergedBAPtags.sam | sed 

's/Chr//g' | sed 's/super_/1/g' 

>bwa_alignment/mergedBAPtags_rename.sam 



 
# TOPM 
 
$ mkdir topm 

$ ~/tassel5.0_standalone/run_pipeline.pl -fork1 -

SAMConverterPlugin -i bwa_alignment/mergedBAPtags_rename.sam -o 

topm/MasterBAPtags.topm -endPlugin -runfork1 

>topm/SAMConverter.log 2>topm/SAMConverter.err 

 

# TBT 
 
$ mkdir tbt 

$ ~/tassel5.0_standalone/run_pipeline.pl -fork1 -FastqToTBTPlugin 

-i /Volumes/Kresovich/DataArchives/DNA/GBS/Sbicolor_RawData/ -k 

../BAP_2014_key.txt -e ApeKI -o tbt/ -y -t 

mergedTagCounts/MasterBAPtags.cnt -endPlugin -runfork1 

>tbt/FastqToTBT.log 2>tbt/FastqToTBT.err 

 

$ ~/tassel5.0_standalone/run_pipeline.pl -fork1 -

MergeTagsByTaxaFilesPlugin -Xmx32g -i tbt/ -o 

tbt/mergedBAP.tbt.byte -endPlugin -runfork1 

>tbt/MergeTagsByTaxa.log 2>tbt/MergeTagsByTaxa.err 

 
# SNP Calling  
 

$ mkdir hapmap 

$~/tassel4.0_standalone/run_pipeline.pl -fork1 -

DiscoverySNPCallerPlugin -Xmx32g –I tbt/mergedBAPtags.tbt.byte -y 

-m topm/MasterBAPtags.topm -mUpd topm/BAP_wVariants.topm -o 

hapmap/BAP_chr+.hmp.txt -mnMAF 0.05 –ref 

Sbicolor_v2.1_255.renamed.fa -sC 1 -eC 10 -endPlugin -runfork1 

>hapmap/SNPCaller_c1.log 2>hapmap/SNPCaller_c1.err 

 
 
 
 
 
 
 
II.  Impute Missing Genotypes with Fastphase (Perl Scripts for file format 

conversion included in separate file). 

 *** Note that the usage for each script is given automatically by entering the 

 script name with no options 

 

1.  Create an input file for each chromosome (only chromosome 1 shown) 
$ ./hmp2fastPHASE.pl BAP_chr1.hmp.txt BAP_chr1_phase.inp 

 

2.  Run the program on each chromosome 
$ ~/fastPHASE_MacOSX-Darwin -oBAP_chr1_fastphase -Pm -H-4 -q0.8 



BAP_chr1_phase.inp 

 

3.  Convert the fastPHASE output back into hapmap format 
$ ./fastPhase2hmp.pl BAP_chr1_phase.inp 

BAP_chr1_fastphase_genotypes.out 1 BAP_chr1.impute.hmp.txt 

 

4.  Merge the hapmap files for each chromosome (1-10) into 1 file: 
./mergeHMP.pl BAP_all_impute.hmp.txt 1 10 



File S4: Custom scripts used in the analysis. (.zip, 7 KB) 

 

 

 
Available for download as a .zip file at: 
 
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.183947/-/DC1/FileS4.zip 
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