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ABSTRACT Eutrophication occurring in coastal bays is prominent in impacting
local ecosystem structure and functioning. To understand how coastal bay ecosys-
tem function responds to eutrophication, comprehending the ecological processes
associated with microbial community assembly is critical. However, quantifying the
contribution of ecological processes to the assembly of prokaryotic communities is
still limited in eutrophic waters. Moreover, the influence of these ecological proc-
esses on microbial interactions is poorly understood. Here, we examined the as-
sembly processes and co-occurrence patterns of prokaryotic communities in a
eutrophic bay using 156 surface seawater samples collected over 12 months. The
variation of prokaryotic community compositions (PCCs) could be mainly explained
by environmental factors, of which temperature was the most important. Under
high environmental heterogeneity conditions in low-temperature seasons, hetero-
geneous selection was the major assembly process, resulting in high b-diversity
and more tightly connected co-occurrence networks. When environmental hetero-
geneity decreased in high-temperature seasons, drift took over, leading to decline
in b-diversity and network associations. Microeukaryotes were found to be impor-
tant biological factors affecting PCCs. Our results first disentangled the contribution
of drift and microbial interactions to the large unexplained variation of prokaryotic
communities in eutrophic waters. Furthermore, a new conceptual model linking mi-
crobial interactions to ecological processes was proposed under different environ-
mental heterogeneity. Overall, our study sheds new light on the relationship
between assembly processes and co-occurrence of prokaryotic communities in
eutrophic waters.

IMPORTANCE A growing number of studies have examined roles of microbial com-
munity assembly in modulating community composition. However, the relation-
ships between community assembly and microbial interactions are not fully
understood and rarely tested, especially in eutrophic waters. In this study, we
built a conceptual model that links seasonal microbial interactions to ecological
processes, which has not been reported before. The model showed that heteroge-
neous selection plays an important role in driving community assembly during
low-temperature seasons, resulting in higher b-diversity and more tightly con-
nected networks. In contrast, drift became a dominant force during high-tempera-
ture seasons, leading to declines in the b-diversity and network associations. This
model could function as a new framework to predict how prokaryotic commun-
ities respond to intensified eutrophication induced by climate change in coastal
environment.
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Eutrophication has occurred widely in freshwater and marine ecosystems, resulting
in a broad range of ecological and biogeochemical effects (1). In coastal regions, the

consequences of anthropogenic nutrient inputs, particularly in shallow and enclosed
bodies of water, are progressively leading to toxic algal blooms, hypoxia, and biodiver-
sity loss, all of which are prominent in impacting local ecosystem structure and function-
ing (2). Prokaryotes can respond quickly to anthropogenic disturbances owing to their
unique position in metabolizing organic substrates and nutrient remineralization in bio-
geochemical cycles (3). Several previous long-term sampling efforts to investigate the
main factors affecting the seasonality of marine microbial communities mainly focused
on the relative importance of temperature and nutrients (4–7). These are obviously influ-
ential, as temperature has a large impact on microbial metabolism (8) and environmental
niche partitioning depends on the availability of nutrients in different regions (9).
However, factors driving the dynamics of prokaryotic community compositions (PCCs) in
eutrophic waters are usually complex and may include the compounding of several fac-
tors, making it challenging to disentangle them. Thoroughly elucidating the factors,
including community assembly and microbial interactions, that contribute to the season-
ality of coastal PCCs in eutrophic waters can lead to more accurate predictive modeling
of marine ecosystems in response to eutrophication.

Microbial community assembly is a central topic in revealing the function of the eco-
system (10–13). Two prevalent and complementary ecological processes, neutral- and
niche-based theories, are widely applied to elucidate microbial community assembly. The
neutral theory predicts that stochastic processes, including the drift, dispersal, and local
extinction, shape community assembly (10, 14, 15). Stochastic processes are expected to
play crucial roles in determining microbial community compositions (15–17), particularly
in early communities with the inherent randomness of dispersal and ecological drift driv-
ing composition (10, 18). The niche-based theory declares that deterministic processes
caused by biotic and abiotic factors drive microbial assembly, mainly due to diverse niche
preferences and the fitness of microbes (19–22). Microbial interactions are generally
regarded as deterministic processes (10), but so far, there is still a large gap in how inter-
actions between microeukaryotes and prokaryotes influence PCC variations in eutrophic
waters during seasonal changes. Interactions between microbes in complex network sys-
tems could be highly affected by these ecological processes (23). For instance, selection
pressure imposed by environmental factors can drive highly associated microbes to
group together or generate modules in co-occurrence networks in response to specific
environmental conditions (24). Co-occurrence networks are widely regarded as an effec-
tive tool with which to infer microbial interactions. Using this approach, intrinsic interac-
tions (including grazing, mutualism, symbiosis, cross-feeding, and parasitism) can be
clearly elucidated (25). Although correlations in the network do not accurately represent
true interactions between microbes, network analyses can still help us to acquire and elu-
cidate information on highly diverse communities.

So far, studies on the assembly mechanisms and co-occurrence patterns of PCCs in
eutrophic waters during the seasonal transitions are still limited. Xiangshan Bay, a
semienclosed bay (approximately 70 km long, 3–8 km wide, and 10 m deep on aver-
age) in Zhejiang, China, is an important aquacultural region with limited water
exchange ability and severe eutrophication (19). Moreover, Xiangshan Bay is vulnerable
to several anthropogenic disturbances caused by tourism, industry, and agriculture. In
such fluctuating environments, predictable patterns of assembly and the co-occur-
rence of microbial communities are particularly important for understanding the mech-
anisms that preserve ecosystem stability. In this study, based on samples collected
monthly throughout the year in Xiangshan Bay, we tried to demonstrate the assembly
processes and co-occurrence patterns of PCCs under eutrophic conditions. Therefore,
the present study was designed to resolve the following critical issues: (i) How do eco-
logical processes affect the seasonality of PCCs? (ii) What seasonal trends emerge in
the intradomain co-occurrence networks of the PCCs? (iii) What is the relationship
between ecological processes and co-occurrence networks in eutrophic waters? By
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answering these questions, our findings will provide the largest inventory so far of the
mechanisms shaping the seasonality of prokaryotic communities in this eutrophic bay.

RESULTS
Seasonal patterns of the environmental factors. Surface seawater temperature was

high in summer (average of 27.3°C) and autumn (average of 25.0°C, Fig. S2). Salinity
ranged between 21.6 and 28.9 psu with the lowest value in summer. The dissolved oxy-
gen (DO) was significantly covariant with temperature and was thus disregarded in the
following analyses. Changes in pH (7.81–8.16), nitrate (0.352–0.943 mg/L), and silicate
(0.587–1.61 mg/L) showed similar trends, declining from winter to summer and increasing
from summer to autumn. Nitrite, with the highest concentration in summer (average,
0.031 mg/L), showed the opposite trend as nitrate. Chemical oxygen demand (COD;
0.230-1.30 mg/L) and phosphate (0.024–0.091 mg/L) decreased from winter to spring and
then increased from spring to autumn. Chlorophyll a (Chl a) and ammonium levels were
relatively homogeneous throughout the year. The average environmental heterogeneity
was the highest in winter (0.468) then decreased to 0.343 in summer as the temperature
increased (Fig. S2 in the supplemental material).

Patterns of prokaryotic community compositions. The dominant phyla in the
Xiangshan Bay were Proteobacteria, Bacteroidetes, Thaumarchaeota, and Actinobacteria
(Fig. S3). The most abundant classes were Alphaproteobacteria, Gammaproteobacteria,
Thaumarchaeota Marine Group I (MGI), Flavobacteriia, and Betaproteobacteria (Fig. S4,
Table S1). Interestingly, relative abundance of Cyanobacteria was much higher during
high-temperature seasons, especially in summer (9.60%, Table S1). Temperature was
strongly and positively associated with Cyanobacteria (Spearman’s r = 0.875,
P , 0.001), SAR406 (r = 0.684, P , 0.001), Euryarchaeota (r = 0.536, P , 0.001), and
Actinobacteria (r = 0.429, P , 0.001) but negatively correlated with Proteobacteria (r =
20.517, P, 0.001) and Verrucomicrobia (r =20.370, P, 0.001) abundances (Fig. S3).

Based on visual similarities in the temporal patterns, we assigned the 50 most abun-
dant operational taxonomic units (OTUs) to five clusters (Fig. 1a), which were named as
follows: opportunistic (Cluster 1), ubiquitous (Cluster 2), spring-associated (Cluster 3),
summer-associated (Cluster 4), and nonrelevant (Cluster 5). The spring-associated group
contained mainly Rhodobacteraceae and Flavobacteriaceae (Fig. 1d). Synechococcus and
Prochlorococcus were assigned to the summer-associated cluster (Fig. 1e). However, 31 of
the 50 most abundant OTUs were non-seasonal association. Based on network analysis
(Fig. 1f), almost all OTUs in the spring- and summer-associated groups correlated with
temperature.

Relevance of temperature and microeukaryotes to PCC variations. The overall
composition of the prokaryotes substantially differed (MRPP and PERMANOVA, P, 0.001)
when any two seasons were compared (Table S2). Such seasonal community patterns
were also clear in the NMDS plot (Fig. 2a), which obviously divided samples into groups
depending on seasons with relatively low or high temperatures (Fig. 2b). Moreover, we
found that the PCC variations were highly linked with temperature gradients (R2 = 0.272,
P , 0.001; Fig. 2c), indicating that temperature was the main abiotic factor driving PCC
variations across four seasons. Environmental factors significantly (P , 0.001) explained
33.2%, 38.6%, 37.2%, and 25.8% of the PCC variations in winter, spring, summer, and
autumn, respectively (Fig. 3a). The detected geographic factors had weak correlations
with variations of PCCs in the four seasons. However, 56.4%, 50.1%, 54.0%, and 61.6% of
the variations were unexplained from winter to autumn (Fig. 3a). Variations of the PCCs
were strongly correlated (all P , 0.001) with temperature and the microeukaryotic com-
munity across the four seasons (Table S3). Temperature had the largest direct influence
on community variations (standardized path coefficient, b = 0.737, P , 0.001, Fig. 3b).
Microeukaryotes were the second most powerful factor (b = 0.405, P , 0.001, Fig. 3b),
while nutrients and other physicochemical factors did not directly affect PCC variations.
We also found that microeukaryotic b-diversity fitted well to the prokaryotic b-diversity
(R2 = 0.201, P , 0.001) (Fig. 2d, Fig. S5). These results corroborated the hypothesis that
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temperature and microeukaryotes were the important respective abiotic and biotic fac-
tors shaping the seasonal dynamics of PCCs in this eutrophic bay.

Assembly processes of prokaryotic community. The bNTI, together with the RCbray

analysis, demonstrated that selection was the dominant ecological process in all seasons
except summer, when drift played an overwhelming role in community assembly (Fig. 4a
and b). Heterogeneous selection had a major role in defining the community assembly in
winter and spring (47.2% and 31.6%, respectively), while homogeneous selection contrib-
uted 16.1% and 25.5% of community assembly. Despite not being the dominant process,
the proportion of drift still reached 26.1% and 37.1% in winter and spring, respectively.
The contributions of heterogeneous and homogeneous selection decreased in the
summer (28.6% and 7.7% of the overall community assembly, respectively), while drift
reached its maximum proportion (57.0%) (Fig. 4b). Even though the roles of heterogene-
ous and homogeneous selection increased again in autumn, drift still constituted a signifi-
cant percentage (39.1%). Nonselective processes, such as homogenizing dispersal and
dispersal limitation, had minor influences during all four seasons (Fig. 4b).

Different patterns of species interactions in the four seasons. All four networks
fitted well with the power-law model, with R2 values of 0.736, 0.662, 0.697, and 0.775
for winter, spring, summer, and autumn, respectively, suggesting that the four net-
works were scale-free and nonrandom networks (Fig. S6). The prokaryotic meta-net-
work taxa mainly consisted of Gammaproteobacteria (22.5%), Alphaproteobacteria
(21.7%), and Bacteroides (14.2%) (Fig. 5a). The connections within their own class were
stronger than connections to other classes, indicating that phylogenetic-related taxa
co-occurred more frequently.

Number of nodes and edges in the co-occurrence networks varied throughout four
seasons, with both being the highest in winter: 855 nodes linked by 17,790 edges (Table
S4, Fig. 5b). The network structure in winter was likewise more complex and tighter, as

FIG 1 Seasonal patterns of the 50 most abundant OTUs. (a) The OTUs were grouped into five clusters
according to their patterns of abundance. (b–e) Plots showing the temporal dynamics of Clusters 1 to 4,
which were visually assigned to opportunistic (b), ubiquitous (c), spring-associated (d), and summer-
associated (e) groups, respectively. (f) Spearman’s rank correlation network with significant (FDR-adjusted P
value , 0.01) and robust (Spearman’s jr j . 0.6) correlations showing the relationship between five
clusters and environmental factors.
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shown by a greater clustering coefficient. Interestingly, we found that connectedness, as
measured by the clustering coefficient and average degrees of the networks, appeared
to be lower when drift was the dominant factor and greater when selection, particularly
heterogeneous selection, became more important (Fig. 4 and 5). In autumn, the co-
occurrence network contained 470 nodes and 5,498 edges, which were also significantly
higher than those in spring and summer (Table S4, Fig. 5b). There were four clearly
defined modules in winter and autumn, and three modules in spring and summer
(Fig. 5b). Gammaproteobacteria, Alphaproteobacteria, and Bacteroides were the dominant
taxa in all modules (Fig. 5c). Temperature was significantly negatively correlated with
three tested features, degree (R2 = 0.417, P , 0.001), betweenness centrality (R2 = 0.417,
P , 0.001), and transitivity (R2 = 0.417, P , 0.001), indicating that temperature strongly
structured the prokaryotic interactions. The largest number of keystone species were
found within the co-occurrence networks in winter (114 OTUs) (Fig. S7), and they were
mainly identified as Alphaproteobacteria (25 OTUs), Gammaproteobacteria (25 OTUs), and
Deltaproteobacteria (12 OTUs). There were 0, 2, and 13 keystone species in spring,
summer, and autumn, respectively.

Based on the bipartite network for prokaryotes and microeukaryotes, Chlorophyta (384
edges) and Diatomea (382 edges) appeared to have the greatest number of associations
with prokaryotic orders, followed by Syndiniales (183 edges) and Cryptomonadales (168

FIG 2 Factors controlling prokaryotic b-diversity. (a) Bray-Curtis distance-based nonmetric multidimensional scaling (NMDS) plot. Arrows indicate
environmental factors that were strongly linked to community variations. Each cycle is colored according to its sampling time. Chl a, chlorophyll a content;
COD, chemical oxygen demand. (b) Effects of temperature on the prokaryotic b-diversity. The color gradient of each cycle indicates temperature
throughout the year. (c–d) Correlations of prokaryotic b-diversity with temperature (Euclidean distance, c) and microeukaryotic b-diversity (Bray-Curtis
distance, d).

Prokaryotic Community Assembly in Eutrophic Waters Microbiology Spectrum

May/June 2022 Volume 10 Issue 3 10.1128/spectrum.01481-22 5

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01481-22


edges) (Fig. S8, Table S5). Flaveobacteriales had 273 connections with microeukaryotes,
including 69 connections with Chlorophyta and 66 with Diatomea (Fig. S8, Table S5).
Rhodobacterales and Oceanospirillales also frequently interacted with Chlorophyta and
Diatomea. These results indicated that, within all microeukaryotes, Chlorophyta and
Diatomea were the main contributors to PCC dynamics in this eutrophic bay.

DISCUSSION

Xiangshan Bay is a highly productive ecosystem with complicated physicochemical
gradients making it sensitive to fluctuating environmental conditions. As a buffer zone,
Xiangshan Bay acts either as an organic matter sink or a reservoir capable of exporting
inorganic and organic nutrients to the adjacent sea. In addition to hydrological and
physical factors, the degradation and consuming processes carried out by marine
microbes determine the balance between accumulation and export, emphasizing the

FIG 3 Disentangling the contributions of environmental factors and microeukaryotes to community variations. (a) Variation
partitioning analysis showing relative contributions of environmental (Env) and geographic (Geo) factors to community variations.
GSE, geographic structured environment factor. (b) Partial least-squares path model showing the relationships among prokaryotic
community compositions (PCCs), environmental factors, microeukaryotic community compositions, and geographic factors. PCCs
are represented by NMDS2 from the Bray-Curtis distance-based NMDS analysis. Microeukaryotic a-diversity includes richness,
Shannon index, evenness, and phylogenetic diversity. Microeukaryotic b-diversity is NMDS1 from the Bray-Curtis distance-based
NMDS analysis. Nutrients include ammonium, nitrite, nitrate, phosphate, and silicate. Physiochemical factors consist of pH, salinity,
chemical oxygen demand, dissolved oxygen, and chlorophyll a content. Geographic factors include sampling latitude and
longitude. The standard path coefficients (b) are the numbers near the pathway arrows and indicated by the width and color of
arrows, with red and blue arrows representing significant (P , 0.05) negative and positive pathways, respectively. The goodness
of fit value was 0.452.

FIG 4 Prokaryotic community assembly processes. (a) Violin plots and boxplots showing distribution of bNTI values in four seasons. Horizontal dashed
lines indicate bNTI thresholds at 22 and 12. (b) Contribution of individual ecological processes to prokaryotic community assembly.
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necessity to investigate the seasonal dynamics and assemblages of microbial commu-
nity. Our findings provide the most comprehensive inventory of prokaryotic commu-
nity assembly mechanisms and co-occurrence patterns in this eutrophic bay to date.

Seasonal variations of prokaryotic community compositions. Alphaproteobacteria
and Gammaproteobacteria dominated the PCCs in Xiangshan Bay throughout the year
(Fig. S4, Table S1). The prevalence of Flavobacteria in spring (Fig. S4, Table S1) coin-
cided with a rise in nutrient-rich conditions, showing that this taxon prefers more of a
productive environment (26). Cyanobacteria was obvious summer-associated taxa in
this eutrophic bay. Previous research showed that warming caused an increase in the
abundance and biomass of Cyanobacteria in eutrophic waters (9, 27), which is consist-
ent with our findings (Fig. S4, Table S1). The predominance of Cyanobacteria in summer
was largely due to Synechococcus and Prochlorococcus (Fig. 1). Synechococcus is found in
nearly all marine habitats, whereas Prochlorococcus is limited to warmer oligotrophic
seas and is absent from colder nutrient-rich waters (28). However, Prochlorococcus can
proliferate in Xiangshan Bay with serious eutrophication (Fig. 1), which contrasts with
the traditional description of their habitat. Moreover, an investigation of phytoplankton

FIG 5 Prokaryotic co-occurrence patterns. (a) Overview of co-occurrence network over four seasons. Connections are colored according to the phylum or
class name. (b) Co-occurrence network for four seasons. Nodes are colored by network modules, which were named M1 to M4 by modular weight. (c)
Compositions of network modules for four seasons. (d) Relationship between temperature and degree, betweenness centrality, and transitivity centrality.

Prokaryotic Community Assembly in Eutrophic Waters Microbiology Spectrum

May/June 2022 Volume 10 Issue 3 10.1128/spectrum.01481-22 7

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01481-22


abundance in the East China Sea also reported an absence of Prochlorococcus along
the coastal shoreline west of 124°E (29). It is possible that Prochlorococcus would
have been detected if the researchers used the more precise amplicon sequencing
method. As a productive agricultural bay, Xiangshan Bay contains a large amount of
animal waste, which probably led to the high abundance of Enterococcus durans,
reminding us that intensive anthropogenic pollution has a profound influence on the
marine environment.

Association network analysis revealed that spring- and summer-associated taxa
were significantly correlated with temperature (Fig. 1d and e). Temperature is critical
in structuring microbial communities over space (6, 30) and time (4, 31). Aside from
being associated with temperature, the seasonal taxa showed distinct persistence
periods that may also be attributed to various ecological strategies. The abundance
dynamics of the spring- and summer-associated taxa may indicate a high growth
rate when suitable resources are available, and a rapid decline due to highly com-
petitive pressure and predation. Furthermore, the presence of ubiquitous taxa may
reflect a lower amount of pressure from competition or predation, allowing these
taxa to persist longer in the ecosystem. The taxa classified as opportunistic OTUs
may occasionally increase in abundance when triggered by suitable environmental
conditions.

The community assembly was mediated by a balance between deterministic
and stochastic processes. Variation partitioning approach (VPA) results showed that
environmental factors can obviously explain the community variation over the four sea-
sons (Fig. 3a). Thus, we proposed that environmental selection could be a primary driver
of prokaryotic community assembly in this eutrophic bay. Congruently, in the East China
Sea, selection was also found to be more significant in shaping bacterial communities in
surface seawater (32). Our results likewise revealed that selection was the primary assem-
bly process when environmental heterogeneity was high (Fig. 4). Previous studies demon-
strated that temperature is the major influential factor imposing selection pressure on
prokaryotes (33–36), but this literature mainly tried to elucidate the community assembly
from the spatial aspect. Therefore, we expanded the information in the literature to
include both spatial and seasonal variability in this eutrophic bay. Firstly, we found that,
with high environmental heterogeneity (winter, spring, and autumn), PCCs were mostly
influenced by selection (Fig. 6a). In this situation, selection pressures in each local commu-
nity may effectively filter species according to their fitness, resulting in a high b-diversity
(Fig. 6b), whereas nonselective processes had less importance. Of the selection processes,
heterogeneous selection was more significant than homogeneous selection in structuring
PCCs (Fig. 4, 6a). Heterogeneous selection should predominate when environmental fac-
tors change in irregular patterns, producing a high compositional turnover. In contrast,
homogeneous selection was mainly induced by environmental factors that were relatively
predictable. Secondly, with low environmental heterogeneity (i.e., summer), drift was
found to be the main ecological force driving PCCs, and it is perhaps the sole equivocally
stochastic mechanism in nature (10), affecting species abundance through random
births and deaths. Drift is an important factor contributing to a large proportion of the
unexplained variance in VPA (10). Until now, the contribution of drift to stochasticity in
bacterial communities with high species abundance is still unknown (10). Because of the
random recolonization of certain taxa after escaping the strong tide perturbation in
Xiangshan bay throughout the summer (37), drift mainly resulted from species death
and extinctions (38). Gammaproteobacteria are the dominant taxa in Xiangshan Bay, and
they comprise numerous opportunists who are r strategists with high maximal growth
rates in a favorable environment (39). A previous study suggested that the dominants of
r strategists can enhance the contribution of drift on community assembly (39).
Moreover, it had been suggested that drift may be particularly significant for the rare
taxa in environments with high bacterial densities (40). Drift can lead to a significant
gain in b-diversity and loss of a-diversity, especially in fluctuating environments and
where dispersion is limited (41). Therefore, the turnover rates for prokaryotes in
Xiangshan Bay may be faster than what we supposed under eutrophic conditions.
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It should be noted that, even when selection was dominant, the role of drift cannot
be neglected (Fig. 4). In other words, both the deterministic processes represented by
selection and the stochastic processes represented by drift cannot occupy absolute
roles in structuring PCCs. Thus, we proposed that PCCs in Xiangshan Bay are driven by
a balance between deterministic and stochastic processes, with the former being more
important during cold seasons and the latter during warm seasons (Fig. 6c). It has
been proposed that deterministic and stochastic processes are controlled by general
principles throughout ecosystems (42). In addition, we speculated that selection is the
most powerful ecological process shaping PCCs during low-temperature seasons, but
the role of selection decreases during high-temperature seasons, allowing stochastic
processes such as drift to become more prevalent. As indicated by the combined
results from VPA and bNTI, the relatively minor geographic effect on communities indi-
cated a weak influence of dispersal limitation and homogenizing dispersal on PCC

FIG 6 Conceptual model revealing how temperature and environmental heterogeneity affect ecological processes. (a) Evidence showing the
patterns of selection and drift in four seasons with changes in environmental heterogeneity, supporting the conceptual model (c). (b) Evidence
showing the patterns of b-diversity and microbial interactions, supporting the conceptual model (c). LT, low temperature; HT, high temperature; red
and blue lines represent trends of environmental selection and drift process, respectively.
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variations in Xiangshan Bay. Dispersal limitation is significantly related to geographic
scale and microbial cell size, and homogenizing dispersal is similar to source-sink dy-
namics and mass effect (10, 43). Thus, at small geographic scales and low mass effect
conditions, such as those seen in Xiangshan Bay, dispersal limitation and homogeniz-
ing dispersal are found to have a minor impact on the prokaryotic community.

Relationships between community assembly and interaction patterns. Determining
the action of ecological processes on species interactions is fundamental for understand-
ing the mechanisms supporting seasonal community diversity. Correlation networks can
provide useful information on the intrinsic characteristics of microbial communities as
well as the ecological processes driving community assembly (23). So far, the impacts of
ecological processes on microbial interactions are poorly described. A previous study
found that microbes have more complicated associations in highly heterogeneous envi-
ronment (44). Consistent with this, we discovered that associations within the prokaryotic
network increased dramatically as heterogeneous selection became a more dominant as-
sembly process in winter, when environmental heterogeneity was the highest (Fig. 6b).
Moreover, our findings showed significant seasonal patterns of microbial associations: in
cold seasons, prokaryotes became increasingly connected with one another (Fig. 5b,
Table S4). The lowest associations in the network were observed in summer when the
roles of heterogeneous selection were the least important. Interestingly, prokaryotic b-di-
versity showed similar trends with the co-occurrence networks (Fig. 6b and c), which
were in accordance with previous studies (23, 45). Drift, however, may be linked to fewer
network connections as well as a decrease in b-diversity. Thus, we synthesized that tem-
perature can significantly influence environmental heterogeneity, as low temperatures
led to high environmental heterogeneity, which then resulted in strong selection proc-
esses, especially heterogeneous selection (Fig. 6c). The high ratio of selection processes
then made the microbes more interconnected than they were at a low ratio. To the best
of our knowledge, this is the first study to establish a clear relationship between microbial
seasonal interactions and ecological processes in eutrophic waters. Admittedly, this may
be an atypical case in this eutrophic bay, and future studies on different ecosystems will
expand this conception.

Temperature clearly had a direct and considerable impact on microbial interactions, as
revealed by negative correlations with network topological properties (Fig. 5d), indicating
that there were more interconnections at low temperatures in winter. Prokaryotes may
be able to exchange metabolites needed for growth more often in cold seasons, which is
supported by the largest ratio of positive correlations in winter (Table S4). The predomi-
nance of positive correlations indeed suggests the coexistence of prokaryotes with niche
and fitness differences in the metacommunity (46), which subsequently leads to the for-
mation of complex interaction networks (47). In the winter, we also found sufficient
potential keystone species. Keystone species have been shown to have a considerable
influence on other members of the community and to play disproportionately important
roles in network structure maintenance (48). Most keystone species in our study were
identified as Alphaproteobacteria and Gammaproteobacteria, and they also dominated the
network modules (Fig. 5).

Interactions among microbes can significantly impact community variations, lead-
ing to high proportions of unexplained variation that cannot be quantified by VPA (21,
49). Diatomea and Chlorophyta were the main microeukaryotes affecting variation in
the PCCs, especially the Flavobacteriales and Rhodobacterales community members
(Fig. S8). Diatom–bacteria interactions usually comprise higher-level microbial interac-
tions across interdomain networks in marine environment (50). In our study, diatoms
were most frequently linked with Flavobacteriales and Rhodobacterales, which were
known to utilize diatom-derived organic matter (2, 25). These heterotrophic bacteria
can co-exist with phytoplankton by using dissolved organic matter to maintain their
growth, while phytoplankton depend on bacteria-produced nutrients and other sub-
stances (e.g., essential minerals, hormones, and vitamins) (25, 51, 52). These mutualistic
diatom–bacteria interactions may be enhanced by warm temperatures (53), especially
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during seasonal diatom blooms (13). Chlorophyta were also highly abundant in
Xiangshan Bay, and members of this phylum can produce hydrocarbons and exopoly-
saccharides that provide a nutrient-rich habitat for surrounding prokaryotes (54).
Overall, our findings support the idea that PCCs in eutrophic bays are driven in part by
the presence of microeukaryotes.

Conclusions. Our results clearly demonstrated that assembly of prokaryotes in eutro-
phic waters were primarily controlled by a balance between deterministic processes like
heterogeneous selection, and stochastic processes like drift, with the former being more
important during low-temperature seasons and the latter during high-temperature sea-
sons. Furthermore, heterogeneous selection could result in high b-diversity and more
tightly connected networks, whereas drift may lead to decline in b-diversity and network
associations. Microeukaryotes were important biological factors affecting PCC variations,
and the interactions between prokaryotes and microeukaryotes may also influence the
assemblies of PCCs. Finally, the conceptual model developed based on the findings of
this study linked seasonal microbial interactions to ecological processes, which had not
been described. This model sheds fresh light on the seasonal dynamics of prokaryotes in
eutrophic waters, paving the way for future research to broaden and test this notion in
different ecosystems.

MATERIALS ANDMETHODS
Sample collection. Surface seawater samples (at a depth of 0.5 m) were taken monthly from

January to December (with comparable sampling intervals) in 2018, at 13 sites in Xiangshan Bay, yield-
ing a total of 156 (12 months � 13 sites) samples (Fig. S1). About 5 L seawater was collected in a Niskin
bottle in each site. The seasons were defined as follows: spring (all samples from March to May), summer
(June–August), autumn (September–November), and winter (December–February). The water samples
were firstly filtered via a 200-mm mesh to eliminate large cells and particles. After that, approximately
700 mL of seawater was filtered through membranes with a 0.2-mm pore size (47 mm, Millipore, USA).
Finally, DNA was extracted from samples by using a Power Soil DNA extraction kit (Mo Bio, CA, USA)
according to the kit’s instruction.

For environmental factors, seawater temperature, salinity, and pH were detected on board. Nitrite,
ammonium, nitrate, silicate, phosphate, dissolved oxygen (DO), Chl a, and COD levels were tested using
standard methods (55) and as reported by Zhang et al. (19). Using all monitored environmental factors,
environmental heterogeneity was calculated according to Huber et al. (23). Specifically, for each season,
we computed a Euclidean distance matrix based on all environmental factors. The mean values of the
dissimilarity between sites of each computed matrix were then determined and utilized as an index of
environmental heterogeneity.

MiSeq sequencing and data processing. The V4 hypervariable region sequences of the prokary-
otic 16S rRNA and microeukaryotic 18S rRNA gene were amplified using the primer pair 515f/806r
(56) and 3NDF/V4_euk_R2R (57), respectively. The PCR cycling consisted of predenaturing at 95°C for
3 min followed by 27 amplification cycles (95°C, 30 s; 55°C, 30 s; 72°C for 45 s), and finally, elongation
at 72°C for 10 min. Each sample had triplicates, which were pooled before purification. The pooled
amplicons were then gel-purified using a TaKaRa purification kit (TaKaRa Bio, Japan), and all purified
products were normalized to equimolar amounts. Finally, the prokaryotic and microeukaryotic libra-
ries were sequenced with a paired-end read run (2 � 300 bp) on a MiSeq platform (Illumina Inc., CA,
USA).

Raw sequence data of prokaryotes and microeukaryotes were separately processed using the
Quantitative Insights into Microbial Ecology v1.9.1 (58) and USEARCH V6.1 (59) pipelines for quality con-
trol and chimera removal. Clean prokaryotic and microeukaryotic sequences were clustered separately
into OTUs at a threshold of 97% similarity with UCLUST (60) and annotated using the SILVA128 database
(61). Prokaryotic OTUs identified as chloroplast, mitochondrion, or unclassified were removed, as were
microeukaryotic OTUs classified as metazoan or unclassified. To minimize PCR and sequencing biases,
singletons were discarded. Finally, based on the lowest sequencing depth in a single sample, abundan-
ces were rarefied to 25,110 and 13,400 sequences per sample for prokaryotes and microeukaryotes,
respectively. The final OTU table for prokaryotes contained 31,038 OTUs. Because microeukaryotic data
were largely used for correlation analysis, they are not discussed in depth here.

Statistical analyses. The correlations among the top 10 abundant phyla and environmental factors
were determined by Spearman’s rank correlation and visualized using the pheatmap R (version 3.3.3)
package (62). The top 50 most abundant OTUs were selected to clarify the seasonality of PCCs, which
was then shown by using the pheatmap R package (62). The Spearman’s rank correlations were per-
formed to evaluate the relationships between the 50 most abundant OTUs and environmental factors,
and then the significant (FDR-adjusted P value , 0.01) and robust (Spearman’s jr j . 0.6) correlations
were retained and visualized by Gephi network (63).

The taxonomic b-diversity (Bray-Curtis distance) was illustrated by nonmetric multidimensional scal-
ing (NMDS) plots. Differences in PCCs across the four seasons were computed using permutational mul-
tivariate analysis of variance (PERMANOVA) and multiple-response permutation procedure (MRPP) based
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on the Bray-Curtis distance using the vegan R package (64). The correlations between community varia-
tion (Bray-Curtis distance) and environmental factors (Euclidean distance) were also assessed using
Mantel tests (65). Environmental factors that have a substantial influence on prokaryotic b-diversity
were fitted to the NMDS plot using the vegan package’s “envfit” function (64). Fits for temperature
(Euclidean distance) and microeukaryotic communities (MECs, Bray-Curtis distance) with PCCs (Bray-
Curtis distance) were carried out with the “lm” function in the ggplot2 R package (66). The b-diversity
(Bray-Curtis distance) of the major prokaryotes at the phylum/class level was also fitted with the MECs
(Bray-Curtis distance) using the “lm” function in the ggplot2 R package (66).

Partitioning the environment and geographic distance effects. A redundancy analysis-based VPA
was utilized to test the proportional contributions of environmental factors and geographic distance to
PCC variations (67). Environmental factors and geographic distance were forward-selected prior to the
VAP analysis using redundancy analysis and principal coordinates of neighbor matrices (PCNM) (68). The
PCNM variables were calculated using a principal coordinate analysis (PCoA) on the shortened distance
matrix connecting all sites. Then, the PCNM variables were selected in a forward selection using the
reported method (20, 69). The selected environmental factors, linear trend factors, and PCNM variables
were then produced, and all nonsignificant variables were removed from the subsequent analyses.
Finally, variation partitioning was calculated for the PCCs between the selected environmental factors,
linear trend factors, and PCNM variables using the vegan’s “varpart” function (64).

A partial least-squares path model (PLS-PM) was utilized to investigate the direct and indirect
connections among the environmental factors, PCCs, and MECs using the plspm R package (70). The
physicochemical factors included pH, salinity, COD, and Chl a, and the nutrients included phosphate,
silicate, ammonium, nitrite, and nitrate. Longitude and latitude were selected as geographic factors.
Richness, evenness, phylogenetic diversity, and Shannon index were utilized to define the microeu-
karyotic a-diversity. The microeukaryotic b-diversity was represented by the NMDS axis2 (NMDS2)
based on the Bray-Curtis distance, while prokaryotic b-diversity was represented by the NMDS axis1
(NMDS1).

Quantification of ecological processes structuring the PCCs. Ecological processes were classified
and quantified as reported by Stegen et al. (43). Briefly, the weighted b-nearest taxon index (bNTI) (42,
71) was computed and used to divide the OTUs into two pairwise communities based on the standard
deviation of the phylogenetic distances from the null model. Then, the ecological processes driving the
PCCs was further identified by bNTI together with the Raup-Crick (RCbray) metric using Bray–Curtis dis-
tance (43). After that, we defined heterogeneous selection as the fraction with a bNTI value of . 12
and homogeneous selection as a bNTI value of , 22 (43). In addition, jbNTIj , 2 and jRCbrayj , 0.95
suggest that drift (undominated processes) acts alone in shaping community assembly (43). However,
jbNTIj , 2, but RCbray , 20.95 (RCbray . 10.95), suggests that community assembly was driven by ho-
mogenizing dispersal (dispersal limitation) (43).

Co-occurrence patterns of prokaryotic communities. To elucidate the prokaryotic intradomain co-
occurrence patterns, OTUs with more than 10 sequences in all samples were kept for further analyses.
The correlations among the prokaryotic OTUs in each season were calculated using the SparCC algo-
rithm implemented in the SparCC Python module with default settings (72). Only significant (P
value , 0.05) and robust (SparCC jrj . 0.5) correlations were retained for further co-occurrence network
analyses, and a GML file for each network was created using the igraph R package (73). Meanwhile, net-
work-level topological features (i.e., average path length, average clustering coefficient, and diameter)
were computed. Visualization of networks was then implemented in Gephi (63), and modular analysis
was further carried out based on Louvain algorithm (74). The real network for each season was com-
pared with its relative 1000 Erdös-Réyni random network (75), which had the equal number of nodes
and edges as the real networks. Keystone species were chosen as the nodes with low betweenness cen-
trality values (, 5,000) and high degree (. 100) in four co-occurrence networks. The subnetworks for
each sample of the four seasons were created from meta-community networks by retaining the OTUs
occurred in each sample using the igraph R package (73). Meanwhile, network degree, betweenness
centrality, and transitivity were computed for each subnetwork, and the relationships between tempera-
ture and them were fitted by “lm” function in the ggplot2 R package (66).

To estimate the influence of microeukaryotes on PCCs, Spearman’s rank correlation was utilized to
compute correlations between the top 50 most abundant microeukaryotic and prokaryotic OTUs, and
only significant correlations (FDR-adjusted P value , 0.05) were kept for further analysis. Using the bi-
partite R package, the obtained correlation network was converted to the matrices 1 or 0 to show the
presence or absence, respectively, of the corresponding prokaryote–microeukaryote associations and
visualized with a bipartite graph (76).

Data availability. All sequence data were deposited in the NCBI Sequence Read Archive with the
BioProject ID PRJNA756123 for prokaryotes.
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