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Chronic sleep deprivation has been demonstrated to diminish cognitive

performance, alter mood states, and concomitantly dysregulate inflammation

and stress hormones. At present, however, there is little understanding of

how an acute sleep deprivation may collectively a�ect these factors and

alter functioning. The present study aimed to determine the extent to

which 24-h of sleep deprivation influences inflammatory cytokines, stress

hormones, cognitive processing across domains, and emotion states. To

that end, 23 participants (mean age = 20.78 years, SD = 2.87) filled out

clinical health questionnaires measured by the Pittsburgh Sleep Quality Index,

Morningness Eveningness Questionnaire, and Center for Epidemiological

Studies Depression Scale. Actigraph was worn for seven days across testing

to record sleep duration. At each session participants underwent a series

of measures, including saliva and blood samples for quantification of leptin,

ghrelin, IL-1β, IL-6, CRP, and cortisol levels, they completed a cognitive

battery using an iPad, and an emotion battery. We found that an acute sleep

deprivation, limited to a 24h period, increases negative emotion states such as

anxiety, fatigue, confusion, and depression. In conjunction, sleep deprivation

results in increased inflammation and decreased cortisol levels in the morning,

that are accompanied by deficits in vigilance and impulsivity. Combined,

these results suggest that individuals who undergo 24h sleep deprivation will

induce systemic alterations to inflammation and endocrine functioning, while

concomitantly increasing negative emotions.

KEYWORDS

sleep deprivation, inflammation, emotion, cognition, cortisol, neurobehavioral

functioning

Introduction

Sleep serves a critical role to human health and is commonly viewed as a
restorative process. Previous work has emphasized sleep’s involvement in maintaining
immune functioning, metabolic conservation, psychological well being, and cognitive
functioning. Despite the important role good sleep hygiene plays in health and well
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being, the deleterious effects of sleep loss are commonly
overlooked. Unfortunately, poor sleep health has become a
normalized experience and characteristic feature of modern
society. Sleep loss is characterized as insufficient sleep time,
often ≤7 h of sleep per 24-h period (Altevogt and Colten,
2006). There is growing evidence to suggest that sleep
disturbance and deprivation is a health concern and threat to
society in the United States (Schoenborn and Adams, 2010).
This is particularly prevalent among medical professionals,
shift workers, flight personnel, graduate students, not to
mention older adults who have sleep disturbances that
go untreated. Many professional settings, however, require
adequate functioning to execute complex tasks which involve
but are not limited to attention, executive functioning, and
the ability to regulate emotion. Studies using human and
non-human animal samples have established that acute and
chronic sleep deprivation leads to deleterious changes in
neurobehavioral functioning, such as induced anxiety states
and deficits in attention and memory, warranting further
understanding of the systemic consequences sleep deprivation
ensues (Tononi and Cirelli, 2006; Chee and Chuah, 2007; Kahn-
Greene et al., 2007; Yang et al., 2014; Mishra et al., 2016; Kaur
et al., 2017; Manchanda et al., 2018; Tomaso et al., 2021).

It has been shown that sleep deprivation can influence
neurobehavioral outcomes through altering the inflammatory
response and neuroendocrine stress system (Haack et al.,
2007; Irwin et al., 2008; Vgontzas et al., 2013), thereby
inducing symptoms such as anxiety and aggravating cognitive
performance (Chee and Chuah, 2007; Kahn-Greene et al.,
2007; Kahn et al., 2013). With respect to inflammation, pro-
inflammatory cytokines are typically investigated, and findings
suggests widespread immune changes following poor sleep.
For instance, in an animal study using male Wistar rats,
chronic sleep deprivation induced elevated inflammatory levels
of Tumor Necrosis Factor alpha (TNF- α) and interleukin
(IL)-1β, which led to anxiety-like behavior and cognitive
deficits (Manchanda et al., 2018). Similarly, another study
using a rat model indicated that acute sleep deprivation was
linked to a global decrease of the following pro-inflammatory
markers: IL-6, TNF- α, IL-1β, and Monocyte Chemoattractant
Protein-1 (MCP-1) (Bajaj and Kaur, 2022). Humans comparably
exhibit alterations in inflammatory markers under poor sleep
conditions. There is a trend for elevations in inflammatory
markers that is more readily apparent in humans relative
to non-human animals. Following acute sleep deprivation in
a human sample of healthy subjects, studies have shown a
significant increase in proinflammatory markers such as IL-
6 and IL-1β (Frey et al., 2007; Haack et al., 2007; Vgontzas
et al., 2007; Sauvet et al., 2010; Abedelmalek et al., 2013). Of
note, IL-6 is implicated in acute immune responses and the
secretion of C-reactive protein (CRP), which also has pro-
inflammatory activity and are both frequently altered following
sleep deprivation.

As a testament to the consistent findings implicating IL-
6 and CRP changes after sleep deprivation, a systematic
review exploring the relationship between sleep deprivation
and inflammatory markers in humans, solely focused on these
two markers. The study yielded similar results found in non-
human animal studies following chronic sleep deprivation which
showed an increase in IL-6 and CRP (Irwin et al., 2016).
Interestingly, these findings on acute sleep deprivation showed
no effects on inflammation markers; accordingly, the author
suggested that acute sleep deprivation may not influence the
inflammatory signaling pathway. Nevertheless, other studies
have shown elevated inflammation markers following an acute
sleep deprivation (Kato et al., 2000; Shearer et al., 2001; Meier-
Ewert et al., 2004; Dimitrov et al., 2006; Irwin et al., 2006, 2008;
Bajaj and Kaur, 2022). Compared to IL-6, IL-1β has remained an
understudied variable, with respect to sleep deprivation, despite
evidence suggesting an intimate relationship between the two.
In fact, Jewett and Krueger (2012) asserted that IL-1β promotes
non-rapid eye movement (NREM) sleep, and therefore can
induce sleepiness and fatigue, alongside decreased cognition,
in both humans and non-human animals. Hence, studies have
found altered levels of IL-1β in the face of sleep deprivation.
In the absence of sleep deprivation, IL-1β, like IL-6, follows
a diurnal pattern with lower levels throughout the day and
peak levels at night. Given this, in an experimental study, one
night of sleep deprivation resulted in the absence of the IL-1β
nocturnal rise (Covelli et al., 1992), conversely a more recent
study by Tartar et al. (2015) demonstrated elevated levels in a
chronic sleep restricted group. In agreement with these results
were the findings by Frey et al. (2007), suggesting that 40 h of
an acute sleep deprivation induced a significant increase in IL-
1β. Nevertheless, it is worth noting, there are still inconsistent
results within the literature. For example, studies such as Sauvet
et al. (2010) found low levels of IL-1 β after sleep deprivation.
Changes in IL-1β with sleep loss is commonly studied in rat
models which generally find IL-1β elevations with chronic sleep
deprivation and decreased levels after total sleep deprivation
(Manchanda et al., 2018; Bajaj and Kaur, 2022). Combined,
elevated levels in inflammationmarkers would plausibly account
for mood changes observed following acute sleep deprivation
(Benson et al., 2017), as neuroimaging supports the finding
that peripheral inflammation contributes to behavioral changes
(Felger, 2018). Furthermore, the inflammatory pathway has been
implicated in influencing cognitive functioning in healthy young
adults and most notably, older adults. For example, CRP and IL-
6 were shown to associate with reduced cognitive performance
(Frydecka et al., 2015; Tegeler et al., 2016; Vintimilla et al., 2019).
These changes in immune functioning in turn, are likely related
to a dysregulation in cortisol release that occurs with sleep loss
(Spiegel et al., 1999).

Regarding neuroendocrine functioning, rats in the
aforementioned acute sleep deprivation condition exhibited a
reduction in cortisol levels and an increase in both leptin and
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insulin (Bajaj and Kaur, 2022). With that said, pro-inflammatory
markers are known to have endocrine and metabolic effects
(Agorastos et al., 2014). Once the stress system is activated,
inflammatory cytokines and cortisol levels are altered, creating a
chain effect once one system experiences dysregulation (Yeager
et al., 2011; Jones and Gwenin, 2021). Cortisol is a primary stress
biomarker that is controlled by the hypothalamic–pituitary
adrenal (HPA) axis. Along with changes in inflammation, sleep
and circadian rhythmicity are crucial in the regulation of the
HPA axis (Guyon et al., 2014). Accordingly, sleep deprivation
has been shown to have an effect on cortisol levels as the end
product of HPA axis activity (Vgontzas et al., 2004; Omisade
et al., 2010; Thorsley et al., 2012; Song et al., 2015; Wright
et al., 2015). Whereas, experimental evidence in humans
indicates that cortisol levels elevate in response to acute sleep
deprivation (Balbo et al., 2010; Omisade et al., 2010), a range
of studies have found that cortisol levels decrease (Weibel
et al., 1995; Gronfier et al., 1997, 1998; Leproult et al., 1997;
Spiegel et al., 1999, 2004a; Omisade et al., 2010; Guyon et al.,
2014), which is more consistent with controlled findings in
animal models (Bajaj and Kaur, 2022). To that point, endocrine
hormones, ghrelin and leptin are also implicated in the stress
response ensued by sleep deprivation and have regulatory
effects on the HPA axis secretion of cortisol (Omisade et al.,
2010). A systematic review of studies in humans concluded
that leptin levels decrease following an acute stressor such
as sleep deprivation (Bouillon-Minois et al., 2021), while
ghrelin levels increase (Spiegel et al., 2004b; Bali and Singh
Jaggi, 2016). Ostensibly, the combination of these changes
explains the weight gain that occurs with poor sleep hygiene,
as leptin is a hormone released from an adipocyte tissue that
signals satiety (i.e., an appetite suppressing hormone) and
ghrelin signals hunger to the brain (i.e., an appetite stimulating
hormone). Although studies have supported the notion that
sleep has an effect on neuroendocrine functioning, the results
are ambiguous in the direction of these effects on cortisol,
thereby limiting our general understanding of the effect on the
neuroendocrine system. In other words, the research has been
limited to examining one variable of the system, rather than an
integrative analysis.

Despite the consequences of sleep deprivation being well-
documented, the overall effects are not well-understood under
varying sleep conditions, namely an acute sleep deprivation.
Taken together, between non-human animal and human
studies, there is widespread inconsistency regarding the
impact of endocrine and immune functioning on biological
markers, including the well-studied markers, IL-6 and cortisol.
Furthermore, as it stands, IL-1β remains understudied in the
context of acute sleep deprivation, despite evidence showing its
possible implication. One of the complications in understanding
the effects of poor sleep health is that the HPA axis, appetite
system, and immune system are part of a complex extended
endocrine-immune network where each system can modify
one another. As such, there is considerable inconsistency in

the literature regarding acute sleep deprivation. Consequently,
additional research is needed to understand the systemic effects
on health and well being. The current study examined the
effects of 24 h of sleep deprivation on markers of inflammation,
stress hormones, cognition, and emotion in healthy young
adults with no prior history of sleep disturbance. Our goal
was to provide a comprehensive multi-methodological approach
that goes beyond a single marker approach and explain how
disruption of the inflammatory and hormonal pathway has
neurobehavioral effects. This provides the opportunity to see
how the isolated effect of one night of an acute deprivation can
affect multiple systems.

Materials and methods

Participants

This study was carried out according to a protocol approved
by the Nova Southeastern University (NSU) Institutional Review
Board. Twenty-three participants were recruited (n = 23;
9 females, 14 males, µ age=20.78, SD =2.87), of which all
read and signed a written informed consent. Following consent,
all participants completed the Epworth Sleepiness Scale (ESS),
Pittsburgh Sleep Quality Test (PSQI), Morningness Eveningness
Questionnaire (MEQ), and Center for Epidemiological Studies
Depression Scale (CESD) as a pre-screening tool. Exclusionary
criteria included scores indicative of sleep disorder, sleep
disturbance, or depression. The cutoff scores were as follows:
ESS ≥10 (Johns, 1991), PSQI >7(Carpenter and Andrykowski,
1998; Beck et al., 2004), CESD ≥16 (Lewinsohn et al.,
1997). Mental health status was assessed using a pre-screening
questionnaire for history and current diagnosis. No participants
were excluded based on these criterions. Instructions were
verbally provided to refrain from caffeine intake at least 24 h
before testing. Compensation of $100Visa gift card was provided
for participant’s time.

Procedure

Sleep monitoring and sleep deprivation

Testing occurred between 7:00 and 9:00 a.m. and included
one baseline testing session and one sleep deprivation testing
session seven days later (see Figure 1). Total sleep time was
calculated through the use of Actiwatch wrist monitors and
Actiware software (Phillips Respironics, New Jersey). Actiwatch
data were also used to verify that participants were awake during
the day of sleep deprivation before they arrived to the laboratory.
During the sleep deprivation session, the participants came to
the laboratory at 9:00 p.m. for overnight total sleep deprivation.
The participants were constantly monitored by 2–4 researchers
throughout the evening. In addition, all participants wore
actigraphy monitors throughout the sleep deprivation period.
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During sleep deprivation, the participants were permitted to
engage in non-stressful activities (e.g., talking, board games
etc.,). Only water was permitted during the sleep deprivation
period (no other beverages or food was permitted).

At each testing session, the participants provided saliva
samples for cortisol quantification. Saliva was also collected
from each participant by unstimulated passive drool for salivary
cortisol analysis (participants drooled directly into a 1.5mL
microcentrifuge tube through a small sterile cylinder). Following
this, 3 mLs of blood was taken through venipuncture. Blood was
collected into EDTA coated tubes. Immediately after collection,
the tubes were centrifuged for 10min at 1,500 x g at 4◦C. The
plasma was then apportioned into 0.5ml aliquots and stored at
−20◦C until analyses were conducted.

Biomarker quantification

Cortisol, CRP, Il-6, and Il-1β

Saliva tubes were placed in a freezer following participant
testing and stored at −20◦C. Saliva samples were run in
duplicate and quantified via human enzyme immunoassay kits
per the manufacturer’s instructions (Salimetrics LLC, USA: Cat#
1-3102, RRID:AB_2801306). The samples were immediately
read in a BioTek ELx800 plate reader (BioTek Instruments,
Inc, USA) at 450 nm with a correction at 630 nm. All samples
were within the detection ranges indicated in the immunoassay
kits. The variation of sample readings was within the expected
limits. Final concentrations for the biomarkers were generated
by interpolation from the standard curve in µg/dL for cortisol
and pg/mL for CRP, IL-6, and IL-1β.

Leptin and ghrelin

Aliquoted plasma samples were placed in a freezer following
participant testing and stored at −20◦C. Saliva samples
were run in duplicate and quantified via human enzyme
immunoassay kits per the manufacturer’s instructions for leptin
(R&D systems, Inc. USA, Cat# DLP00, RRID:AB_2783014) and
ghrelin (Thermo Fisher Scientific Inc., USA, Cat# BMS2192,
RRID:AB_2575470). The samples were immediately read in a
BioTek ELx800 plate reader (BioTek Instruments, Inc, USA) at
450 nm. All samples were within the detection ranges indicated
in the immunoassay kits. The variation of sample readings
was within the expected limits. Final concentrations for the
biomarkers were generated by interpolation from the standard
curve in pg/mL for ghrelin and ng/mL for leptin.

Cognitive measures

Cognition testing was conducted using the automated
“Cognition” test battery from Joggle Research (Joggle Research,
Seattle WA). The Joggle Cognition battery consists of eight
cognitive measures administered on a standard electronic tablet
(Apple IPad). Total testing time is ∼20min, which prevents
participant fatigue. The cognition test battery consists of

eight tasks covering a diverse set of cognitive domains (e.g.,
executive function, episodic memory, complex cognition, and
sensorimotor speed) and are based on tests known to activate
specific brain systems (Basner et al., 2015). The tests include
a Psychomotor Vigilance Test (PVT), the Balloon Analog Risk
Task (BART). the Digital Symbol Substitution Task (DSST), the
Line Orientation Task (LOT), an Abstract Matching (AM) test,
the number back (NBACK) task, a Visual Object Learning Task
(VOLT), a Motor Praxis Task (MPT).

Emotion measures

State-Trait anxiety inventory (STAI-Y)

State and Trait anxiety were measured using the STAI-Y
(Spielberger et al., 1983). Each scale is composed of 20 questions
that tap stable aspects of an individual’s general pre-disposition
to experience anxiety symptoms and 20 items that focus on
transitory emotional/anxious arousal. Items are rated on a four-
point Likert scale. The instrument shows adequate reliability and
validity (Spielberger et al., 1983).

Profile of Mood States (POMS)

The POMS is a psychometrically sound instrument that
measures acute mood (“How do you feel right now”) and
ongoing mood (“How have you been feeling during the past
week, including today”) (McNair et al., 1971). The measure
consists of 65 adjectives rated by participants on a five-point
likert scale that asked participants about their mood in the
past week. The 65 items yield six subscales: anger–hostility,
confusion–bewilderment, depression–dejection, fatigue–
inertia, tension–anxiety, and vigour–activity. A Total Mood
Disturbance (TMD) score is also calculated based on the scores
of each subscale. The range for each scale is as follows: Anger
(0–48), Confusion (0–28), Depression (0–60), Fatigue (0–28),
Tension (0–36), Vigour (0–32), and TMD (−32–100).

Baseline clinical health questionnaires

Depression, sleep quality, and chronotype were assessed
using the Center for Epidemiologic Studies Depression Scale
(CES-D), Pittsburgh Sleep Quality Index (PSQI), and the
Morningness–Eveningness Questionnaire (MEQ), respectively.
The CES-D is a short self-report measure shown to be reliable
and valid across a variety of demographic characteristics in the
general population (Radloff, 1977). This measure consists of
20 items asking questions about the frequency of symptoms
associated with depression in the past week, with items rated on
a four-point Likert scale. A score of 16 or greater is indicative
of possible depression. Sleep quality was assessed using the
Pittsburgh Sleep Quality Index (PSQI) (Buysse et al., 1989), a
self-report instrument comprised of 19 items evaluating seven
components of sleep over the past month: subjective sleep
quality, sleep latency, sleep duration, habitual sleep efficiency,
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sleep disturbances, daytime dysfunction, and use of sleep
medications. The seven components can be summed to yield
a global score that ranges from 0 to 21. Generally, higher
scores indicate poorer sleep quality, and a global score >5
is suggestive of poor sleep quality. The instrument exhibits
adequate psychometric properties (Buysse et al., 1989). The
Morningness–Eveningness Questionnaire (MEQ) is a widely
administered self-report measure composed of 19 items used to
determine if one’s peak sleepiness and alertness is in the morning
or in the evening (Horne and Östberg, 1976).

Statistical analyses

The effect of sleep deprivation on each of our continuous
variables were individually analyzed using paired samples t-
tests at baseline and post for participants’ performance of
neurocognitive measures, mood states, stress hormones, and
inflammation. All reported p-values are two-tailed with an a
priori significance level of p < 0.05. Effect size are reported
using Cohen’s d and interpreted small (d = 0.2), medium (d
= 0.5), and large (d = 0.8) according to the recommendations
set forth by Cohen (1988). Before conducting the statistical
analyses, preliminary checks on statistical assumptions were
verified. Using the Schapiro-Wilk test, the assumption of normal
distribution was met for most, but not all variables, warranting
the inclusion of non-parametric, Wilcoxon signed ranked tests
in these instances. All data were analyzed using SPSS statistical
package version 25 (IBM, NY, USA, RRID:SCR_016479).

Follow up correlation analyses

Given that baseline average sleep duration was moderately
lower than expected (see results), this prompted us to carry out a
follow-up analysis on self-report and actigraphy sleep measures
in order determine if the low average sleep duration (prior to
SD) had any bearing on our outcome measures. To that end, we
conducted a correlation analysis to estimate the relation between
total sleep time and all outcome measures. Correlation analyses
were also conducted using the subjective measure of the PSQI
and all outcome measures. Due to the number of correlations
calculated, a Bonferroni correction was implemented. One-
way ANOVAs were also conducted to determine the effect of
MEQ (morning, intermediate, and evening chronotypes) on all
outcome measures.

Results

Actigraphy

Although participants were instructed to sleep 8 h each night
prior to sleep deprivation, sleep behavior was still objectively

verified the week prior to sleep deprivation through actigraphy
monitoring to ensure that the participants were not experiencing
sleep loss the week prior to experimental sleep deprivation.
Actigraphy recording showed that the total sleep time was
only 6 h and 51min (SD = 1.24), falling slightly below the
8 h instruction. Although, the total sleep time was in line with
typical habitual sleep (Belenky et al., 2003; Rupp et al., 2009;
Broussard et al., 2015) for this age group’s patterns. Participants
averaged an awake time of 7:32 a.m., with times ranging from
4:58 to 7:45 a.m.

Biomarkers of inflammation and
hormonal function

Paired samples t-tests revealed that relative to baseline
(mean = 66.78, SD = 37.86), IL-6 levels were significantly
increased following one night of sleep deprivation (mean =

140.95, SD = 125.48), t(22) = −3.031, p < 0.01, d = 0.63.
Following sleep deprivation, CRP levels (mean = 16148.84, SD
= 10423.49) were also significantly increased relative to baseline
(mean = 11080.38, SD = 9848.60), t(22) = −3.412, p < 0.01,
d = 0.71. There was no effect of sleep deprivation on IL-1β,
t(22) = 0.414, p = 0.683, although IL-1β levels at baseline
(mean = 266.51, SD = 395.41) were relatively lower to the
night of deprivation (mean = 290.89, SD = 225.49). Significant
differences emerged when examining morning cortisol levels
at baseline versus post-sleep deprivation showing a reduction,
some of which has been previously reported in Trivedi et al.
(2017), t(22) = 5.196, p < 0.01, d = 1.083. There were no
significant changes in leptin relative to baseline t(22) = 1.149,
p = 0.263, nor were changes observed in ghrelin t(22) =

−0.362, p = 0.721. Figure 2 shows the means and SEs for
the biomarkers. Assumptions of normality were violated when
examining leptin and IL-1β, however non-parametric tests
yielded results consistent with the paired samples t-test, leptin
p= 0.054, and IL-1β p= 0.346.

Cognitive functioning

Table 1 shows means and standard deviations for cognition
measures.

Psychomotor Vigilance Task (PVT)

Upon conducting a paired sample t-tests to examine
performance post-sleep deprivation (mean = 316.09, SD =

74.54), it was revealed that the mean reaction time were
significantly increased relative to baseline (mean = 285.98, SD
= 27.79), t(22) = −2.142, p = 0.044, d = 0.447. There were no
significant differences in lapses [t(22) = 1.28, p= 0.214] and false
starts [t(22) = 0.058, p= 0.954]. Assumptions of normality were
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FIGURE 1

A schematic illustration demonstrating the experimental timeline.

FIGURE 2

Biomarker analyses showed that compared to baseline (BL), the sleep deprivation (SD) condition significantly increased in C-Reactive Protein

(CRP) and IL-6. There was also a significant decrease in cortisol levels. Errors bars represent SEM and asterisks indicate p < 0.01.
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TABLE 1 Cognitive functioning.

Baseline Mean ± SD Sleep deprivation Mean ± SD T-value P-value Cohen’s d

PVT RT 285.98± 27.79 316.09± 74.54 −2.142 p=0.044 0.447

Lapses 2.83± 2.55 2.74± 3.29 1.28 p= 0.214 0.024

FS 2.69± 2.63 2.65± 3.31 0.058 p= 0.954 0.012

BART RT 737.76± 900.03 367.19± 327.08 2.868 p= 0.009 0.598

Total pumped 136.65± 19.64 133.69± 27.70 0.640 p ≥ 0.05 0.113

Total ballpop 12.73± 2.13 12.21± 3.074 0.972 p > 0.05 0.203

DSST RT 925.23± 115.21 951.99± 140.13 −1.44 p > 0.05 0.301

CR 86.04± 9.71 84.47± 12.33 0.983 p > 0.05 0.205

LOT RT 7169.69± 3099.28 6300.22± 3340 2.36 p= 0.028 0.491

CR 12.43± 3.96 11.91± 4.15 0.619 p= 0.542

EC 3.41± 1.86 2.94± 2.39 0.090 p= 0.180 0.289

VOLT RT 2184.93± 824.35 1785.52± 500.06 3.005 p= 0.007 0.627

CR 16.08± 1.59 16.73± 1.76 −1.845 p= 0.079 0.385

MPT RT 494.79± 78.96 459.82± 52.51 2.37 p= 0.027 0.494

NBACK RT 615.88± 91.22 603.53± 87.38 0.471 p > 0.05 0.098

CR 47.83± 8.25 49.91± 6.71 −1.44 p >0.05 0.302

AM RT 2125.97± 1006.95 1683.74± 501.38 2.85 p= 0.009 0.594

CR 16.96± 2.74 17.21± 3.32 −0.371 p= 0.714 0.077

This table demonstrates the means, standard deviations, p-values, and effects sizes for pre- and post-tests on cognitive measures using the computerized Joggle tests.
RT, Reaction time; CR, Correct responses; FS, False starts; Total pumped, Total ballons pumped; Total ballpop, Total balloons popped; and EC, excess clicks.

violated when examining mean reaction time and false start,
however non-parametric tests yielded results consistent with the
paired samples t-test, mean reaction time p = 0.024, and false
start p= 0.774.

Balloon Analog Risk Task (BART)

Upon conducting a paired sample t-tests to examine
performance on the Balloon Analog Risk Task (BART) post-
sleep deprivation (mean= 367.19, SD= 327.08), it was revealed
that the mean reaction time were significantly decreased relative
to baseline (mean = 737.76, SD = 900.03), t(22) = 2.868,
p = 0.009, d = 0.598. There were no significant differences in
total balloons pumped and popped. Assumptions of normality
were violated when examining mean reaction time, however
non-parametric tests yielded results consistent with the paired
samples t-test, mean reaction time p < 0.001.

Digital Symbol Substitution Task (DSST)

Performance on the Digital Symbol Substitution Task was
examined post-sleep deprivation using a paired samples t-
test. Results yielded no significant difference in number of
correct responses or reaction time. Assumptions of normality
were violated when examining correct responses, however non-
parametric tests yielded results consistent with the paired
samples t-test, correct responses p= 0.425.

Line Orientation Task

Performance on the Line Orientation Task (LOT) was
examined post-sleep deprivation using a paired samples t-test.
Results revealed that mean reaction time was significantly
decreased following one night of sleep deprivation (mean =

6300.22, SD = 3340) relative to baseline (mean = 7169.69, SD
= 3099.28), t(22) = 2.36, p = 0.028, d = 0.491. There were
no significant changes in number of correct responses, t(22) =
0.619, p= 0.542 andmean excess clicks, t(22) = 0.090, p= 0.180.
Assumptions of normality were violated when examining mean
reaction time, however non-parametric tests yielded results
consistent with the paired samples t-test, mean reaction time p
= 0.008.

Visual Object Learning Task

Upon conducting a paired sample t-tests to examine
performance on the Visual Objet Learning Task (VOLT) post-
sleep deprivation (mean = 1785.52.19, SD = 500.06), it
was revealed that the mean reaction time were significantly
decreased relative to baseline (mean = 2184.93, SD = 824.35),
t(22) = 3.005, p = 0.007, d = 0.627. There was no significant
difference in the number of correct responses t(22) = −1.845,
p = 0.079. Assumptions of normality were violated when
examining mean reaction time, however non-parametric tests
yielded results consistent with the paired samples t-test, mean
reaction time p= 0.003.
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Motor Praxis Task

Performance on theMotor Praxis Task (MPT) was examined
post-sleep deprivation using a paired samples t-test. Results
yielded a significant reduction in mean reaction time t(22) =

2.37, p= 0.027, d = 0.494.

NBACK

There were no significant differences on the NBack (all p’s
> 0.05).

Abstract Matching (AM)

Upon conducting a paired sample t-tests to examine
performance on Abstract Matching (AM) post-sleep deprivation
(mean = 1683.74, SD = 501.38), it was revealed that the mean
reaction time were significantly decreased relative to baseline
(mean = 2125.97, SD = 1006.95), t(22) = 2.85, p = 0.009, d
= 0.594. There was no significant difference in the number of
correct responses t(22) =−0.371, p= 0.714.

Emotion measures

The results of the Profile of Mood States (POMS) data
are shown in Figure 3. POMS measures showed that compared
to baseline, there was a significant increase in tension [t(22)
= −4.09, p < 0.001, d = 0.854], depression [t(22) =-2.355,
p = 0.028, d = 0.491], anger [t(22) = −3.99, p < 0.001, d =

0.831], fatigue [t(21) = −5.86, p < 0.001, d = 1.25], confusion
[t(22) = −4.24, p < 0.001, d = 0.89], and TMD [t(20) = −5.49,
p < 0.001, d = 1.20]. There was a significant decrease in vigor,
[t(22) = 4.81, p < 0.001, d = 0.99]. Compared to baseline
(mean = 32.35, SD = 7.91), there was a significant increase in
state anxiety (see Figure 4) following sleep deprivation (mean=

42.78, SD= 8.90), t(22) =−5.012, p < 0.001, d = 1.045.

Associations between sleep and outcome
measures

Pearson correlation analysis revealed no significant
correlation between self-reported or actigraphy-measured sleep
and the outcome measures. This indicates that prior sleep
behavior, whether normal (TST 7–9 h) or dysfunctional, did not
have any bearing on the biochemical measures taken at baseline
or after sleep deprivation. A one-way ANOVA revealed no effect
of MEQ (morning, intermediate, and evening chronotypes) on
outcome measures.

Discussion

The current findings demonstrate that one night of acute
sleep deprivation altered circulating markers of systemic
inflammation, cortisol, emotion, and cognitive performance.

Specifically, we identified a significant decrease in cortisol levels,
accompanied by an increase in inflammatory markers, CRP
and IL-6, which is consistent with prior findings suggesting
sleep modulates immune and endocrine functioning (Leproult
et al., 1997; Spiegel et al., 1999, 2004a; Omisade et al.,
2010; Guyon et al., 2014; Minkel et al., 2014; Wright et al.,
2015; Atrooz and Salim, 2020). Although there were no
significant changes in either ghrelin or leptin, there was
a trend for leptin to decrease following sleep deprivation,
while ghrelin trended towards an increase. In general, changes
to leptin and ghrelin are related to increased metabolic
demands of sleep deprivation. We also found an increase
in negative mood ratings and impulsivity, whereas vigilance
and sensorimotor speed were decreased. We did not find any
effects of sleep deprivation on executive functioning, spatial
learning/memory, spatial orientation, abstraction, complex
scanning, or concept formation.

While cognitive deficits have been well-documented as a
consequence of sleep deprivation (Kahn et al., 2013; Short and
Louca, 2015), the present results support the argument that
there is a threshold of sleep loss that needs to be reached before
higher order cognitive domains are affected (e.g., executive
functioning). This also explains why executive functioning is
typically impaired with chronic sleep loss but not always with
acute sleep loss (Binks et al., 1999; Quigley et al., 2000; Sagaspe
et al., 2003, 2006; Drummond et al., 2006; Tucker et al., 2010).
Nevertheless, there are mixed findings on the effects of acute
sleep deprivation on cognitive performance (Nilsson et al., 2005;
Lim and Dinges, 2010; Killgore and Weber, 2014; Chua et al.,
2017; Kusztor et al., 2019), and specific cognitive domains
are still disputed. An alternative explanation for the cognitive
results is that any decreases induced by sleep deprivation may
have been masked by practice effects. Often reaction time on
computerized neurocognitive tasks have shown to be increased
on post measures, due to familiarity with the task and learning
effects (Calamia et al., 2012). Practice effects would elucidate the
observable patterns of reduced reaction time across higher order
cognitive tasks in our study, such as LOT, AM, NBACK, and
VOLT, while not being prone to increased error. Seen through
this light, impulsivity, vigilance, and sensorimotor speed may be
less susceptible to practice effects under acute sleep deprivation.
Hence, studies have suggested that practice effects are minimally
related to cognitive domains such as attention (Duff et al., 2012)
and that tests within cognitive domains may be less or more
resistant to practice (Bartels et al., 2010).

Despite studies suggesting that acute sleep deprivation is
not sufficient to initiate inflammatory signaling that can be
translated into increased systemic inflammation (Irwin et al.,
2016), studies such as ours and others have yielded contrasting
results (Kato et al., 2000; Shearer et al., 2001; Meier-Ewert et al.,
2004; Dimitrov et al., 2006; Irwin et al., 2006, 2008). Of note,
the effect size for CRP was moderately strong and slightly better
than those found for Il-6, as seen in Figure 2. These results
may suggest that an acute sleep deprivation of one night can
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FIGURE 3

The results of the Profile of Mood States (POMS) measures showed that compared to baseline (BL), sleep deprivation (SD) significantly increased

in tension, depression, anger, fatigue, and confusion. There was a significant decrease in vigor. The Total Mood Disturbance composite score

was also significantly increased. Errors bars represent SEM, asterisks indicates p < 0.05, and double asterisks indicate p < 0.01.

induce an increase in toll-like receptor (TLR)−4 production of
inflammatory cytokines (Irwin et al., 2006), through activation
of the control pathway in the inflammatory signaling cascade,
nuclear factor kappa B (NF-κB) (Irwin et al., 2008). It is worth
noting, activation of NF-κB leads to subsequent upregulation of
inflammatory response genes, as well as the master circadian
clock regulator which has an interrelated regulatory network
with the HPA axis, modulating glucocorticoid release (Kalsbeek
et al., 2006; Oster et al., 2006).

To this end, the reduced cortisol levels following acute sleep
deprivation reflect the altered state of the HPA axis, as the
morning cortisol peak was not apparent. Few studies have shown
similar outcomes in dampened or reduced morning cortisol
awakening response (Leproult et al., 1997; Spiegel et al., 1999,
2004a; Omisade et al., 2010; Guyon et al., 2014). Interestingly,
symptoms of anxiety associate with blunted cortisol levels in
healthy adults across age and sex (Brooks and Robles, 2009;
de Rooij et al., 2010; Crişan et al., 2016). This supports
the idea that disrupted HPA regulation in response to an
acute stress can contribute to altered behavioral and mental
health outcomes (Kinlein et al., 2015; Fiksdal et al., 2019).
HPA axis dysregulation presented a state effect in response
to the physiological stress of sleep deprivation, as evidenced
by an increase on the STAI. Considering we did not evaluate
cortisol at different time points following deprivation, we were

FIGURE 4

Compared to baseline (BL) there was a significant increase in

state anxiety following sleep deprivation. Errors bars represent

SEM and double asterisks indicate p < 0.01.

unable to determine if the circadian modulation would have
resulted in an elevation in cortisol during the evening as seen
in other studies as a demonstration of HPA axis recovery
(Leproult et al., 1997; Spiegel et al., 2004a; Omisade et al., 2010).
Nevertheless, our findings are critical in showing that sleep
deprivation decreases the HPA axis activity. This can result in
dysregulation of the circadian rhythm in the peripheral CLOCK
through the subsequent release of glucocorticoids. Herein, the
HPA pathway is forced to reconfigure its responsiveness under
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stress due to a possible increase in the negative feedback
regulation (Redwine et al., 2000). The effects on peripheral
CLOCKS are known to influence the expression of clock related
genes which regulates emotions and inflammatory reactions
such as the Per2. In both interactions between the CLOCK
system and inflammation, as well as the HPA axis, physiologic
concentrations of glucocorticoids are necessary for adequate
functioning. Yet, one night of sleep deprivation, although
not persistent, can induce stress that disrupts the circadian
fluctuation produced by the CLOCK system, thereby altering
many systemic factors.

The deleterious effects of sleep deprivation lend themselves
to widespread altered immune functioning, along with
dysregulated cortisol levels which can impact mood (Benson
et al., 2017; Bollen et al., 2017; Felger, 2018) and cognition
(Frydecka et al., 2015; Tegeler et al., 2016; Vintimilla et al.,
2019). Decreased cortisol awakening response (CAR) has been
related to the vulnerability of depression (Kuehner et al., 2007).
In agreement, the current study found increased depressive
symptomatology as well as decreased morning cortisol levels
after sleep deprivation. Specifically, participants demonstrated
negative mood changes in vigor, tension, depression, anxiety,
anger, confusion, and fatigue, which parallels previous findings.
Endeavors to overcome the negative effects induced by sleep
deprivation during neurocognitive testing becomes arduous,
like engaging in daily life activities when sleep deprived. Among
the cognitive domains reported to have deficits from sleep
deprivation, vigilant attention remains the most prominent
which was corroborated in our study by the PVT (Dinges
et al., 1997; Doran et al., 2001; Sagaspe et al., 2003; Lim and
Dinges, 2008) signifying significantly slower speed. In line
with these results, were slower sensorimotor speed in MPT
performance. Yet interestingly, lapses and false starts on the
PVT were similar between baseline and post-sleep deprivation.
In agreement with previous work (Saksvik-Lehouillier et al.,
2020), we also found reduced reaction time on the BART which
reflects deficits in impulsivity after sleep deprivation. Although,
there was no difference on the total balloons pumped or
popped suggesting risk decision making remained intact, which
contradicts the literature. Reduced reaction time was observed
across all other cognitive measures (except PVT). As previously
mentioned, these results may have altered due to practice effects
or reflective of impulsivity as it has been previously observed
following sleep deprivation, due to a speed-accuracy tradeoff
(Saksvik-Lehouillier et al., 2020).

The current study provides a unique multi-methodological
approach to investigating a 24-h acute sleep deprivation and
presents an integrative systems perspective. Nevertheless, there
are limitations to this study that are worth mentioning as they
provide uncertainty to the results. Caffeine has pro- and anti-
inflammatory effects, as well as effects on cognition and mood.
Therefore, studies on sleep deprivation should instruct subjects
to avoid caffeine. However, despite our initial instructions,
there were no objective data collected to ensure participants

adhered to this request. Furthermore, caffeine withdrawal could
alter the results for subjects that are accustomed to their daily
caffeine intake. Caffeine withdrawal symptoms can appear very
early after stopped use and last for 2–9 days (Juliano and
Griffiths, 2004). These symptoms include, but are not limited
to, fatigue, decreased energy, decreased alertness, depressed
mood, difficulty concentrating, and irritability. The emotion
measures utilized also pose a limitation in identifying whether
changes in negative affect are clinically meaningful. Currently,
the literature on the POMS lacks anchor-based approaches
to identify clinically relevant changes on the scales; therefore,
mean improvement scores are generally relied upon (Dworkin
et al., 2008). With respect to cortisol measurement, participants
individual morning peak were not accounted for when collecting
samples, which stems caution in interpreting these results.
Future studies would benefit by tailoring the collection time
to the individuals usual wake time, to ensure obtaining the
morning cortisol peak. Lastly, given the small sample size and
expected trends seen in leptin and ghrelin, it is plausible that the
study did not yield sufficient power to show these effects. On
the otherhand, IL-1βmay require sustained levels of deprivation
as results did not reveal any pattern. To further derive at a
consensus in the literature, it is recommended that these findings
are validated in a larger cohort. Moreover, the current study
should motivate further investigation into the effects of sleep
deprivation using incremental variances of sleep deprivation,
ranging from 24 to 48 h., to determine if there are critical limits
within sleep deprivation with marked deficits. Future studies
may also use incremental measures of cortisol following sleep
deprivation to better understand the potential HPA axis recovery
period following sleep deprivation.

Combined, these findings advance the understanding
of the deleterious effects of an acute sleep deprivation
by demonstrating system-wide changes in humans. Given
the association between these systemic alterations and age-
related pathology, these findings are particularly relevant for
understanding the potential health costs of those in careers
that commonly involve sleep deprivation, as well as those with
untreated or undetected sleep disturbances. To combat these
issues, treatments are able to target sleep behaviors which may
modify outcomes such as inflammation and improve overall
health (Irwin et al., 2014).
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