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Summary
Pedigree inference from genotype data is a challenging problem, particularly when pedigrees are sparsely sampled and individuals may

be distantly related to their closest genotyped relatives. We present a method that infers small pedigrees of close relatives and then as-

sembles them into larger pedigrees. To assemble large pedigrees, we introduce several formulas and tools including a likelihood for the

degree separating two small pedigrees, a generalization of the fast DRUID point estimate of the degree separating two pedigrees, a

method for detecting individuals who share background identity-by-descent (IBD) that does not reflect recent common ancestry, and

a method for identifying the ancestral branches through which distant relatives are connected. Our method also takes several ap-

proaches that help to improve the accuracy and efficiency of pedigree inference. In particular, we incorporate age information directly

into the likelihood rather than using ages only for consistency checks and we employ a heuristic branch-and-bound-like approach to

more efficiently explore the space of possible pedigrees. Together, these approaches make it possible to construct large pedigrees that

are challenging or intractable for current inference methods.
Introduction

The ability to infer complex multi-generational pedigrees

from genotype data has many applications ranging from

genealogical research to the study of diseases. As human

genotyping datasets continue to grow in size, there is

increasing interest in computational methods that can

reconstruct large pedigrees efficiently and accurately.

Although the problem of pedigree inference has been

studied extensively, the majority of pedigree inference

methods are designed for non-human species. A major

challenge for pedigree reconstruction in non-human popu-

lations is that pairwise relationships can be difficult to infer

with high accuracy, even when the degree of a relationship

is small because high-quality genotype datamay be unavai-

lable. As a result, methods typically require that all or most

individuals in a pedigree are sampled so that pedigrees can

be assembled by connecting strings of parent-child, full-sib-

ling, or half-sibling pairs.1–10 Although it is possible to con-

nect slightlymore distant relationships,11,12 themajority of

existing pedigree inference algorithms can be characterized

as methods for either jointly or independently inferring

pairwise parent-child pairs and full or half sibling sets,

which are then consistent with a pedigree structure when

assembled together.

In contrast to non-human pedigrees, genotype data for

human populations is comparatively abundant and close

relationships, such as parent-offspring or sibling pairs,

can be inferred with a high degree of accuracy. The major

challenge of pedigree inference in human populations is

the fact that pedigrees are often sparsely sampled, with

few genotyped sibling and parent pairs and few genotyped
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individuals beyond the most recent two or three genera-

tions. In human datasets, including direct-to-consumer ge-

netic databases, genotyped individuals may have only a

small number of genotyped relatives within a radius ex-

tending to first or second cousins and it is common for

an individual’s closest relative to be more distant than a

second cousin. As a result, it is difficult to construct solid

frameworks of close relatives and their genotyped ances-

tors into which other genotyped individuals can be placed.

There are currently two state-of-the-art methods for

inferring complex human pedigrees from genotype data,

both of which are maximum likelihood approaches that

attempt to find a pedigree that maximizes the sum of log

likelihoods of pairwise relationships, given observed pat-

terns of identity-by-descent (IBD) sharing. The two

methods differ primarily in the approaches they take to

find the maximum likelihood pedigree.

The earlier method, PRIMUS,13 explores the space of

possible pedigrees by starting with a seed individual and

then iteratively adding individuals to the pedigree. Each

time an individual is added, the method considers all

possible positions that are consistent with the estimated

pairwise relationships. When adding an individual to the

pedigree, each pedigree at the previous step serves as a

seed pedigree onto which the individual can be added in

multiple ways. By constructing a large set of pedigrees in

this way, the algorithm efficiently explores the space of

pedigrees that are compatible with the estimated pairwise

relationships.

In contrast to PRIMUS, the more recent CLAPPER

method14 begins by connecting all individuals together

into an initial guess of a pedigree. Then, at each
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Figure 1. Overview of the full Bonsai method
Details of methods 1, 2, and 3 are presented in Algorithms 1, 2,
and 4, respectively, in the Supplemental methods.
subsequent step, the CLAPPER algorithm rearranges the re-

lationships in the pedigree. This update step is done using

a Markov chain Monte Carlo (MCMC) approach in which

there are many different possible moves that can be made,

such as adding or subtracting a degree of relatedness be-

tween two individuals, swapping the labels of two nodes,

or pruning off an individual and their descendants and at-

taching them somewhere else.

PRIMUS and CLAPPERmake it possible to infer pedigrees

in which pairs of genotyped relatives are separated by

several ungenotyped relatives. However, neither approach

was designed to infer the large and sparse pedigrees that are

common in direct-to-consumer genetic datasets where the

degree of relationship separating a pair of genotyped indi-

viduals may be large, verging on degrees where individuals

frequently share no detectable IBD. For such pedigrees,

searching a broad pedigree space using the approach

of PRIMUS or CLAPPER is computationally infeasible.

Although a recent study applied PRIMUS to reconstruct

more than 12,000 pedigrees in a large dataset, the greatest

degree of relationship between a pair of genotyped individ-

uals in a pedigree was restricted to two.15

The PADRE method of Staples et al.16 partly addresses

the problem of building large pedigrees by inferring the

founders through which two distantly related pedigrees

are connected and their degree of separation. PADRE solves

a key problem of large pedigree inference in an elegant

way. However, the PADRE method does not subsequently

apply these inferences to assemble small pedigrees into

large pedigrees.

Here, we introduce a method, Bonsai, for inferring large

and sparse pedigrees. To make inference efficient and accu-

rate, we first infer small pedigrees of closely related individ-

uals using an approach that efficiently explores the space

of possible pedigrees. This approach is similar to PRIMUS,

but differs in key ways that make the search of the pedigree

space both more efficient and more thorough. The small

pedigrees are then assembled into larger pedigrees using

several techniques, including a generalized version of the

DRUID method of Ramstetter et al.,17 which allows the

method to link distantly related individuals into large

and sparsely sampled pedigrees. We refer to the first stage

as ‘‘small Bonsai’’ and to the second stage as ‘‘big Bonsai’’

(Figure 1). We first describe the small and big Bonsai
The American Jour
methods, then use both simulated and real data to

investigate the performance of the methods and their

components.
Subjects and methods

Overview of the Bonsai method
The Bonsai method is summarized in Figure 1. The input to the

method consists of ages and sexes for a set of putatively related in-

dividuals, along with IBD segments inferred between each pair of

individuals. The method then proceeds through three stages in

sequence.

First, the relationship between each pair of genotyped individ-

uals is inferred using age and pairwise IBD data. The likelihoods

of many other possible relationships are also computed and stored

for each pair. Next, small pedigrees of closely related individuals

are inferred from these pairwise likelihoods. Finally, the inferred

small pedigrees are assembled into large and sparse pedigrees.

Constructing small pedigrees and combining them together

makes it possible to use information in small pedigree structures

to improve the accuracy with which more distant relationships

are inferred. This approach makes it possible to more precisely

infer the ancestral lineages throughwhich small pedigrees are con-

nected, the number of common ancestors shared by each pair of

individuals, and segments of so-called background IBD that do

not reflect recent ancestry. Each of these additional pieces of infor-

mation makes it possible to proactively reduce the space of

possible pedigrees that must be searched, making inference trac-

table for large and sparse pedigrees.
Stage 1: Inferring pairwise relationships
The first stage of the Bonsai method is to infer the likelihoods of

many possible relationships between each pair of putative rela-

tives. To make the computation of the likelihood efficient without

large sacrifices in accuracy, we use a composite likelihood that is

the product of the likelihoods of different IBD summary statistics

and the likelihoods of the pairwise age differences between the in-

dividuals. The genetic component Lg
R of the likelihood, computed

from IBD, is multiplied by the age component La
R of the likelihood

to obtain the final likelihood LR of a given relationship type, R:

LR ¼Lg
RLa

R: (Equation 1)

The likelihood is composite, rather than exact, because we do

not model the joint distribution of the IBD count and length sum-

mary statistics whose product is Lg
R and because there is an under-

lying joint distribution of IBD sharing and age difference that is

not captured by the product of the two likelihoods Lg
R and La

R.
A quick reference to variables defined in the paper can be found

in Table S1.

Pairwise genetic likelihoods

To compute the genetic component of the composite pairwise

relationship likelihood, we consider regions of the genome shared

identically by descent in a haploid fashion on just one chromatid

in each individual, as well as regions shared IBD in a diploid

fashion on both chromatids. We use the terms ‘‘IBD1 segment’’

and ‘‘IBD2 segment’’ to refer to regions of haploid and diploid

IBD, respectively. The genetic component of the pairwise likeli-

hood is computed using the total length of IBD1 segments, the to-

tal length of IBD2 segments, the total number of IBD1 segments,

and the total number of IBD2 segments.
nal of Human Genetics 108, 2052–2070, November 4, 2021 2053



It is possible to compute the probability of an observed shared

pattern of IBD analytically, at least in approximation. However,

in practice we find that error in IBD inference leads to differences

between the empirical and analytical IBD distributions for each

relationship type, especially for close relationships. Thus, we use

likelihoods obtained as moment-fitted Poisson and Gaussian ap-

proximations of simulated distributions.

Let T
i;j
1 and T

i;j
2 be the total lengths of IBD 1 and 2, respectively,

for a pair of individuals (i and j) and let C
i;j
1 and C

i;j
2 be the counts of

the number of IBD 1 and 2 segments shared between the two in-

dividuals. We follow the convention that uppercase variables T1,

T2, C1, C2, etc. denote random variables and their lowercase coun-

terparts, t1, t2, c1, c2, etc. denote their observed values. The genetic

component of the composite likelihood for a given relationship

type, R, between a pair of individuals i and j is then computed as

Lg
Rði; jÞzfRðt1ÞfRðt2ÞPRðc1ÞPRðc2Þ; (Equation 2)

where fRðt1Þhf
T

i;j

1

ðt1;RÞ is the probability density function of the

sum of lengths of all IBD1 segments for a relationship of type R
and PRðc1ÞhPðC1 ¼ c1;RÞ is the probability mass function for

the total number of segments of IBD1 for a relationship of type

R. The quantities fRðt2Þ and PRðc2Þ are defined analogously for

segments of IBD2.

In Equation 2, the quantities fRðt1Þ and fRðt2Þ are modeled as

Gaussian distributions and the distributions PRðc1Þ and PRðc2Þ
are Poisson with means given by the expected numbers of IBD1

and IBD2 segments, respectively, between two individuals of

relationship type R. In practice, the Poisson distribution did not

provide a good fit for segment counts for close relatives so the

segment count data were also modeled as Gaussian. The mean

and variance of TR
i and the mean of CR

i for a relationship of

type R were obtained empirically using simulations. Details of

the simulations used to obtain these moments are provided in

Simulations and fitting of empirical pairwise genetic likelihood

distributions.

Pairwise age likelihoods

The pairwise age likelihood for a given relationship type, R, was

obtained by moment-fitting a Gaussian distribution to the

differences between the ages of 23andMe customers who self-re-

ported to be of relationship type R (Figure S1). We required that

the self-reported relationship between each pair of individuals

could be verified through a string of inferred parent-child or full-

sibling relationships. For example, a self-reported first-cousin rela-

tionship between individuals i and jwas verified if i and j each had

inferred parents in the 23andMe database, and if these parents in

turn had the same pair of inferred parents or were inferred to be

full siblings.

For two individuals, i and j with ages ai and aj, the age compo-

nent of the likelihood for relationship type R was modeled as a

Gaussian distribution with the empirically observed mean and

variance:

La
Rði; jÞ¼

e�½ðai�ajÞ�mRa �2
�
2ðsRa Þ2

sR
a

ffiffiffiffiffiffi
2p

p : (Equation 3)

In Equation 3, mR
a and sRa are the mean and standard deviation

of the empirical age difference for all pairs in our training set

with the pairwise relationship, R. Note that the probability

La
Rði; jÞ is not symmetrical in the ages ai and aj. This is useful for

determining the directionality of the relationship between two

people, such as parent-child or nephew-aunt when age informa-

tion is available.
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The likelihood of a pedigree
The composite likelihood, LP , of a pedigree P is computed as the

product of genetic and age likelihoods (Equation 1) for all pairs of

individuals in the pedigree,

LP ¼
Y

i;j˛P Lg
Rði; jÞLa

Rði; jÞ: (Equation 4)

whereR is the relationship between i and j implied by the pedigree

structure. This likelihood is efficiently computed as each new

individual is added to the pedigree by inductively extending the

existing relationships of the parents and/or children of the newly

added person to obtain the relationships of the new person to all

existing individuals in the pedigree. We then add the log likeli-

hoods of each of these new pairwise relationships to the log likeli-

hood of the pedigree without the new individual.

The ‘‘small’’ Bonsai method
To construct a pedigree from pairwise likelihoods, the small Bonsai

method begins by placing a focal individual by itself in the pedi-

gree. This focal individual is typically the person with the closest

average degree of relationship to all other individuals in the puta-

tively related set, but any individual can be chosen. At each subse-

quent step of the small Bonsai algorithm, the next individual to be

placed is chosen to be the unplaced individual with the closest in-

ferred degree of relationship with one of the individuals already

placed in the pedigree, where ties are broken by the total amount

of IBD shared. Because each pair of individuals has many possible

relationships, we determine the order in which individuals are

added using the most likely pairwise relationship for each pair.

The next individual to be placed is considered in all ways that

are consistent with the most likely inferred pairwise relationships

to individuals already placed. In particular, we consider the top r

most likely pairwise relationships between the new individual

and their closest relative in the set of placed individuals and we

place the individual in all ways that are compatible with each of

these r most-likely relationships. The result of each placement is

a copy of the pedigree with the individual placed in one possible

way. At the end of each step of the method, we have a set of puta-

tive pedigrees representing different ways of placing an individual.

To avoid a rapid expansion in the number of pedigrees at each

step, we employ a heuristic branch-and-bound-like procedure in

which we discard each pedigree at the end of each step that is

very unlikely, compared with the most likely pedigree. In partic-

ular, we discard all pedigrees whose likelihoods are less than a frac-

tion f[ of the likelihood of the most-likely pedigree. In practice,

when individuals are closely related, there are only a few pedigrees

that have high likelihoods and the rest can be discarded. As a

result, the likelihood threshold has a relatively low impact on ac-

curacy while serving to speed up pedigree building.

This heuristic branch-and-like procedure is repeated until no un-

placed individual has a pairwise point-estimated degree that is

within a degree d of any placed individual. At this point, the small

Bonsai algorithm is terminated. If unplaced individuals remain, a

newfocal individual is chosen fromamong theunplaced individuals

and the small Bonsai algorithm is applied again. The small Bonsai al-

gorithm is applied repeatedly, choosing a new focal individual each

time, until all individuals have been placed into some pedigree.

Figure 2 shows an example sequence for constructing a pedigree

using the small Bonsai method. In the first row of the figure, a

focal individual (shaded yellow square) is placed into a pedigree

on their own. Grey diamonds indicate their parents, whose sexes

are unspecified. In the second row, the unplaced individual
ember 4, 2021



Figure 2. The small Bonsai method
An example of the sequence of steps for building a small pedigree is shown. The sequence proceeds from top to bottom in the figure. The
ith row of pedigrees in rectangles represents the ith step of the small Bonsai algorithm in which the ith individual is added to a pedigree.
The individual being placed at any given step is shown in yellow. Their closest placed relative is shown in blue. Blue boxes indicate ped-
igrees that are retained and carried forward to the next step. Black boxes indicate pedigrees with low likelihoods that are discarded.
(yellow circle) with the closest degree of relationship to the placed

individual (now shaded in blue), is placed into the pedigree. The

new individual is placed in all ways that are consistent with the

top rmost-likely relationships inferred in the pairwise relationship

inference step (Stage 1: Inferring pairwise relationships). Here, we

have chosen r ¼ 3. These r ¼ 3 most-likely relationships happen to

be ‘‘avuncular,’’ ‘‘grandparental,’’ and ‘‘half-sibling’’ in the

example shown in step 2 of Figure 2. This is the ‘‘branch’’ step of

the heuristic branch-and-bound-like procedure.

Before placing the next individual, we evaluate the likelihood of

each pedigree, computed as the product of pairwise likelihoods of

the relationships induced by the pedigree. We retain only those

pedigrees whose likelihoods are at least a fraction f[ of the likeli-

hood of the most likely pedigree. This is the ‘‘bound’’ step of the

heuristic branch-and-bound-like procedure.

When two or more pedigrees formed by adding an individual

would be topologically identical, we construct only one of the ped-

igrees. For example, in the second row of Figure 2, because the sexes

of the parents are unknown and there are no placed relatives except

the focal individual that can be used for triangulation, adding an

avuncular relative through the right parent is topologically identical

toadding themthrough the left parent.Therefore,weonlybuildone

of these pedigrees (the one on the far left of the second row).

In the third row of the diagram, the unplaced individual (yellow

circle) with the closest degree of relationship to a placed individual

is added to all pedigrees that were carried forward from the previ-

ous step. The new individual is added to each pedigree in all ways

that are consistent with the top rmost-likely relationships to their

closest placed relative (blue square). Again, these relationships

happen to be ‘‘avuncular,’’ ‘‘grandparental,’’ and ‘‘half-sibling’’ in

the example. We then perform the bound step, retaining only

those pedigrees whose likelihoods are at least a fraction f[ of the

likelihood of the most-likely pedigree.

In the fourth row, we show one final iteration of the procedure.

Again, the unplaced individual (yellow square) is added in all ways

that are consistent with the top r most-likely pairwise point esti-

mated relationships with their closest relative (blue circle). In

this case the most likely point-estimated relationship happens to

be ‘‘parental.’’ Because parent-child relationships are inferred

with near certainty, we have only placed the individual as a parent

in the diagram, omitting the next two most-likely relationships

which will be considerably less likely.
The American Jour
The ‘‘big’’ Bonsai method
Overview of the big Bonsai method

When building a pedigree containing distantly related individ-

uals, the small Bonsai method is first applied repeatedly to build

sets of small non-overlapping pedigrees. The union of individuals

in these small pedigrees is equal to the set of individuals in the full

pedigree. The big Bonsai method is then applied to combine the

small pedigrees together, one pair at a time, with the two pedigrees

sharing the most total IBD combined at each step.

The big Bonsai method relies on several methods we introduce

that are useful for different aspects of combining pedigrees

together. The first method is a generalized version of the DRUID

estimator17 for inferring the degree of relatedness separating the

common ancestors of two small pedigrees. The DRUID estimator

was derived for specific pedigree structures, such as a set of sib-

lings and their avuncular relatives connected to another such

pedigree through the common grandparental ancestors of the

two pedigrees. Here, we generalize the DRUID estimator to any

pair of outbred pedigrees and, in Appendix A: Re-rooting the

DRUID estimator, we further generalize the DRUID estimator to

the case in which two pedigrees are connected through two indi-

viduals who are not the common ancestors of their respective

pedigrees.

The second tool we introduce is an approximation of the likeli-

hood of the degree separating two pedigrees, given the total IBD

shared between the two pedigrees. This likelihood, which was

inspired by the DRUID estimator, makes it possible to evaluate

the relative likelihoods of different degrees separating two pedi-

grees in addition to obtaining a point estimate of the degree.

The third toolwe introduce is a test fordetecting segmentsof back-

ground IBD. Background IBD segments are regions of the genome

that are shared identically-by-state (IBS) that did not arise by trans-

mission from a single shared common ancestor. Instead, these seg-

ments arose because of demographic or evolutionary processes,

such as a population bottleneck. They are long regions of IBS with

hidden recombination events and they can provide misleading in-

formationabout thedegreeof relationshipbetweenapair of individ-

uals. Background IBD segments can lead to mis-inferred pedigrees,

particularly when pedigrees are sparsely genotyped.

The fourth toolwe introduce is amethod for determining the cor-

rect ancestral lineages through which two or more pedigrees are
nal of Human Genetics 108, 2052–2070, November 4, 2021 2055



Figure 3. Example of an observed pattern of presence and
absence of an ancestral allele
Genotyped individuals are shaded in purple. Filled and empty di-
amonds below indicate the presence or absence of the allele from
G. Red dots on purple genotyped individuals indicate the set of
genotyped individuals with no direct genotyped ancestors. Red
dots on gray ungenotyped individuals indicate the most recent
common ancestors transmitting the segments to the genotyped
individuals. Dashed orange lines indicate the paths by which the
allele is transmitted from common ancestor G. The number of
meioses separating A1 and A2 from a common ancestor, G, are
dA1 ;G and dA2 ;G.
connected. This approach relies on detecting overlapping IBD seg-

ments that are inconsistent with certain lineage combinations.

We also derive a recursive formula for computing the probability

of an observed presence-absence pattern of an ancestrally trans-

mitted allele in a set of descendants. This formula is useful for

developing the generalized DRUID estimator and the likelihoods

for degree estimation and background IBD detection.

Together, the tools we introduce can be used to identify the an-

cestors through which two small pedigrees are connected, infer

the degree separating the two ancestors, and identify and discard

individuals whose IBD sharing patterns appear to be background

IBD. By using these inference tools to identify highly likely ways

of connecting pedigrees, the space of possible pedigrees can be

reduced. We now describe each of these approaches in detail.

The probability of a presence-absence pattern of an ancestral allele

Consider two pedigrees P1 and P2 of genotyped individuals N 1

andN 2, related through a common ancestor (or pair of ancestors),

G (Figure 3). Let A1 be the common ancestor ofN 1 in P1 and let A2

be the common ancestor of N 2 in P2.

Consider an allele transmitted from one chromatid in G to its

descendants. We begin by deriving the probability of the observed

pattern of presence and absence of the ancestral allele among de-

scendants of A1 and A2. Let dA1 ;G and dA2 ;G be the degrees sepa-

rating A1 and A2 from the set of most recent common ancestors,

G, of the pedigree. G corresponds to two individuals if A1 and A2

are descended from an ancestral couple andG corresponds to a sin-

gle common ancestor if A1 andA2 are descended from a pair of half

siblings. We do not consider cases of endogamy, where G corre-

sponds to more than one ancestor other than a mate pair. To

simplify the derivation, we also exclude the case where A1 and

A2 are full siblings, so that they share at most one ancestral allele

from G.

Figure 3 shows a presence-absence pattern of an inherited allele

among genotyped individuals in the two small pedigrees P1 and

P2. The probability of the observed presence and absence pattern

can be computed recursively by conditioning on whether the
2056 The American Journal of Human Genetics 108, 2052–2070, Nov
allele was observed in the ancestor of each individual. This

approach is similar to Felsenstein’s tree pruning algorithm.18

Let Oi be a random variable describing the event that a copy of

the allele is transmitted to descendant i and is observed. We set Oi

¼ 1 if the allele is observed in individual i and Oi ¼ 0 if it is not

observed. Let Di denote the presence-absence pattern at the de-

scendants N i of node i.

Defining

pi;0hP Di j Oi ¼ 0ð Þ; pi;1hP Di j Oi ¼ 1ð Þ; (Equation 5)

we show in Appendix A: The probability of a pattern of IBD that

the probabilities can be computed using the recurision

pi;0 ¼
Y

c
pc;0

pi;1 ¼
Y

c
2�dc;i pc;1 þ 1� 2�dc;i

� �
pc;0

� �
; (Equation 6)

where the products are taken over all child nodes, c, of i. The base

conditions at a leaf l with state s are p[;0 ¼ 1s;0 and p[;1 ¼ 1s;1 . For

each allelic copy, g, in G, the probability of an observed IBD

sharing pattern fO1; :::;Okg across k leaf nodes can be computed

recursively as pg,1using Equation 6.

The generalized DRUID estimator

The probability of a presence-absence pattern can be used to

obtain a fast and accurate point estimator of the degree separating

A1 and A2 by accounting for all IBD shared among their descen-

dants. Because two genealogically related individuals may share

little or no IBD, it is helpful to leverage IBD segments shared

among close relatives of the two individuals when inferring their

degree of relatedness. Figure S2 illustrates the utility of considering

IBD segments among groups of individuals rather than pairwise

IBD when the degree of relatedness is not small. In particular, in-

dividuals 3 and 4 in Figure S2 share no IBD segments. Thus, one

cannot infer their degree of relatedness without additional infor-

mation. However, if close relatives of 3 and 4 do share IBD with

one another, and if pedigrees can be inferred relating these close

relatives to 3 and 4, then we can use the IBD in these relatives to

estimate the degree of relationship between 3 and 4.

Two approaches have been used to leverage IBD among close rel-

atives to infer the degree of relationship between a pair of common

ancestors. They are illustrated in Figure S2. Let N 1 and N 2 be two

sets of genotyped individuals; for example, sets N 1 ¼ f2;3g and

N 2 ¼ f4;5;6g in Figure S2. Let A1 and A2 be any two most recent

common ancestors of N 1 and N 2, respectively, and let d(A1, A2)

denote the degree between A1 and A2. The approach implemented

by Staples et al.16 in their PADRE method is to compute the proba-

bility of the observed IBD between each pair of individuals, with

one individual in N 1 and the other in N 2 (Figure S2A). For a given

degree d(A1, A2), the composite likelihood is then computed by tak-

ing the product of pairwise likelihoods. In the PADRE method, the

pairwise probabilities are computed using the ERSAmethod of Huff

et al.,19 which gives the probabilities of the lengths and counts of

shared segments. Staples et al.16 found that this approach yielded

improved accuracy for inferring d(A1, A2) compared with the likeli-

hood for a single pair of individuals.

The second approach, implemented by Ramstetter et al.17 in

their DRUIDmethod, is to first obtain a point estimate of the total

amount of IBD shared between A1 and A2 and then use this point

estimate to infer the degree between A1 and A2 (Figure S2B). The

DRUID estimator of d(A1, A2) is obtained by first merging all IBD

segments observed between N 1 and N 2. The total merged IBD is
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then converted into a point estimate of the amount of IBD shared

between the common ancestor A1 and the common ancestor A2.

The amount of IBD shared between A1 and A2 is estimated by

considering the fraction f1 of the genome of A1 that is passed

on to its genotyped descendants in N 1 and the fraction f2 of

the genome of A2 that is passed on to its genotyped descendants

in N 2. If IBD(A1, A2) is the amount of IBD shared between A1

and A2, then the expected amount shared between N 1 and N 2 is

IBDðN 1;N 2Þ ¼ f1f2IBDðA1; A2Þ. Solving for IBD(A1, A2) yields a

point estimator of IBD(A1, A2) in terms of the observed quantity

IBDðN 1;N 2Þ.
The primary advantage of PADRE is that it is accurate and can be

used to obtain the likelihoods of different degrees separating

pedigrees as well as different choices of ancestors through which

pedigrees are connected. The advantage of DRUID is that it is

fast and produces estimates that are similar to themaximum likeli-

hood estimate as we demonstrate in Degree estimation.

Ramstetter et al.17 derived formulas for f1 and f2 for specific

pedigree configurations, such as sets of siblings or siblings together

with avuncular relatives. Here, we generalize the DRUID estimator

to general outbred pedigrees.

The fraction fi of the genome of A1 that is passed on to some

descendant in N i can be computed as

fi ¼ 1� pi;1ð
n
O1 ¼ 0; :::;Ok ¼ 0

o
Þ; (Equation 7)

where pi;1ðfO1 ¼ 0; :::;Ok ¼ 0gÞ is the probability that a given allele

is observed in no leaf descendant of node i and is computed recur-

sively using Equation 6. Thus, an estimate of the amount of IBD

shared between A1 and A2 is

dIBDðA1;A2Þ¼ IBDðN 1;N 2Þ
f1f2

: (Equation 8)

Using the expression bf ¼ dIBDðA1;A2Þ=4Lgenome for the kinship co-

efficient when all IBD is of type 1, we obtain the generalized

DRUID estimator

dDðA1;A2Þ¼ d :
1

2dþ3=2
%

IBDðN 1;N 2Þ
4f1f2Lgenome

<
1

2dþ1=2
; (Equation 9)

where the bounds come fromManichaikul et al.20 and are the ones

used for the DRUID estimator presented in Ramstetter et al.17

In Appendix A: Re-rooting the DRUID estimator, we demon-

strate how the DRUID estimator can be further generalized to

the case in which A1 is descended from one of the individuals in

N 2, or from an internal node of the induced subtree that is a

descendant of A2. Thus, we obtain a version of the DRUID esti-

mator that can be applied to general outbred pedigrees.

The likelihood of the degree of relatedness among groups of individ-

uals

Using the DRUID principle, we can develop a likelihood estimator

of the pairwise degree of relatedness between the common ances-

tors A1 and A2, given the observed total IBD T1,2 between the gen-

otyped descendants of A1 and A2.

Consider again the scenario depicted in Figure 3 in which two

sets of genotyped individuals, N 1 and N 2, are related through a

common ancestor or pair of ancestors, G. The probability that a

given allele from G is observed IBD betweenN 1 andN 2 can be ob-

tained by conditioning on the events that it is observed in A1 and

A2. Let I denote the event that the allele is observed IBD. Then

PðIÞ¼f1P
�
OA1

¼1
�
f2P

�
OA2

¼1
�
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¼ f1f22
�ðdA1 ;GþdA2 ;GÞ; (Equation 10)

where fi is computed using Equation 7.

If A1 andA2 had exactly one common ancestor with one allele to

transmit, then Equation 10 would be the fraction of the genome in

which we expect to find some segment shared IBD between some

member of N 1 and some member of N 2. However, we must ac-

count for the fact that each common ancestor of A1 and A2 in G

carries two allelic copies and that there can be either one or two

such common ancestors.

We consider the case in which A1 and A2 are not full siblings. In

this case, the event that they are IBD for a given ancestral allele in

G is mutually exclusive of the event that they are IBD for any other

ancestral allele in G. Therefore, if jGj denotes the number of ances-

tors, then the probability that A1 and A2 are IBD for some ancestral

allele is 2jGjPðIÞ.
We can use the probability of observing an allele IBD to obtain

an approximate likelihood of the total length T1,2 of IBD observed

between descendants of A1 andA2. Themean of this distribution is

simply the expected length of the genome in a state of IBD be-

tween the two pedigrees, which is

E½T1;2� ¼2jGjPðIÞLgenome; (Equation 11)

where Lgenome is the haploid genome length. An approximation of

the variance of T1,2 is derived in Appendix A: Approximating the

variance of T1,2 and is given by

VarðT1;2Þz2jGjPðIÞLgenome

E
h
L2
1;2

i
E½L1;2� ; (Equation 12)

where L1,2 is the length of any given IBD segment between A1 and

A2 formed by merging all IBD segments between leaf nodes in A1

and A2 that overlap one another. The moments E½Lm
1;2� are derived

in Appendix A: Approximating the variance of T1,2 and can be

computed using Equations A11 or A12.

If the segments, L1,2 were each exponentially distributed, then

T1,2 would have a gamma distribution. Thus, we can approximate

the distribution of T1,2 by

T1;2

��T1;2 > 0 � Gammaðk1;2; q1;2Þ;

where k1,2 and q1;2 are found by matching the mean and variance

of the gamma distribution with E½T1;2� and VarðT1;2Þ. Thus, we

obtain

T1;2

����T1;2 > 0 � Gamma

	
E½L1;2�2
VarðL1;2Þ;

VarðL1;2Þ
E½L1;2�



; (Equation 13)

where E½L1;2� and E½L2
1;2� are given by Equation A12.

If every IBD segment has some length, we can assume that T1,2 is

only identically zero when there are no IBD segments. The distri-

bution of the number of segments can be modeled as a Poisson

random variable with mean E½N1;2� equal to the expected number

N1,2 of merged segments shared between N 1 and N 2. The proba-

bility that there are no segments is then e�E½N1;2 �. Thus, we have

the approximation

fT1;2
ðt1;2Þz

8><
>:

tk�1
1;2

GðkÞqke
�t1;2=q

�
1� e�E½N1;2�� if t1;2 > 0

e�E½N1;2� if t1;2 ¼ 0:

;

(Equation 14)
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where k ¼ E½L1;2�2=VarðL1;2Þ, q ¼ VarðL1;2Þ=E½L1;2�, and E½N1;2� is

given in Equation A8. Figure S3 shows analytical values computed

using Equations 11 and 12 compared to empirical values from

simulations. Figure S4 shows the approximate analytical distribu-

tion computed using Equation 14 compared to the empirical

distribution computed from simulations. Although the gamma

distribution in Equation 14 provides a good fit to the empirical dis-

tribution, a Gaussian distribution can be more robust in practice

and ultimately appears to give better accuracy for pedigree infer-

ence. In practice, we use the Gaussian distribution for inference.

A maximum likelihood estimator of the degree between A1 and

A2 can be obtained by determining the degree dLðA1;A2Þ between

A1 and A2 for which value of the distribution in Equation 14 is

maximized. This gives the maximum likelihood estimator

dLðA1;A2Þ¼ arg maxdfT1;2
ðt1;2; dÞ: (Equation 15)

Determining the ancestral branches through which to connect pedi-

grees

One difficulty in constructing large pedigrees is determining the

ancestors through which two sets of gentoyped individuals are

related. A simple fundamental question is whether two lineages

are both on the maternal side of an individual, both on the

paternal side, or on opposite parental sides. Without genotyped

parents, the side through which a lineage passes can be difficult

to determine, although sex chromosomes andmitochondrial hap-

lotypes can be used to resolve the parent of origin in some cases.

We consider the problem of inferring whether two distant sets

of relatives are related through the same parent of a focal individ-

ual, or through different parents. The scenario we consider is

illustrated in Figure S5. Even if the purple and red pedigrees in

Figure S5 shared no IBD, they could still be related to individual

1 through the same parent by passing through different grand-

parents. However, if the red and purple pedigrees are related to

the focal individual 1 through the same parent, the IBD segments

the purple pedigree shares with individual 1 cannot spatially

overlap with the segments the red pedigree shares with individ-

ual 1. This is because two overlapping segments would have un-

dergone recombination in the parent (i.e., individual 10). The

result will either be a spliced segment (Figure S5) or the replace-

ment of one segment by the other with possible reduction in

segment size.

In the big Bonsai method, when there are multiple possible

grandparents through which we can connect a focal node in a

focal pedigree P to two distantly related pedigrees P1 and P2, we

examine whether the IBD segments between P1 and the focal

node overlap with the IBD segments between P2 and the focal

node. The efficacy of checking segment overlaps is discussed in

Segment overlap detection using simulated data.

Likelihoods for identifying background IBD

Another challenge in identifying the proper ancestral lineages

through which to connect pedigrees comes from segments that

are shared identically by state by chance between two individuals

with no recent common ancestor. These segments, which can be

confounded with IBD, are referred to as background IBD.

Background IBD can result in the placement of distant relatives

onto incorrect ancestral lineages. The result is often an imbalanced

pedigree withmany distant lineages connected to the same side or

ancestral lineage of another pedigree. We present a method for de-

tecting background IBD and correcting the ancestral lineages

through which pedigrees are connected. The likelihood of the de-

gree of relatedness among groups of individuals
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Summary of the big Bonsai algorithm

We combine the tools previously described (The probability of a

presence-absence pattern of an ancestral allele; The generalized

DRUID estimator; The likelihood of the degree of relatedness

among groups of individuals; Determining the ancestral branches

through which to connect pedigrees; Likelihoods for identifying

background IBD) to obtain the big Bonsai method presented in Al-

gorithm 4 in Supplemental methods. The input for the big Bonsai

method consists of small pedigrees inferred using the small Bonsai

method. It assembles these small pedigrees into a large and

sparsely sampled pedigree by iteratively combining the two pedi-

grees that share the greatest total length of IBD until all pedigrees

have been agglomerated into a single pedigree or discarded

because they cannot be combined in a reasonable way.

We assume that a pair of pedigrees, P1 and P2, can only be

combined in ways that connect individuals who share IBD.

When combining two pedigrees, the big Bonsai method identifies

the sets N 1 and N 2 of genotyped nodes in each pedigree that

share at least one IBD segment with an individual in the other

pedigree. It is possible that some nodes in the set N 1 are not truly

related to the set N 2 and vice versa due to background IBD. In

this case, the set N i may not have a single common ancestor. If

the set N i does not have a single common ancestor or a single

pair of common ancestors who are partners, we attempt to find

the subset of N i that has a common ancestor and shares the

most IBD with the other set. To accomplish this, we find the

set ~Ai of most recent ancestral nodes whose descendants

comprise N i. The pair of ancestors A1˛~A1 and A2˛~A2 whose

descendants share the greatest total length of IBD is then deter-

mined and we redefine N 1 and N 2 to be the genotyped descen-

dants of A1 and A2, respectively.

Our objective is to identify pairs of individuals through which

P1 and P2 can be connected in such a way that all individuals in

N 1 are related to all individuals in N 2. This is accomplished if

and only if the sets N 1 and N 2 share at least one common

ancestor. Sets N 1 and N 2 will be connected through a common

ancestor if their respective common ancestors, A1 and A2, share

a common ancestor or if A1 is descended from any individual in

N 2 or from any ancestor on the induced subtree L2 of pedigree

P2 relating N 2 to one another. Similarly, sets N 1 and N 2 will

have a common ancestor if A2 is descended from any individual

in N 1 or from any ancestor on the induced tree L1 of pedigree

P1 relating N 1.

We present a generalized DRUID estimator in Appendix A: Re-

rooting the DRUID estimator for connecting pedigrees through in-

dividuals Awho are not common ancestors ofN 1 orN 2. However,

connecting pedigrees P1 and P2 through all possible pairs can be

computationally inefficient. Instead, we accept a certain loss in ac-

curacy and allow pedigrees to be connected only through com-

mon ancestors. We find that this approach works well in practice,

generating pedigrees that are nearly as accurate as those con-

structed by connecting P1 and P2 in all possible ways.

Let A1 be a most recent common ancestor of N 1 and let A2 be a

most recent common ancestor of N 2. For each pair of possible an-

cestors (A1, A2), we compute the generalized DRUID estimate

dDðA1;A2Þ of the degree using Equation 9. We then perform

the test for background IBD described in Likelihoods for identi-

fying background IBD, which potentially results in a new pair of

common ancestors A1
0 and A2

0 whose descendants do not share

detectable background IBD. If the pair ðA1
0;A2

0Þ differs from the

original pair (A1, A2), we replace A1 and A2 with A1
0 and A2

0 and re-

compute the generalized DRUID estimate dDðA1;A2Þ. At the end of
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these steps, we have a set of possible ancestral pairs throughwhich

P1 and P2 can be connected, along with point estimates, dDðA1;

A2Þ, of the total degree separating each pair.

It remains to evaluate the likelihood of each pair and degree.

Following the notation of Ko and Nielsen,14 denote the relation-

ship between a pair of individuals A1 and A2 with common

ancestor (or ancestral pair) G by ðd1;d2;nÞ, where d1 is the number

of meiotic events separating A1 from G, d2 is the number of

meiotic events separating A2 from G, and n ¼ jGj is the number

of common ancestors. For a given estimate dDðA1;A2Þ of the degree
between A1 and A2 and a number of common ancestors n, we

consider all relationship types ðd1; d2;nÞ corresponding to degree

dDðA1; A2Þ; in other words, we consider all relationship types

such that d1 þ d2 ¼ dDðA1;A2Þ þ n� 1.

For a given pair of ancestors A1 and A2, and for each relationship

ðd1;d2;nÞ, we connect A1 and A2 through all such relationships and

we evaluate the composite likelihoods of the resulting pedigrees

computed using Equation 4. All pedigrees whose likelihoods are

at least a fraction f[ of that of the most-likely pedigree are stored

and the rest are discarded. We also apply the test in Determining

the ancestral branches through which to connect pedigrees for

incompatible ancestral lineages to each retained pedigree and we

retain only those pairs that pass the test.

Here, we have considered the procedure for combining two ped-

igrees P1 and P2. However, the output of the small Bonsai method

is a set of high-likelihood pedigrees S and the input to the big

Bonsai method is a list S
!¼ ½S1;.; SK � of K such sets, if K small ped-

igrees have been inferred. Let N S denote the genotyped node set

corresponding to the pedigree set S; in other words,N S is the gen-

otyped node set of every pedigree P˛S. IfN is the set of genotyped

nodes in the full pedigree, then WK
i¼1N Si ¼ N .

At each step of the big Bonsai method, we compare each pair of

genotyped sets N Si and N Sj (1%i; j%K) to determine the pair with

the greatest shared total amount of IBD. Here, the total amount of

IBD is the total length of IBD obtained by merging the segments

shared between all pairs of individuals ðu;vÞ˛N Si 5 N Sj. We then

identify the subsets N i4N Si and N j4N Sj that share IBD and we

combine each pair of pedigrees ðPi;PjÞ˛Si5Sj through all pairs

of possible most recent common ancestors of N i and N j. The

full algorithm is presented in Algorithm 4 in supplemental

methods.

It is possible to mis-infer relationships early in the process of

pedigree building that lead to conflicts several steps later in the

process. The downstream effects of a misplaced individual can

be difficult to predict and prevent without a bird’s-eye view of

the pedigree, but misplaced pairs of relatives can often be de-

tected after the pedigree is built. In practice, we include a final

step in the pedigree building process to detect internal inconsis-

tencies by comparing the final pairwise relationships implied by

the pedigree structure to the initial pairwise likelihood predic-

tions. When the inferred relationships have low pairwise likeli-

hoods, we rebuild the pedigree, iteratively expanding the number

of pedigrees that are retained at each step to increase the chances

that the correct pedigree is explored. We also correct pairwise

point estimates that are likely to be incorrect when viewed in

the context of a fully built pedigree before attempting to re-infer

the pedigree.

Putting together the point estimator, the small Bonsai method,

and the big Bonsai method, we obtain the full Bonsai method

shown in Figure 1. Outlines of the three primary stages of Bonsai

are shown in Algorithms 1, 2, and 4 in supplementalmethods. The

Bonsai method performs these stages in series.
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Subjects and simulations
Our empirical analyses are based on simulated data, as well as a da-

taset comprised of the pedigrees of 23andMe research participants.

All simulations and analyses that used real genotype data were per-

formed using individuals consented for research according to the

23andMe research protocol, which is approved by Ethical &

Independent Review Services, a review board accredited by the

Association for the Accreditation of Human Research Protection

Programs. The study is in accordance with U.S. Federal Policy for

the Protection of Human Subjects.

Overview of simulations

Simulations were carried out using two different general ap-

proaches. In one approach, no genotype or customer data were

used and IBD segments were known with certainty, their positions

and lengths being recorded during the simulation process. In

the second simulation approach, the full-genome genotypes of

research-consented 23andMe customers were used for the pedi-

gree founders and genotypes were simulated for individuals in

all subsequent generations through cross-over events. Identical-

by-descent segments were then inferred between each pair of indi-

viduals using an in-house method for inferring IBD on unphased

data,21 which is similar to that of Seidman et al.22

In all simulations, the number of cross-over events in each

meiosis was drawn such that the expected number of events was

one per 100 cM and the locations of cross-overs were sampled uni-

formly along chromosomes.

Validated real pedigrees

To evaluate Bonsai on real pedigrees, we constructed 718 pedigrees

for individuals in the 23andMe database that were known with a

high degree of certainty because a very large fraction of individuals

were genotyped. In particular, we identified sets of individuals in

which each individual was connected to every other individual

through a chain comprised of first-degree relationships (parental

or full-sibling). We considered a pair of individuals to be parent

and child if they shared at least 3,400 cM of IBD1 and at most

100 cM of IBD2, and if their ages were at least 17 years apart. We

considered a pair of individuals to be full siblings if they shared

at least 2,400 cM of IBD1, at least 400 cM of IBD2, and at most

3,000 cM of IBD2 and if their parents identified by the aforemen-

tioned criteria were exactly the same. We further required that any

pair of inferred parents were of opposite sexes. Pedigrees identified

in this way allowed us to know the true pedigree structure with a

high degree of certainty because parent-offspring and full-sibling

pairs can be identified with nearly perfect accuracy.

We identified the set of the largest such pedigrees in each of ten

populations. The population of a pedigree was taken to be the

computationally inferred population of the majority of pedigree

members, where population membership was predicted for a

given individual using the approach described in Campbell

et al.23 We considered only pedigrees that contained at least 10

genotyped individuals, resulting in 101 European, 104 North Eu-

ropean, 31 South European, 56 African American, 88 Ashkenazi,

57 East Asian, 16 South Asian, 25 Middle Eastern, 101 Latino,

and 139 ‘‘other’’ pedigrees.

For analyses comparing Bonsai with the state-of-the-art method

PRIMUS, we subsampled to a smaller set of pedigrees to allow the

analysis to complete in a reasonable amount of time. For these an-

alyses, we downsampledmore heavily in over-represented popula-

tions to attain greater uniformity in the numbers of pedigrees from

different populations. For these analyses we considered the largest

40 pedigrees from each of 8 computationally inferred populations,

except when there were fewer than 40 pedigrees in a population,
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in which case, we considered all pedigrees. We retained 40 Euro-

pean, 40 African American, 40 Ashkenazi, 40 East Asian, 16 South

Asian, 25 Middle Eastern, 40 Latino, and 40 other pedigrees.

Self-reported pedigrees

The Family Tree feature provided by 23andMe allows users to edit

and validate relationships in their pedigrees. We considered a set

of suchpedigreeswhereusershadeitherverifiedorchangedrelation-

ships, indicating that they knew the correct relationships for at least

a subset of individuals in the pedigree. We considered only individ-

uals in these pedigreeswhowere consented for research and inferred

the pedigree using only the subset of research-consented individ-

uals. The inferred relationships in the pedigree could then be

compared with the user-verified relationships.

Simulations and fitting of empirical pairwise genetic likelihood distri-

butions

The distribution of the total length of IBD1 and IBD2, the distribu-

tion of lengths of IBD1 and IBD2 segments, and the distribution of

the total counts of IBD1 and IBD2 segments for a specified relation-

ship typeRwere obtained by simulating full genomes for 100 pairs

of individuals of the relationship type. For each simulation repli-

cate, a pedigree was specified containing the relationship of interest

and cross-over events were simulated within the pedigree.

Gaussian distributions were then fitted to the observed data by

moment matching. In practice, we fitted Gaussian distributions to

both the total lengths and segment counts, rather than fitting

Poisson distributions to the segment count data because the

Gaussian distribution provided a better fit for segment counts

for close relatives.

The IBD inference algorithm we used operates on unphased

data. For such data, it is natural to consider a third class of IBD,

which is ‘‘IBD1 or IBD2,’’ in other words contiguous regions of

the genome in which any IBD is detected. We denote this form

of IBD by ‘‘IBD3.’’ In practice, the likelihoods used for the analyses

in this paper were fitted to the distributions of total lengths and

segment counts of IBD3 and IBD2 rather than those of IBD1 and

IBD2. The use of IBD3 instead of IBD1 can reduce the variance

in segment counts because true IBD1 segments can be broken up

by stretches of IBD2. The use of IBD3 segments instead of IBD1 pri-

marily affects the inference of full sibling relationships, which are

the most common non-consanguineous relationships with IBD2

and which are easily distinguished from other relationships.

Let T3 denote the total genome-wide length of IBD3 and let T2

denote the total genome-wide length of IBD2. Let C3 denote the

total number of segments of IBD3 and let C2 denote the total num-

ber of segments of IBD2. Over the 100 simulation replicates, we

computed the mean mQ and standard deviation sQ of the quanti-

ties Q ¼ T3; T2; C3, and C2. The means and standard deviations

of these quantities for the simulated relationships are provided

with the Bonsai software and are used for inference. Usersmay pre-

fer to use different IBD quantities and distributions. Instructions

for replacing the Bonsai distributions with user-generated ones

are provided in the documentation for Bonsai.

Large simulated pedigrees

The 718 validated customer pedigrees described in Validated real

pedigrees are often small enough that the small Bonsai method

is capable of building them without relying heavily on the big

Bonsai method. To evaluate the big Bonsai method, we required

considerably larger pedigrees whose structures were known with

certainty. Although many pedigrees for 23andMe research-con-

sented customers are large, the relationships within them are typi-

cally not knownwith certainty. Therefore, we simulated large ped-

igrees to evaluate the big Bonsai method.
2060 The American Journal of Human Genetics 108, 2052–2070, Nov
Exact IBD was simulated for pedigrees with a depth of five gen-

erations by choosing a focal individual and building the ‘‘cone’’ of

ancestors comprised of 2 parents, 4 grandparents, 8 great-grand-

parents, and 16 great-great-grandparents. For each individual in

the ancestral cone, a second partner was added with probability

0.2. Two children were created for every pair of partners in the

pedigree. Two children were repeatedly created for every pair

with no children until the generation with the focal individual

was reached. An example of a pedigree generated by this approach

is shown in Figure S6.

Large simulated pedigrees to evaluate the effect of background IBD

detection on pedigree accuracy

To test the effects of background IBD on pedigree inference accu-

racy, we required pedigrees with realistic levels of background

IBD. The real pedigrees described in Validated real pedigrees were

often too small to require considerable amounts of assembly using

big Bonsai, where the test for background IBD is performed. The

pedigrees in Large simulated pedigrees did not contain background

IBD because all IBD was exact. Therefore, we repeated the simula-

tions in Large simulated pedigrees, but this time using the full-

genome genotypes of research-consented 23andMe customers as

the pedigree founders. Genotypes were simulated for individuals

in all subsequent generations through cross-over events and IBD

was detected as described inOverview of simulations.We simulated

100 pedigrees for each of ten populations. For a given population,

the pedigree founderswere research-consented 23andMe customers

who were computationally predicted to be from that population.

Simulated pedigrees for testing degree inference

The approach for simulating pedigrees for degree inference was

similar to that in Large simulated pedigrees; however, the pedigree

structure was different. For these pedigrees, we were interested in

inferring the degree between a pair of common ancestors A1 and

A2, given IBD observed between their descendants N 1 and N 2.

For this analysis, we created two identical small pedigrees: P1

and P2. Each small pedigree had the same structure comprised

of the common ancestor, A1 or A2, their partner, their two chil-

dren, and four grandchildren, where the grandchildren were

comprised of two children for each child of A1 or A2. The ancestors

A1 and A2 were then connected by degree d(A1, A2) through a pair

of common ancestors, where the degree d varied from 1 to 13.

Exact IBD for 200 pedigrees was simulated for each degree.
Results

We considered both simulated and real data to investigate

the performance of the small and big Bonsai methods and

their components.

Degree estimation

To evaluate the accuracy of degree inference using the like-

lihood estimator (Equation 15) and the generalized DRUID

estimator (Equation 9), we applied these estimators to infer

the degree between common ancestors A1 and A2 of two

small pedigrees P1 and P2 (Simulated pedigrees for testing

degree inference).

Figure 4 shows the accuracy of the likelihood estimator

dL and the generalized DRUID estimator dD for inferring

the degree d(A1, A2), conditional on the event that any

IBD at all was observed between the leaf nodes in P1 and

P2. From Figure 4, it can be seen that both the maximum
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Figure 4. The accuracy of the likelihood
method (Equation 15) and the generalized
DRUID method (Equation 9) for inferring
the degree between a pair of common an-
cestors
The accuracy of the estimate is shown for
four different tolerances: (A) exactly equal
to the true degree, (B) within one degree
of the true degree, (C) within two degrees
of the true degree, and (D) within three de-
grees of the true degree. Error bars are sym-
metrical with total lengths equal to twice
the standard deviation.
likelihood estimator dL and the generalized DRUID esti-

mator dD have similar accuracies for inferring the degree

d(A1, A2), although the DRUID estimator was more accu-

rate for moderate degrees whereas the likelihood estimator

was able to infer higher degrees. This difference is likely

due to the choice of distribution used in the approxima-

tion of the likelihood, which appears mis-calibrated for

moderate degrees, but permits inference for high degrees.

In practice, because the DRUID and likelihood estimators

are similar, we use the generalized DRUID estimator for

inferring the degree of separation between two small ped-

igrees for reasons of computational efficiency.

To compute the bar heights and standard deviations in

Figure 4, we performed ten replicates in which we sub-

sampled four nodes without replacement from P1 and

four nodes without replacement from P2 within each of

the 200 pedigrees for a given degree. We then computed

the variance across these ten replicates.

Segment overlap detection

We evaluated the degree to which overlapping IBD seg-

ments can be informative about the ancestors through

which two pedigrees are connected using the large simu-

lated pedigrees described in Large simulated pedigrees.

For each pedigree, we considered the four grandparents

of a focal individual and the leaves descended from all lin-

eages extending up from each of the four grandparents. In

the example large pedigree shown in Figure S6, the focal

individual is one of the yellow leaf nodes and the grandpa-

rental clades corresponding to the four leaf sets are colored

in green, cyan, red, and magenta.

For apair of leaf sets related to the focal individual through

an ancestral couple, we expect to see no overlap in the IBD

segments shared with the focal individual. For a pair of leaf
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sets related to the focal individual

through two grandparents who are not

a couple, we expect to observe overlap-

ping segments occasionally.

Figure 5 shows the rate at which seg-

ments from one leaf set overlapped

segments from another leaf set by

more than a fraction f of the total

IBD observed between the two leaf

sets, combined, for f˛0:01; 0:05; 0:1;

0:15;0:2. Each bar in Figure 5 was computed using 100 ped-

igrees, each with four pairs of leaf sets related to individual

1 through a pair of grandparents who were not a couple.

Only identical-by-descent segments greater than 5 cM in

length were considered.

Let i denote the focal individual. For leaf sets N 1 andN 2

with total amounts of IBD to the focal individual

denoted by Ti;N 1
and Ti;N 2

, let Ti;N 1WN 2
denote the total

length of merged segments between focal individual i

and either set. We recorded an overlap in segments if

the following relationship was satisfied: Ti;N 1
þ Ti;N 2

�
Ti;N 1WN 2

> fTi;N 1WN 2
. Figure 5 indicates that even with

few sampled leaves from each leaf set, it is possible to

detect overlapping identical-by-descent segments a large

fraction of the time when the leaves are related through

grandparents who are not a couple.

Timing and accuracy of small Bonsai, compared with

PRIMUS

To evaluate the accuracy and running time of Bonsai in

comparison with PRIMUS, we applied PRIMUS and Bonsai

to a set of 281 pedigrees comprised of research-consented

23andMe customers (Validated real pedigrees) for which

the true pedigree was knownwith a high degree of certainty

because a large fraction of individuals were genotyped.

Pedigrees in which all individuals have been genotyped

are simple to infer by connecting together first-degree rel-

atives. The difficulty is in constructing pedigrees in which

only a small fraction of individuals have been genotyped.

Therefore, to evaluate the accuracy of Bonsai and PRIMUS,

we subsampled the validated pedigrees and performed

inference using the subset of individuals, ignoring the re-

maining individuals. The resulting pedigree could then

be compared to the subgraph of the true pedigree
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Figure 5. The probability of observing an
IBD segment overlap
The plot shows the probability of
observing an overlap of at least fraction f
(f ¼ 0:01; 0:05; 0:1; 0:2) among segments
shared identical-by-descent between the
focal individual and sets of leaves related
to the focal individual through ancestors
who are not a couple. Exact IBD segments
were simulated for large pedigrees like
that shown in Figure S6. IBD was recorded
between the focal individual and the leaf
nodes of each of the four clades related to
the focal individual through each of the
four grandparents (colored green, cyan,
red, and magenta in Figure S6). An
observed identical-by-descent segment
overlap was evidence that the lineages
were related to the focal individual
through a pair of ancestors who were not
a couple.
corresponding to the subsampled individuals to determine

the accuracy of the inference.

For each pedigree, we considered the set of individuals

corresponding to all leaves and their parents. We then sub-

sampled this set in each pedigree to 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90%, or 100% of its members with a

minimum of at least two individuals sampled per pedigree.

Figure 6A shows the fraction of the time the small Bonsai

and PRIMUS pedigrees matched the true pedigree. If multi-

ple PRIMUS pedigrees achieve the maximum likelihood,

multiple pedigrees are returned. The bars in Figure 6A are

labeled ‘‘Any PRIMUS’’ because they show whether any

of the highest-scoring PRIMUS pedigrees matched the

true pedigree exactly. In comparison, Bonsai returns a sin-

gle pedigree by default.

We also compared the running time of the Bonsaimethod

to the running time of PRIMUS for the same set of pedigrees

described in Validated real pedigrees. Figure 6B shows the

running time for small Bonsai compared to the running

time for PRIMUS for different percentages of sampled line-

ages from each of the pedigrees. Because PRIMUS often did

not complete for a given pedigree or required a very long

running time,we terminated theBonsai orPRIMUScompute

for a pedigree if it took longer than 30 s (Figure S7). Because

noBonsai compute took longer than 30 s, the running times

for PRIMUS in Figure 6B are biased downward, whereas the

times are shown for all Bonsai pedigrees.

Timing and accuracy of the big Bonsai method

We investigated the ability of the big Bonsai method to

accurately infer pedigrees using the very large simulated

pedigrees described in Large simulated pedigrees as well

as the full set of 718 validated pedigrees described in Vali-

dated real pedigrees. The simulated pedigrees allowed us to

explore the ability of Bonsai to reconstruct very large ped-

igrees with distant relationships, and to investigate the

effect of pedigree size on running time. The validated ped-

igrees allowed us to investigate the performance of Bonsai

on real data across several populations.
2062 The American Journal of Human Genetics 108, 2052–2070, Nov
Figure 7 shows timing and accuracy results for recon-

structing large five-generation pedigrees simulated using

the approach described in Large simulated pedigrees. To

evaluate the ability of the big Bonsai method to recon-

struct pedigrees with sparsely sampled individuals, we

further subsampled 10%, 20%, 30%, 40%, 50%, 60%,

70%, 80%, 90%, or 100% of the non-founder individuals

in themost recent two generations. Sampling 10% of these

individuals corresponds to sampling approximately 5% of

all individuals in the full pedigree and sampling 100% of

these individuals corresponds to sampling approximately

50% of all individuals in the pedigree overall. Our sam-

pling scheme presents a challenge to pedigree reconstruc-

tion because the samples did not contain ancestral

individuals who could provide information about the de-

grees of distant relationships.

From Figure 7A, it can be seen that the running time is

on the order of several seconds per pedigree, even though

pedigree sizes were large. Bonsai built pedigrees with more

than 100 sampled individuals in tens of seconds.

The big Bonsai method is designed to drop small pedi-

grees from consideration, rather than combining them

with the other pedigrees when an inconsistency is de-

tected. This can occur, for example, if the small pedigree

is inferred with a very unlikely relationship despite re-

running with parameter values that search a broader pedi-

gree space and attempting to correct relationships that are

judged to be inaccurate. Figure 7B indicates that the frac-

tion of times individuals or small pedigrees were dropped

was small, as the number of placed individuals was typi-

cally very close to the number of sampled individuals.

Figures 7C–7E show the accuracy for inferring large

pedigrees when different fractions of individuals were

sampled. Here, we compare each true pairwise relationship

to the relationship reconstructed in the most likely Bonsai

tree. Close relationships were typically reconstructed

accurately, whereas distant relationships were more chal-

lenging, yet still generally accurate especially when the

fraction of sampled individuals was high.
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Figure 6. Evaluation of pedigree accu-
racy and comparison of running times be-
tween small Bonsai and PRIMUS
Accuracy and running time were evaluated
using 281 pedigrees of 23andMe research
participants that were known with a high
degree of certainty because most individ-
uals in each pedigree were genotyped.
When inferring a pedigree, we subsampled
10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, 90%, or 100% of the set comprised
of leaves and parents of leaves uniformly
at random without replacement. The sub-
sampled individuals were then used to

reconstruct the pedigrees using PRIMUS and Bonsai using the same pairwise relationship likelihoods.
(A) Comparison of overall pedigree accuracy for all placed individuals. The bars labeled ‘‘Any PRIMUS’’ show the rate at which any of the
highest likelihood pedigrees returned by PRIMUS correctly matched the true pedigree. Symmetrical error bars have lengths given by
the twice the standard deviation of a normalized binomial random variable with n given by the total number of pedigrees and p given
by the fraction of pedigrees with the correct topology.
(B) Running time for PRIMUS and Bonsai. Bands show the range between the minimum and maximum running times.
Note that, because the ages of individuals in the pedi-

gree conformed to average age differences between gener-

ations, it was sometimes possible to distinguish distant

half relationships from distant full relationships. For

example, a pair of individuals of the same age related by

four degrees of separation is more likely to be a pair of

half first cousins, rather than a full first cousin once

removed. Half relationships are likely to be more chal-

lenging to infer in practice, given that age differences

may differ from expectation.

To investigate the accuracy of the big Bonsai method on

real data, we inferred 718 customer pedigrees that were

known with a high degree of confidence because a large

number of individuals had been genotyped. Again, to re-

create realistic sampling conditions, we subsampled these

pedigrees to 50% of their genotyped leaves and the parents

of the leaves. Figure S8 shows the number of pedigrees for

which the true pedigree was recovered exactly. The rate

was relatively high, given that the inferred pedigree did

not match the true pedigree unless all relationships were

correctly inferred.

Reconstruction of self-reported pedigrees using big

Bonsai

We also compared relationships inferred by Bonsai with

self-reported relationships using 265 pedigrees for which

the relationships between two or more individuals had

been self-reported by the focal individual for whom the

pedigree was built (Self-reported pedigrees).

Figure 8 shows the correspondence of each inferred rela-

tionship type with the self-reported relationship type. The

plots show the fraction of times the self-reported and

inferred relationships agreed exactly in that their relation-

ship tuples (up, down, number of ancestors) were the

same. The plots also show the fraction of times the rela-

tionships agreed in degree, the fraction of times the rela-

tionships agreed within one degree, and the fraction of

times the relationships agreed within two degrees.

The inferred and self-reported relationships typically

agreed for close relationships up to first cousins. However,
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the inferred relationship often differed from the self-re-

ported relationship for distant relationship types, and oc-

casionally for relatives as close as siblings or parents. For

parent-child and full sibling pairs, it is possible to check

whether the self-reported relationship is correct because

the identical-by-descent sharing patterns for these rela-

tionships are very distinct from other relationship types.

It is of interest to note that in all but one case in which

the inferred and self-reported relationships differed for a

parent-child or full sibling pair, the self-reported relation-

ship was, in fact, incorrect due to impossible levels of

shared IBD. In these cases, it was frequently the case that

a self-reported parent-child pair shared no IBD, or that a

self-reported full sibling pair shared no IBD2 and instead

had an IBD sharing pattern that was more consistent

with a half sibling or a cousin. In only one case was the

self-reported relationship type consistent with the IBD

sharing pattern, and in this case one individual had a

self-reported age much greater than 100 years, leading to

a strong contribution from the age component of the like-

lihood and an incorrectly inferred relationship type.

For distant relationships, we observed greater disparities

between the self-reported and inferred values. However,

the inferred degree was often within one or two degrees of

the self-reported relationship, even for relationships as

distant as seventhdegree orhigher in some cases.Moreover,

relationships for which the self-reported and inferred de-

grees differed by more than two degrees typically had few

self-reported pairs (Figure 8). This relatively high accuracy

for distant relationship degree is consistent with our anal-

ysis of the accuracy of the generalized DRUID estimator.
Discussion

We have presented a method for inferring large pedigrees

quickly and accurately, even when the fraction of

genotyped individuals in a pedigree is low and the dis-

tance between an individual and their closest relative

can be moderate or large. Our method has three
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10% of most recent 2 generations sampled
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Figure 7. Timing and accuracy of the big Bonsai method
Large pedigrees were simulated with a depth of five generations and two offspring per pair as described in Large simulated pedigrees. To
capture the sparsity of pedigrees observed in direct-to-consumer pedigree data, we sampled only a fraction of individuals in the most
recent two generations of each pedigree and used these to infer the pedigree.
(A) Running time for big Bonsai as a function of the fraction of sampled individuals in the most recent two generations.
(B) The number of sampled individuals from each pedigree and the number placed.
(C–E) The fraction of pairs with a given relationship type that were inferred to have each other relationship type. The inferred pairwise
relationships were those reconstructed in the most likely Bonsai tree. Tuples ðdi;G; dj;G; jGjÞ indicate a specific relationship type between
individuals i and j using the notation of Ko and Nielsen:14 (up, down, number of common ancestors). The tuple (inf, inf, none) indicates
unrelated individuals.
component algorithms that are applied in sequence: (1) a

method to infer the likelihoods of pairwise relationships

between each pair of individuals using both age and IBD

data, (2) a method for inferring pedigrees of small-to-

moderate size, and (3) a method for combining small

pedigrees together into large and sparsely sampled

pedigrees.
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The small Bonsai algorithm efficiently explores the space

of possible pedigrees using a constructive approach. This

approach is similar to that of PRIMUS,13 but it employs

several features that make it more efficient and more accu-

rate than PRIMUS, including incorporating ages directly

into the likelihoods, expanding the set of pedigrees that

are explored, and introducing a branch-and-bound-like
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Figure 8. Comparison with self-reported pedigrees
Comparison of predicted relationships with self-reported relationships. Blue markers show the fraction of relationship pairs for which
the inferred and self-reported relationships agreed exactly. The orange, green, and red markers show the fraction of pairs for which the
degrees of the inferred and self-reported relationships differed by at most 0, 1, or 2 degrees, respectively. The number of pairs for each
relationship is shown above the curves. Dashed lines are included to improve visibility.
method for exploring the space of pedigrees more

efficiently.

The methodological approaches implemented in the

small Bonsai method provide a pedigree inference algo-

rithmwith improved accuracy and performance. However,

the primary novelty of the Bonsai method is in the

big Bonsai algorithm, which combines small pedigrees

together into large and sparsely sampled pedigrees. This al-

gorithm makes it possible to construct pedigrees that are

much bigger than the sizes that can be constructed by cur-

rent approaches.

The construction of large and sparse pedigrees requires a

fundamentally different approach from combining indi-

viduals one at a time as is done in PRIMUS or small Bonsai,

or by searching a broad pedigree space by rearranging ped-

igrees as is done in CLAPPER. Because the space of possible

pedigrees is large, it is useful to proactively narrow the set

of possible pedigrees to include only the pedigrees with the

highest likelihoods.

Combining small pedigrees together into large and

sparse pedigrees, as is done in the PADRE and DRUID

methods, makes it possible to leverage information in

the previously inferred small pedigrees to identify the

most likely ways in which the small pedigrees can be con-

nected together. Leveraging information across small

pedigrees allows us to more accurately infer the degree of

relatedness between two small pedigrees, to identify back-

ground IBD, and to identify likely lineages through which

the pedigrees are combined together.

We have introduced three tools for combining pedigrees

together. First, we have generalized the DRUID method of

Ramstetter et al.18 to apply to general outbred pedigrees,

rather than specific pedigree structures. We have also

extended the method to allow pedigrees to be connected

through pairs of individuals who are not common ances-

tors. We have shown that the generalized DRUID estimate

is similar to the approximate maximum likelihood esti-

mate. Thus, rather than exploring multiple ways of con-
The American Jour
necting two pedigrees and selecting the most likely pedi-

gree, we can simply connect the two pedigrees through

the DRUID point estimate and achieve a similar result,

speeding up the inference process.

We have also introduced is an approximate likelihood

for the degree separating the common ancestors of two

pedigrees given the total length of IBD shared by the ped-

igrees. This likelihood is essentially a reformulation of the

generalized DRUID estimator in a likelihood context. This

likelihood is used as the foundation for our method for

testing whether the IBD shared between two sets of indi-

viduals is the result of a true relationship, or whether the

IBD is background IBD.

Finally, we have also introduced a method for deter-

mining when the connection of pedigrees through

certain ancestral branches is consistent with patterns of

IBD overlap. This method improves the accuracy of as-

signing two pedigrees to the correct parental sides of a

focal individual in a focal pedigree. Using only informa-

tion contained in pairwise IBD sharing, inconsistent

pedigrees would not be detected, as pedigrees formed

by connecting two pedigrees through incompatible

grandparental lineages would appear to have the same

likelihood as the true pedigree. This approach achieves

high sensitivity even when few relatives on each parental

side have been sampled.

In addition to detecting segment overlaps, it is likely that

ancestral lineage placement could be improved by using

IBD detected on sex chromosomes. At present, the Bonsai

method uses only autosomal IBD to avoid considering the

sexes of ancestral individuals along the paths connecting

each pair of individuals when computing the likelihoods

of their relationships. Increased sensitivity can also be ob-

tained by using SNP-level information in the test of IBD

overlap, such as opposite homozygotes, instead of iden-

tical-by-descent segments, as overlaps often occur between

segments that are too short to be identified by existing IBD

methods.
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Appendix A

The probability of a pattern of IBD

Consider the induced subtree in a pedigree relating a set of

genotyped individuals. This tree is shown with dashed red

lines in Figure 3 with nodes of the tree indicated with red

dots. Let Di denote the presence-absence pattern at the

leaves descended from i and define pi;shPðDijOi ¼ sÞ,
where s is the state Oi at node i.

We have, using the approach of Felsenstein,18

pi;0 ¼
Y

c
PðOc ¼ 0

���Oi ¼ 0Þpc;0þ
h

PðOc ¼ 1
���Oi ¼ 0Þpc;1� ¼

Y
c
pc;0 (Equation A1)

where the product is taken over all child nodes c of

individual i and the second term is zero because PðOc ¼
1jOi ¼ 0Þ ¼ 0. Similarly, we have
Compared to previous methods for inferring complex

human pedigrees, the Bonsai method yields improvements

in both accuracy and computational efficiency and makes

it possible to build pedigrees that are considerably larger

than those that were possible before. The speed of pedigree

building depends on the complexity of the pedigree, the

proportion of individuals who are genotyped, and the dis-

tribution of these individuals throughout the generations

of the pedigree. As a result, it can be difficult to characterize

the running time of Bonsai relative to other methods.

However, in a comparison of running times on 281 real

pedigrees, Bonsai was always faster than the current fastest

method PRIMUS and often built pedigrees in a matter of

seconds that did not complete when built with PRIMUS.

The faster running time of Bonsai is due in part to effi-

ciencies including the heuristic branch-and-bound-like

approach, and in part to the fact that ages are incorporated

directly into the likelihoods. The age component of the

likelihood often tips the balance in favor of one relation-

ship over another, allowing pedigrees with that relation-

ship to have higher likelihoods. As a result, a greater

number of pedigrees can be discarded at each step than if

age information were ignored or used only for pairwise

checks (e.g., parent older than child).

Agedistributions vary somewhat amongpopulations and

mis-specification of the age distributions could be a source

of bias in the Bonsai estimates. The 23andMe database

makes it possible to estimate age difference distributions

formanydifferent relationship types.However, these distri-

butions may differ from the age distributions in other pop-

ulations to which Bonsai may be applied. Although the age

difference distributions did not appear to differentially

affect accuracy in different populations in the samples we

tested, it’s possible that differences in accuracy could

become apparent in other datasets or when aggregating

acrossmanypedigrees, with resulting biases in downstream

analyses. Thus, it may be useful to keep in mind that both

age and IBDdistributionswere trained onone particular da-

taset, albeit a large one. For any particular analysis, both the

IBD and age distributions used by Bonsai are customizable

by the user as described in the software documentation.

The speed and accuracy of the Bonsai method depend in

part on the values of the parameters r, f[, and d, with higher

values of r and lower values of f[ typically resulting in more

accurately inferred pedigrees because they permit a more

thorough exploration of the pedigree space and larger

values of d resulting in less accurate pedigrees because

they permit the connection of more distant relationship

types, which are inferred with a lower degree of accuracy.

However, the effects of these parameter values on Bonsai

accuracy and running time are not simple to predict. In

particular, they all pertain to the small Bonsai algorithm,

which is only a subset of the full algorithm that contains

additional heuristics for attaching pedigrees, post hoc

checks on inferred relationships, and logic for rebuilding

pedigrees using different parameter values if the method

detects unlikely placements of individuals relative to their
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pairwise point predictions. Thus, we suggest that users run

Bonsai using the default values of these parameters unless

they have a good reason to change them.

There is the potential to improve close relationship esti-

mates by using phasing information. Williams et al.24 have

demonstrated that half-sibling, avuncular, and grandpa-

rental relationships, which have been difficult to differen-

tiate historically due to the fact that the total amount of

expected IBD is the same for eachof these relationship types,

canbedifferentiatedbymakinguseof long-rangephasing in-

formation. Phased IBD estimates, obtained from programs

suchas thePhasedIBDmethodofFreymanetal.,25 couldpro-

vide a considerable boost in accuracy for close relationships.

Close relationship accuracy can also be improved using

statistics that capture differences in the spatial distributions

of IBD among sets of more than two relatives, such as those

presented in Qiao et al.26 and Ramstetter et al.17 Improved

close relationships would lead to improved distant relation-

ships due to the fact that the small pedigree structures lever-

agedby thedistantdegree estimateswouldbemoreaccurate.

Although the theoreticallymaximal accuracywithwhich

a pedigree can be inferred differs across human populations

due to differences in demographic histories, it is likely

that improvements in accuracy can be attained for all

populations through improved methodology, such as

the improvement of pairwise relationship inference by

methods such as deep-learning trained in specific popula-

tions, the inclusion of additional consanguineous relation-

ship types, the addition of spatial IBD information, and the

inclusion of additional genetic information from sex chro-

mosomes and mitochondrial DNA. By nature, pedigree

inference is a complicated problem requiring methods

that can handle a wide variety of pedigree structures and

input data. However, our results show that inference of

large and sparse human pedigrees can be done rapidly,

and that accuracy will continue to increase as pedigrees

become increasingly densely sampled.
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pi;1 ¼
Y

c
PðOc ¼ 1

���Oi ¼ 1Þpc;1 þ PðOc ¼ 0
���Oi ¼ 1Þpc;0

h i

¼
Y

c
2�dc;i pc;1 þ ð1� 2�dc;iÞpc;0
� �

: (Equation A2)

In the final lines of Equations A1 and A2, we have used the

fact that the probability that an allelic copy is transmitted

in one meiosis is 1=2.

Equations A1 and A2 establish a recursion for computing

the probability of an observed presence and absence

pattern for a given ancestral allelic copy at a single base

of the genome.

pi;0hP Di j Oi ¼ 0ð Þ; pi;1hP Di j Oi ¼ 1ð Þ;

pi;0 ¼
Y

c
pc;0

pi;1 ¼
Y

c
2�dc;i pc;1 þ 1� 2�dc;i

� �
pc;0

� �
;

For a leaf node l with state s, the base conditions are

p[;0 ¼ d0;s and p[;1 ¼ d1;s where du;v is the kronecker delta

taking value 1 if u ¼ v and the value 0, otherwise.

Approximating the variance of T1,2
Here, we derive an approximation of the variance of the to-

tal length, T1,2, of IBD shared across the genotyped descen-

dants of two ancestral individuals, A1 and A2. When we

encounter a patch of IBD at a locus, the length of the patch

can be approximated as the maximum length of jN 1j3
jN 2j different identical-by-descent segments, where N i is

the set of genotyped nodes below ancestor A1 at locus m

in which the identical-by-descent segment is observed.

This approximation comes from conceptualizing IBD

sharing among the jN 1j identical-by-descent segment car-

rying descendants of A1 and the jN 2j identical-by-descent
segment carrying descendants of A2 as jN 1j3jN 2j indepen-
dent segments with a single point at which all segments

overlap. The length of the merged segment to one side of

this focal point then has a distribution given by the

maximum of jN 1j3jN 2j exponential random variables

whose means depend on the degree of separation between

the corresponding pairs of leaf individuals. To simplify

matters, we assume that the length of the full merged over-

lapping segment (not just to the left or right) is exponen-

tially distributed.

This approximation is an oversimplification of the iden-

tical-by-descent sharing pattern because the segments are

not truly independent and need not overlap at a single

point. Moreover, under this approximation, the length of

the merged segment would be the maximum over sums

of identically distributed random variables, representing

the sum of the length of a segment to the right of the cen-

ter point and the length of the segment to the left. How-

ever, we are not overly concerned with these drawbacks

of the conceptualization because our main goal is to obtain

an accurate yet simple approximation of the variance of

the distribution. We also assume that no member of N i is

the direct ancestor of another member of the set, which

holds in practice if we drop all individuals from N i who

are descended from others.

The length, [i;j, of an identical-by-descent segment be-

tween leaf nodes i and j can be modeled as an exponen-

tially distributed random variable with mean length mij ¼
Lgenome=di;jR, where di;j is the number of meioses between

them and R is the expected number of recombination

events, genome wide, in one meiosis.19 When the length

of the genome is expressed in centimorgans (cM), the ex-

pected number of recombination events in the genome is

Lgenome=100. Thus, the expected length in cM of an iden-

tical-by-descent segment between individuals i and j sepa-

rated by di;j meioses is mij ¼ 100=di;j.

Let L1;2 denote a random variable describing the length

of the segment formed by merging all segments at a given

locusm between descendants of A1 and A2. If the lengths of

all segments at this locus were independent, their merged

length in our conceptualization would have a distribution

given by the maximum over independent exponentially

distributed random variables with means given approxi-

mately by fmi;jgi˛N 1;j˛N 2
.

If the leaf nodes with observed IBD at the marker are N 1

and N 2, then we have L1;2 ¼ maxðf[i;jgi˛N 1;j˛N 2
Þ. Under

this condition, the cumulative density function (CDF)

FLð[;N 1;N 2Þ of L is

FL1;2ð[ ;N 1;N 2Þ

¼ PðL1;2 < [ ;N 1;N 2Þ

¼ P
�
[ i;j < [ ; for i˛N 1; j˛N 2

�
¼

Y
i˛N 1

Y
j˛N 2

P
�
[ i;j < [

�

¼
Y

i˛N 1

Y
j˛N 2

�
1� e�li;j[

�

¼ 1�
X

i˛N 1 ;j˛N 2

e�li;j[ þ
X

i;u˛N 1 ;j;v˛N 2

e�ðli;jþlu;vÞ[ �1� dði;jÞ;ðu;vÞ
�

(Equation A3)

�
X

i;u;w˛N 1 ;j;v;z˛N 2

e�ðli;jþlu;vþlz;wÞ[ �1� dði;jÞ;ðu;vÞ
��
1� dði;jÞ;ðz;wÞ

�

3 ð1� dðu;vÞ;ðz;wÞÞ þ/; (Equation A4)

where li;j ¼ 1=mi;j ¼ di;j=100 and dða;bÞ;ðc;dÞ is the Kronecker

delta between tuples ða; bÞ and ðc; dÞ, which is equal to 1

when ða; bÞ ¼ ðc; dÞ and 0, otherwise.

The sets N 1 and N 2 are, themselves, random variables.

Summing over all sets N 1 and N 2, we have

FL1;2ð[ Þ¼
X

N 1 ;N 1

FL1;2ð[ ;N 1;N 2ÞPðN 1ÞPðN 2Þ; (Equation A5)
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where the probabilities PðN 1Þ and PðN 2Þ are probabilities

of observing IBD in the sets of leaf nodes below A1 and

A2 and can be approximated using the recursion in

Equation 6.

Over the length of the genome, the number N1;2 of iden-

tical-by-descent segments between the descendants of A1

and A2 is approximately Poisson distributed with mean

2jGjPðIÞLgenome=E½L1;2�. This rate comes from the fact that

the average total amount of the genome in a patch of

IBD is 2jGjPðIÞLgenome while the average length of any

given segment is E½L1;2�. When the lengths of IBD are short

and far apart, which they are when the degree between A1

and A2 is large, this is a reasonable approximation. This is

precisely the regime in which the distribution in Equation

14 is most useful.

The total length T1,2 of merged IBD among the descen-

dants of A1 and A2 is

T1;2 ¼
XN1;2

n¼1

N1;2L
ðnÞ
1;2; (Equation A6)

where L
ðnÞ
1;2 is the length of the nthmerged segment.We can

derive the variance of T1,2 using the law of total variance as

VarðT1;2Þ¼E½VarðT1;2

��N1;2Þ� þVarðE½T1;2

��N1;2�Þ

¼ E½N1;2VarðL1;2Þ� þ VarðN1;2E½L1;2�Þ

¼ E½N1;2�VarðL1;2Þ þ VarðN1;2ÞE½L1;2�2: (Equation A7)

Note that because N1;2 � Poissonð2jGjPðIÞLgenome =

E½L1;2�Þ, we have

E½N1;2� ¼VarðN1;2Þ ¼ 2jGjPðIÞLgenome

�
E½L1;2�:
(Equation A8)

So Equation A7 simplifies to

VarðT1;2Þ¼
2
��G��PðIÞLgenome

E½L1;2�
�
VarðL1;2ÞþE½L1;2�2

�

¼ 2jGjPðIÞLgenome

E
h
L2
1;2

i
E½L1;2� ; (Equation A9)

where we have used the fact that VarðXÞ ¼ E½X2� � E½X�2.
It remains to find E½L1;2� and E½L2

1;2�. Using the CDF of L1;2

in Equation A5 and the fact that E½Xm� ¼ m
R
R

xm�1½1 �
FXðxÞ�dx, we have

EN 1 ;N 2

h
Lm
1;2

i
¼m

Z N

[¼0

xm�1
�
1� FL1;2ð[ ;N 1;N 2Þ

�
d[

¼
X

i˛N 1 ;j˛N 2

Z N

[¼0

m[m�1e�li;j[d[

�
X

i;u˛N 1 ;j;v˛N 2

Z N

[¼0

m[m�1e�ðli;jþlu;vÞ[d[

þ
X

i;u;w˛N 1 ;j;v;z˛N 2

Z N

[¼0

m[m�1e�ðli;jþlu;vþlz;wÞ[d[ þ/

¼
X

i˛N 1 ;j˛N 2

m

lmi;j
�

X
i;u˛N 1 ;j;v˛N 2

m�
li;j þ lu;v

�m

þ
X

i;u;w˛N 1 ;j;v;z˛N 2

m�
li;j þ lu;v þ lz;w

�m þ/ (Equation A10)

where the integrals in Equation A10 can be evaluated by

noting that they are essentially expressions for the mo-

ments of exponential random variables with parameters

li, ðli þljÞ, ðli þlj þlkÞ, etc.
Thus, we can use Equation A10 to compute

E
h
Lm
1;2

i
¼

X
N 1 ;N 1

EN 1 ;N 2

h
Lm
1;2

i
PðN 1;N 2Þ; (Equation A11)

where PðN 1;N 2Þ is the probability of observing identical-

by-descent segments at the leaves N 1 and N 2, and is

approximated using the recursion in Equation 6. We

then plug Equation A11 in to obtain the variance of T1,2

in Equation A9.

In practice, it is too computationally demanding to

compute the sums in Equation A11 because the terms

EN 1;N 2
½L1;2� and EN 1;N 2

½L2
1;2� are not fast to compute in large

quantities. However, the probabilities PðN 1;N 2Þ can be

computed quickly enough, allowing us to find the most

likely sets of leaf nodes, cN 1 and cN 2, with observed IBD.

Thus, in practice we use an approximation in which we as-

sume that the most likely IBD pattern has been observed

and we compute

E
h
Lm
1;2

i
zEbN 1 ;

bN 2

h
Lm
1;2

i
: (Equation A12)

The assumption used in this approximation is that most

patterns of observed IBD at the leaves are unlikely

compared with the most likely patterns and that most

likely patterns of IBD will yield similar moments E½Lm
1;2�.

Re-rooting the DRUID estimator

In some scenarios, A2 can be the direct descendant of A1, or

vice versa. This scenario, along with the scenario treated in

The generalized DRUID estimator in which N 1 and N 2 are

connected through their common ancestors, covers all

possible ways in which N 1 and N 2 can be connected

such that they are mutually related.

We now describe an approach for computing the gener-

alized DRUID estimate when A2 is descended from an indi-

vidual A who is the common ancestor of only a subset of

N 1. We consider A to be any node ancestral to some

node in N 1, including any member of N 1 itself.

Let L1ðA1Þ denote the induced subtree in pedigree P1

that relates A1 and their descendants N 1. To obtain the

generalized DRUID estimate when A2 is descended from

A, we re-root the tree L1ðA1Þ at A to obtain a re-rooted
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tree ~L1ðAÞ (Figure S9). We then compute the generalized

DRUID estimate from The generalized DRUID estimator

using the re-rooted tree ~L1ðAÞ. The estimate between A

and A2 obtained using Equation 9 applied to ~L1ðAÞ and

L2ðA2Þ is then the number of meioses separating A and

A2, except for the considerations described below.

A2 is descended from both A and a partner A0, who may

also be an ancestor of one or more of A’s genotyped descen-

dants N A4N 1. When A0 is also an ancestor of one or more

descendants of A, A2 is more closely related by one degree

to N A0 than to the other members of N 1. Moreover, the

DRUID estimator must be expanded to consider IBD

shared between A2 and a pair of ancestors ðA; A0Þ, rather
than a single ancestor A.

In this case, denote the probability that a single allele is

shared between A and some member of N 1 by fA and

denote the probability that a single allele is shared between

A0 and some member of N1 by fA0. Suppose A2 shares an

allele with either of A or A0. The probability that this allele

is shared with an individual inN 1 is then fA=2þ fA0=2, us-

ing the fact that the probability the allele is shared with A

or A0 is PðAÞ ¼ PðA0Þ ¼ 1=2. Thus we obtain

dIBDððA;A0Þ;A2Þ¼ IBDðN 1;N 2Þ
2�1ðfA þ fA0 Þf2

; (Equation A13)

where fA is obtained by re-rooting the treeL1ðA1Þ to ~L1ðAÞ
and evaluating Equation 7, and where fA0 is obtained

directly from Equation 7 without re-rooting.

If d is the number of meioses separating A2 from A and

A0, then the expected amount of IBD shared between A2

and the tuple ðA;A0Þ is 2�dþ1. This amount is equivalent

to the amount that would be shared between A2 and A if

they were connected by one fewer degree. Treating the tu-

ple ðA;A0Þ as a single individual that is connected to A2 by

degree d� 1, we obtain a modified DRUID estimator

dDððA;A0Þ;A2Þ¼ d :
1

2d�1þ3=2
%

IBDðN 1;N 2Þ
2ðfA þ fA0 Þf2Lgenome

<
1

2d�1þ1=2
;

(Equation A14)

where the inferred degree d is the number of meioses be-

tween A2 and A.
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