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Abstract: We propose a physical activity recognition and monitoring framework based on wearable
sensors during maternity. A physical activity can either create or prevent health issues during a
given stage of pregnancy depending on its intensity. Thus, it becomes very important to provide
continuous feedback by recognizing a physical activity and its intensity. However, such continuous
monitoring is very challenging during the whole period of maternity. In addition, maintaining a
record of each physical activity, and the time for which it was performed, is also a non-trivial task. We
aim at such problems by first recognizing a physical activity via the data of wearable sensors that are
put on various parts of body. We avoid the use of smartphones for such task due to the inconvenience
caused by wearing it for activities such as “eating”. In our proposed framework, a module worn
on body consists of three sensors: a 3-axis accelerometer, 3-axis gyroscope, and temperature sensor.
The time-series data from these sensors are sent to a Raspberry-PI via Bluetooth Low Energy (BLE).
Various statistical measures (features) of this data are then calculated and represented in features
vectors. These feature vectors are then used to train a supervised machine learning algorithm called
classifier for the recognition of physical activity from the sensors data. Based on such recognition,
the proposed framework sends a message to the care-taker in case of unfavorable situation. We
evaluated a number of well-known classifiers on various features developed from overlapped and
non-overlapped window size of time-series data. Our novel dataset consists of 10 physical activities
performed by 61 subjects at various stages of maternity. On the current dataset, we achieve the
highest recognition rate of 89% which is encouraging for a monitoring and feedback system.

Keywords: maternal physical activity recognition; wearable sensors; human-centric computing;
raspberry-PI; BLE

1. Introduction

Physical activities are often instrumental in the enhancement of human physical and
mental health. Their absence, on the other hand, can cause adverse effects on well-being
such as obesity [1]. Specifically, they are influential during particular medical conditions
such as gravidity, more commonly known as pregnancy. It is a unique period in a woman’s
life where her lifestyle, behavior, and physical activeness can significantly affect her health,
as well as that of her fetus [2]. It is shown that the physical activeness of a gravida improves
both the maternal–fetal health [3–7] by avoiding adverse pregnancy complications and birth
outcomes, such as pre-eclampsia, gestational diabetes, and preterm birth. Various standard
health guidelines [8] exist around the world where moderate exercises are recommended
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during pregnancy with a special care about particular health conditions such as pre-
eclampsia. However, during such conditions, certain physical activities are completely
proscribed by the experts while others are limited [9,10]. A gravida (pregnant woman)
should avoid physical activities such as prolong standing and all those carried out in
high heat and humid environment. However, the lack of knowledge about the physical
activities and the remoteness from a health specialist result in birth complications that
prove life-threatening especially in developing countries [11].

This makes the close supervision and advice of experts important, which, if not taken
into account, could result in serious health issues. Nonetheless, such supervision is often
expensive and time-consuming due to the frequent and scheduled visits to the experts [12].
To overcome these difficulties, a system based on the expert knowledge can be incorporated
that frequently monitors the physical activities of a gravida and gives its recommendations.
In this paper, we aim at the development of such a system by remotely recognizing and
monitoring the physical activities of a gravida via the data acquired from the wearable
sensors worn by her. Our proposed system recognizes the physical activity and then sends
its feedback such as the type of activity and the time period for which it was performed.
In this way, the monitoring of physical activities becomes convenient both locally (for the
gravida) and remotely (for the health supervisor).

Figure 1 shows an overview of the proposed system that involves several steps such as
data acquisition, processing, recognition, and feedback. The data from gravida are acquired
via wearable sensors modules that contain an accelerometer, a gyroscope, and temperature
sensors. These data are then sent to a server such as a Raspberry-Pi via Bluetooth to
perform the main step of physical activity recognition. Feedback is sent back to the user
side about the recognized activity.

However, recognition of the physical activity based on the information of wearable
sensors [13–15] is a non-trivial task that involves many challenges. For instance, the recog-
nition rate is affected by the sensor placement on the body where a given physical activity
may become more recognizable with sensors worn on particular body positions than others.
The activities which include posture, bending, and ambulation moments are better moni-
tored by placing sensors at hip, pocket, ankle, and thigh position, while activities involving
upper body requires sensors to be placed at arm, chest, neck or elbow for better recog-
nition. Similarly, the sensors installed at the pocket position can better recognize biking,
stairs up and down while using the wrist position gives better recognition for eating and
smoking [16]. The second challenging factor in wearable sensor-based activity recognition
is the selection of useful features for a given activity. The first- and second-order statistics
of the data extracted from various sensors, such as the accelerometer and gyroscope and
their combinations, affect the recognition rates of the physical activities. However, some
features boost the recognition rates of certain physical activities while degrading those of
others. Finally, the selection of a machine learning algorithm to achieve the highest possible
recognition rate is also challenging. A supervised machine learning algorithm that learns
the model first such as random forest classifier gives a higher recognition rate given the
trade-off that it is a tedious offline training procedure that requires a massive amount of
data. On the other hand, the online feature matching algorithms such as the KNN classifier
require no offline training procedure and data, but they tend to become time-consuming
while matching a given physical activity with exemplar activities stored in the database.

In order to cope with these challenges, the following details our novel contributions
in this paper.

1. As gravidity is a special body condition both medically and physically [17,18], we did
not use the data of normal people to train the supervised machine learning algorithm
for the activity recognition of gravidas. Instead, we collected a novel dataset of
10 physical activities from 61 gravidas who were at various stages of gravidity.

2. We performed features extraction on the acquired data using various statistical mea-
sures from both time and frequency domains.
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3. For the physical activity recognition on the novel dataset, we evaluated several
classifiers and selected the one that gave the best cumulative result.

4. We provide Raspberry-PI- and GSM-based real-time activities and health monitoring
of gravida to avoid unfavorable situations in case of emergency.

The rest of paper is organized as follows. Section 2 provides the literature review.
Section 4 explains the features engineering and classifiers. The dataset description, results,
and performance evaluation are discussed in Section 5. Finally, we conclude the paper
in Section 6.
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Figure 1. (a) Hardware and (b) software overview of the proposed framework.

2. Literature Review

In this section, we briefly introduce the prior contributions related to physical activities
recognition (PAR) using wearable sensors. We summarize literature based on the following
building blocks of a PAR system.

• Sensors used for the collection of data.
• Sensors placement on the body.
• Features vector construction from sensors data.
• Classification algorithms.
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2.1. Sensors for PAR

PAR is mainly dependent on the raw data acquired through sensors that can be
ambient, mobile, or wearable such as smartwatches. Ambient sensors are installed in
the environment and have no physical connection with the person whose data is being
acquired [19]. These sensors include video cameras [20,21], microphones [22], motion
sensors [23], and depth cameras such as Kinect sensor [24], etc. These sensing systems are
static and area-bound (Wi-Fi or Bluetooth range) where they can only monitor activities
in the bounded area. For instance, if the gravida is working in an office, then she needs
two separate sensing systems. In addition to that, the activities performed outside these
two infrastructures cannot be monitored. For continuous data acquiring and monitoring,
mobile and wearable sensors are used.

The smartphones [25,26] are equipped with multiple sensors such as an accelerome-
ter, GPS trackers, Pulse sensor, gyroscope, etc. These sensors can acquire data remotely
and accurately. However, the mobile sensor-based data acquisition system has some
drawbacks [27]. Mostly, the smartphone is placed in a pocket position which reduces the
accuracy of recognizing activities such as eating, typing, cooking, etc. Similarly, the contin-
uous monitoring is also an issue with smartphones as they may stay away from the body
in many cases, such as in handbags, for charging, lie on a table during office hours, etc.
The body-worn sensors devices can avoid these issues and improve accuracy as they are
continuous worn at various body positions. Consequently, a PAR system based on body
worn sensors provides better results than those based on either ambient or mobile phone
sensors [28,29].

2.2. Sensors Placement on Various Body Parts

The activity recognition accuracy highly depends on the sensors placement on various
body parts. Performed physical activity can be better monitored by placing sensors on the
body part that best suits the participant. The proper position of sensors solely depends
on the activity being performed [30]. Furthermore, the literature shows that the PAR
which include posture, bending, and ambulation moments are better monitored by placing
sensors at hip, pocket, ankle, and thigh position, while activities involving upper body
requires sensors to be placed at arm, chest, neck or elbow for proper recognition [31].
Table 1 shows the placement of body-worn devices on-body for various PAR.

Table 1. Body-worn devices placement on-body for PAR.

S. No Body-Worn Placement Refs.

1. Head [32,33]
2. Ear [34]
3. Shoulder [35]
4. Chest [32,33,35,36]
5. Arm (Elbow) [32,36]
6. Wrist [32,37–39]
7. Waist(Hip) [32,38,40–42]
8. Ankle [34,37,38,40]
9. Foot [40]
10. Knee [34,43]
11. Thigh [32,33,38]
12. Back [35,43]

2.3. Features Extraction from Sensors Data

In PAR, the sensors data are collected using various sampling frequencies according
to the nature of acquiring activity. Liu et al. [42], as a first step, preprocessed the signal
using a low-pass filter to remove the DC-component and then extracted features from
the processed signal. They extracted a feature vector of length 24, including the mean,
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minimum, maximum, standard deviation, average peak frequency, root mean square,
etc. The data are then segmented into a time-series segment known as windows size.
Pannurat et al. [44] collected accelerometer data with 50 Hz and proposed a two-step
process of feature extraction and selection. In the first step, they extracted 37 features using
a window size of 1-s with 0.5-s overlap. In the second step, they used a Relief-F feature
selection algorithm to select 7 features from the 37. Table 2 shows the literature summary
of sensors, physical activities, the window size with overlapping and non-overlapping for
features extraction, and corresponding extracted features. We adapted most of the features
from the works in [45–48].

Table 2. Literature summary of sensors, physical activities, features extraction based on overlapping and non-overlapping,
and selected features for HPAR.

Refs. Sensors Activities OL/NOL Features Extracted

[45]
Accelerometer,

Gyroscope,
and Magnetometer

PA1, PA7, PA10, PA11,
PA26 NOL

Mean, Variance, Kurtosis
Skewness Energy, Peak Signal

Value, Maximum Latency,
Peak-to-Peak Time, Peak-to-Peak
Slope, Latency, Amplitude Ratio,

Max. Amplitude, Min.
Amplitude

[46]

accelerometer,
gyroscope,

magnetometer,
quaternion

33-activities:PA7, PA26,
PA15, etc. (66%) OL

Mean, STD, median absolute
deviation, maximum and
minimum value, signal

magnitude area, coefficients of
auto-regression, index of

frequency with largest
coefficient, values of frequency

kurtosis and skewness etc.

[49] Accelerometer PA1, PA7, PA10, PA11,
PA12 (50%) OL, NOL

Mean, Binned range, Standard
deviation, Time interval between

local peaks, Correlation,
Mean-dominant frequency,
Mean energy of frequency

[50] Accelerometer,
Gyroscope

PA29 (Hand and Body
Gestures)

(10, 30, 50,
60, 80)% OL

Convolutional Neural Network
based Features

[51] Accelerometer PA1, PA7, PA10, PA11,
PA24 (50%) OL

mean value, standard deviation,
median absolute deviation,

largest value, smallest value,
signal magnitude area, energy,

interquartile range, entropy, auto
regression coefficients

[52] Accelerometer,
Gyroscope

PA30, PA31, PA32,
PA33, PA34, PA35 (25%) OL

Entropy, Average, Standard
Deviation, Number of Peaks ,

Number of Valleys

[53]
Accelerometer, gyro,
Magneto, Heart rate,

ECG

PA6, PA10, PA11, PA7,
PA8, PA9, PA21, PA36,

PA37, PA29
(Variable size) OL code-based features approach

Activities: PA1: Stairs up/down, PA2: Cooking, PA3: Eating, PA4: Exercise, PA5: Laundry, PA6: Lying, PA7: Walking, PA8: Front-bending,
PA9: Side-bending, PA10: Standing, PA11: Sitting, PA12: Jogging, PA13: Playing (games), PA14: Reading, PA15: Cycling, PA16: Gardening,
PA17: Rope skipping, PA18: Rowing, PA19: Driving car, PA20: Uphill/ downhill, PA21: Stand-to-Sit, Sit-to-Stand, PA22: Sit-to-Lie,
Lie-to-Sit, PA23: Stand to-Lie, Lie-to-Stand, PA24: Biking, PA25: Knee-bending, PA26: Running, PA27: Jumping, PA28: Washing dishes,
PA29: Other activities, PA30: Brushing Teeth, PA31: Comb Hair, PA32: Drinking, PA33: Scratch Chin, PA34: Take Meds, P3A5:Wash Hands,
PA36: Front Elevation of Arms, PA37: Stretching of Hands, PA38: Office Work.
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2.4. Classification Algorithms for PAR

Classifiers are supervised learning algorithms where the parameters of their respective
models are trained using the training data samples along with labels. The recognition
performance of this trained model is then evaluated by using it to predict the labels of
completely new test data. Various classifiers are evaluated by different PAR systems
such as K-nearest neighbor (KNN), decision tree, random forest (RF), gradient boosting,
multilayer perceptron (MLP), artificial neural network (ANN), support vector machine
(SVM), etc. [54]. Table 3 summarizes some methods with respect to the physical activities,
classifiers, and their achieved recognition rates.

Table 3. Literature summary of classifiers performance comparison for various physical activities.

Refs. Physical Activities Classifiers Performance Using Various
Metrics

[54] P29-(8 different activities) SVM: 99.5%, Decision tree: 91.3%

[55] PA1, PA2, PA14, PA28, PA7, PA13, etc. Overall: 95%, DT: 83%, SVM: 84%, RF: 95%,
ANN: 96%

[56] PA1, PA27, PA6, PA12, P7, PA10 ANN: 77%, KNN: 75%, RF: 89%, SVM: 78%

[57] PA1, PA6, PA7, PA10, PA11, PA15,
PA26, . . .

About 87 ± 5% for decision tree, SVM,
decision rules, KNN, Naive bayes, and RF

[58] PA1, PA6, PA7, PA10, PA11 RF: 80%, MLP: 81%

3. Data Set Description

In this paper, we collect the data of pregnant women by installing the wearable sensor
module at wrist position on either the left or right hand. We used the sensor placement
at the wrist position because, mostly, the recognized activities involve hand movement.
Sensor installation is easy at the wrist and can be managed as a smart watch by the
maternal patient. We collect the data in a hospital under the supervision of a medical
doctor (gynecologist). For data collection, we collected data from 61 subjects for ten
physical activities that were mostly acquired from the literature of normal persons physical
activities recognition. The activities are stairs up/down, cooking, eating, hands exercise,
laundry, laying, walking, front bending, side bending, and standing. Figure 2 shows the
distribution of maternal patients according to trimester, age, occupation, and anemia status.
The participants performed each activity for 2–5 min according the physical condition
of gravida and gynecologist suggestion. The sensors tag (wearable sensor module) was
installed either on left or right wrist of the participant. The data were collected in hospital
and at home so some of the activities were not performed by each participant. An average
six activities were performed by each participant.
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Figure 2. Maternal Patients Participants Distribution. (a) Trimester-based. (b) Age-based Distribution. (c) Profession-based.
(d) Anemic and Non-anemic.

4. The Proposed Maternal Physical Activities Recognition (MPAR) Framework

The goal of our proposed MPAR system is to collect data from sensors worn by a
gravida, recognize her physical activities via these data, and send the monitoring messages
to a health supervisor. Figure 3 depicts the complete architecture of our proposed MPAR
system which consists of the following main modules:

1. Sensors module and data acquisition
2. Sampling and features extraction
3. Activity recognition
4. Monitoring

In the following, we give further explanation of each module.
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Figure 3. The proposed maternal physical activities recognition system architecture.

4.1. Sensors Module and Data Acquisition

We use a single wearable module of sensor that consists of an accelerometer, a gy-
roscope, and temperature sensors installed at the wrist position. Table 4 shows the con-
figuration of sensors in terms of sampling and quantization. Both the accelerometer and
gyroscope have three dimensions: x-axis, y-axis, and z-axis.

Table 4. Sensors configuration (sampling and quantization).

Sensor Sampling Frequency (Samples/Second) Quantization Level

Gyroscope (x, y, z) 50 16-bit
Accelerometer (x, y, z) 50 16-bit

Temperature 1 16-bit

The sensor module sends the data to a Raspberry PI using BLE 4.0 that has a com-
munication range comparable to that of WiFi with an advantage of consuming almost
70% less energy during transmission. This leads to low battery power consumption of
the sensor module [59]. On the software side, the connection between the Bluetooth BLE4
and Raspberry-PI is established using Python-based BlueZ while Gettool library is used for
acquiring sensors data on Raspberry-PI [60].

4.2. Sampling and Features Extraction

We acquired the sensor data using various sampling frequencies and a sliding window
approach where the two consecutive windows are either overlapping or non-overlapping.
For instance, if the window size is one second, we get segments of the sensor data that are
one second long. If the two consecutive windows become 50% overlapped, then their resul-
tant segments will share 50% data. However, this is not the case in non-overlapping con-
secutive windows where the two segments do not share any data. We evaluate two values
of window size which are one and two seconds. We use a 50% overlap, which means a
0.5 s overlap in consecutive windows of 1 s and a 1 s overlap in consecutive windows of
2 s. Each individual feature is extracted using 50 and 100 samples of accelerometer and
gyroscope for 1 s and 2 s sliding windowing, respectively. We use 43 features to represent
the sensors data that are shown graphically in listed in Figure 4 while their definitions are
summarized in Table 5.
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Table 5. Feature extraction from sensor data.

Features Name (Number) Equations Description

Mean (4)

µ = 1
N

N
∑

i=1
Sxi

where N are total samples equal to the
window size and Si is a sample point of

sensor data

Mean/Average value calculation for 3D
Accelerometer (x, y, z) and temperature
used to different between slow moving

and fast moving activities.

Standard Deviation (3) σ =

√
1
N

N
∑

i=1
(Sxi − µ)2

Find the spread in the accelerometer
(x, y, z) data around their mean.

Cosine Similarity (3)

Cosθ =
Sx.∗Sy
||Sx||||Sy||

where Sx and Sy are the samples of
accelerometer of x and y, respectively.

Find the cross-correlation in term of
cosine similarity to differentiate between
activities varying along with axis such as

walking and stairs up/down. It is
calculated between accelerometers x and

y, x and z, and y and z.

Root Mean Square (RMS) (3) RMSx =

√
1
N

N
∑

i=1
Gxi

where Gxi is sample of x-axis gyroscope.

Find the angular movement along x-axis,
y-axis, and z-axis, respectively. The RMS

is calculated for the gyroscope sensors
only.

Skewness (3)
Skx =

N
∑

i=1
(Sxi−µ)3

σ3
x

Skewness measures the degree of
symmetry in the accelerometer data

distribution.

Kurtosis (3)
Ktx =

N
∑

i=1
(Sxi−µ)4

Nσ4

Kurtosis measures the degree of
tailedness in the accelerometer data

distribution.

Max value (3) Accxmax = max{Sxi}
Calculate the maximum value of

accelerometer (x, y, z)

Min value (3) Accxmin = min{Sxi}
Calculate the minimum value of

accelerometer (x, y, z)

Zero crossing (3) ZC = count{((Sxi < 0)&&(Sxi+1 >
0))||(Sxi > 0)&&(Sxi+1 < 0))}

Zero-Crossing is the number of times the
signals crosses zero and its sign is
changed.we consider ZC for the
accelerometer along three axes.

Frequency Domain Features (6) H(k) =
N−1
∑

n=0
x(n)e−2jπ( kn

N )

In this paper, we consider six frequency
domain features based on the Fast

Fourier Transform (FFT) of acceleration
data. The six features are the FFT

magnitude: peak f , low f 1, low f 2,low f 3,
med f , and high f .

Entropy (3) Entropy = −1
N

N−1
∑

i=0
pxilogpxi

Used for differentiation between
activities of static and dynamic nature.

Quartile Range (3) Q1 = l + h
f (

N
4 − C)

We find the first quartile (Q1), and it is
defined as the middle number between
the smallest number and the median of

the sample data.

Absolute Time Difference between
Peaks (3) |tmaxpeak − tminpeak|

It is calculated by taking absolute
difference of time instance of maximum

and minimum peak.
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Figure 4. Feature vector construction.

4.3. Activity Recognition via Supervised Machine Learning (Classification)

We evaluated a number of classifiers using WEKA [61] for our proposed MPAR
system. Each classifier follows the general rule of supervised machine learning algorithms,
where the classifier parameters are trained with the help of a training set and then its
classification/recognition performance is evaluated with a completely disjoint test set. Our
dataset consists of 10 physical activities represented via their feature vectors as shown
previously. This dataset needs to be split into two disjoint training and test sets. However,
for achieving the best recognition rate, the dataset is randomly split in training and test
sets with various percentages of 90–10, 80–20, and 70–30. Consequently, experiments for
each split are repeated multiple times and an average physical activity recognition rate is
calculated. Table 6 shows the WEKA parameters configuration of the evaluated classifiers.

Table 6. Classification algorithms used to evaluate the performance comparison.

Classifier Type WEKA Configuration Abbreviation

K-Nearest Neighbors [62] K = 1, Distance = Manhattan KNN
Decision Tree [48] Tree max depth = 50 J48

Random Forest [63] No. of tress = 100 RF
Induction rules [64] ratio of data for growing and pruning = 0.95 IR

Gradient boosted trees [65] No. of tress = 100, depth = 50 GBT

4.4. Monitoring

Mostly, people do not access to the data networks at all times. However, the GSM
coverage is available at every place in a country. In order to provide the remote monitoring
of a pregnant woman in case of an emergency or unfavorable conditions occur, we inter-
faced a GSM SIM900 module through a serial port with Raspberry-PI. The module keeps
the numbers of registered gynecologists and care takers. The Raspberry-PI-based system
monitors the maternal physical activities of the maternal woman, and if she is performing
an activity that is not recommended it will send a message to the registered numbers..

5. Results and Discussion

Table 7 shows the feature extracted records of activities data acquired from gravidas.
We used two different window sizes, i.e., one second and two seconds, and two config-
urations, i.e., overlapping and non-overlapping. In one second window size, the 0.5 s
time-series data are overlapped and in two seconds window size the one second time-series
data are overlapped. In this section, we show the recognition rates achieved by varying the
following parameters.
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Table 7. Features Extracted Dataset Description using Different Window Size and Overlapping/Non-Overlapping.

Activity Name
(Label)

Window Size = 1 &
Non-Overlapping

Window Size = 1 &
Overlapping

Window Size = 2 &
Non-Overlapping

Window Size = 2 &
Overlapping

Stairs Up/Down
(MPA1) 2217 3321 1052 1663

Cooking (MPA2) 1850 3082 1018 1542

Eating (MPA3) 1945 2929 968 1465

Hands Exercise
(MPA4) 2997 5187 1574 2521

Laundry (MPA5) 1703 2566 849 1284

Laying (MPA6) 2025 3050 1009 1526

Walking (MPA7) 3411 5077 1720 2501

Front Bending
(MPA8) 612 922 305 462

Side Bending (MPA9) 1908 3107 1087 1556

Standing (MPA10) 857 1472 427 736

• Sampling window size (overlapped and non-overlapped)
• Train and test split
• Type of classifier

Figure 5 shows the results for all the above mentioned parameters. We summarize the
main points of the achieved results in the following.

1. The sampling overlapped window of one second performs best in most of the cases
except for KNN classifier.

2. The overall recognition rate of 80–20% data split is better than the other two.
3. The gradient boosted tree (GBT) classifier outperforms all the classifiers while KNN

performs the worst of all.
4. The highest accuracy of 89% is achieved by GBT where the train–test split is 90–10%

and sampling overlapped window size is one second.
5. The accuracy achieved by RF classifier is comparable to that of GBT in most of the

cases. However, GBT has a higher computational complexity than RF, due to which
we selected RF for the Raspberry Pi implementation.

6. The overall performance comparison depicts that the tree-based classifiers achieve
higher accuracy than other classification algorithms.

Based on these observations, in the rest of this section, we shall explain the results
achieved via RF classifier and with an overlapping sampling window of one second.
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Figure 5. Classifiers performance comparison using various percentages of train–test splits: (a) 90–10, (b) 80–20, and (c) 70–30.Figure 5. Classifiers performance comparison using various percentages of train–test splits: (a) 90–10,
(b) 80–20, and (c) 70–30.
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Figure 6 shows the confusion matrices of individual activity recognition using all the
three settings of dataset split. The following are the main observations.

1. The most recognized activity is front bending (MPA8), which is one of the most
affecting physical activity during pregnancy. The best recognition rate achieved for
this activity is almost 98% with the dataset split of 90–10.

2. The least recognized activity is standing (MPA10) which is also the least important
among the current list of activities.

3. Side bending (MPA9) has greater confusion with the hand exercise (MPA4). Similarly,
the standing activity (MPA10) has greater confusion with the hand exercise (MPA4).
This is because the sensor module is installed at one hand wrist position and in all
three activities there is little variation of linear and angular moments to perform these
three activities.

4. Stairs walk (up/down) (MPA1) is confused with walking (MPA7), which is very
convincing because during pregnancy climbing up or down the stairs is done with
extreme care. This makes the stair walk very similar to the normal walk and conse-
quently, the classifier confuses them for most of the times.

5. The physical activities where recognition rate is either equal to or higher than 90% are
stairs Up/down (MPA1), cooking (MPA2), laying (MPA6), walking (MPA7), and front
bending (MPA8).

6. All other activities except for side bending (MPA9) and standing (MPA10) are recog-
nized with a rate of more than 85%.

MPA1 299 0 1 0 1 7 12 0 1 3

MPA2 2 278 6 1 5 2 3 0 0 4

MPA3 1 1 253 1 6 1 2 0 3 1

MPA4 2 11 3 451 10 3 8 0 56 21

MPA5 1 9 7 1 227 2 6 0 1 33

MPA6 0 1 3 0 3 279 1 0 1 0

MPA7 26 6 12 8 5 10 467 1 11 5

MPA8 0 0 0 0 0 0 0 90 2 0

MPA9 0 0 6 34 0 1 2 1 236 0

MPA10 1 2 2 23 0 0 0 0 0 110

MPA1 MPA2 MPA3 MPA4 MPA5 MPA6 MPA7 MPA8 MPA9 MPA10P
re

d
ic

te
d

 P
h

ys
ci

al
 A

ct
iv
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Actual Physical Activities

(a) Confusion matrix for 90–10% data split

MPA1 606 3 6 2 2 10 24 0 1 6

MPA2 1 558 13 5 11 5 13 0 0 8

MPA3 2 5 504 6 11 7 3 0 2 2

MPA4 1 19 10 895 23 6 23 0 113 46

MPA5 6 17 20 2 453 8 7 0 0 5

MPA6 2 3 3 0 4 553 3 0 2 0

MPA7 44 7 18 14 9 20 921 2 25 12

MPA8 1 1 0 0 0 0 0 179 4 0

MPA9 0 0 10 76 0 1 5 3 474 1

MPA10 1 3 2 37 0 0 2 0 0 214

MPA1 MPA2 MPA3 MPA4 MPA5 MPA6 MPA7 MPA8 MPA9 MPA10P
re

d
ic

te
d

 P
h

ys
ci

al
 A

ct
iv

it
ie

s

Actual Physical Activities

(b) Confusion matrix for 80–20% data split

Figure 6. Cont.
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MPA1 895 4 15 1 7 18 28 0 4 11

MPA2 2 826 15 14 17 9 20 0 1 17

MPA3 6 13 723 11 15 7 6 0 5 4

MPA4 5 32 23 1345 28 7 40 0 165 53

MPA5 6 29 29 3 687 10 19 0 2 6

MPA6 2 5 8 1 2 836 5 4 1 0

MPA7 76 11 35 16 11 26 1377 2 28 22

MPA8 0 0 1 0 0 0 0 267 6 0

MPA9 0 0 24 113 1 1 5 4 720 2

MPA10 4 5 6 52 2 1 2 0 0 327

MPA1 MPA2 MPA3 MPA4 MPA5 MPA6 MPA7 MPA8 MPA9 MPA10

Actual Physical Activities

P
re

d
ic

te
d

 P
h

ys
ci

al
 A

ct
iv

it
ie

s

(c) Confusion matrix for 70–30% data split

Figure 6. Confusion matrices achieved with a RF classifier where the training and test sets are split in various ratios.

6. Conclusions and Future Works

In this paper, we proposed a platform for maternal physical activities recognition
using wearable sensors. The proposed architecture consists of a wearable sensors mod-
ule that acquires the activity time-series sensory data and sends them to a Raspberry-PI
based processing platform to extract the features and recognize the activity. We evaluated
the window sizes with overlapping and non-overlapping to evaluate the performance of
acquired maternal data and proposed platform. The experimental results showed that
the window size of one second with overlapping technique perform better on all classifi-
cation algorithms. The maternal physical activities data of ten activities are collected of
61 pregnant women. Five classification algorithms are evaluated to find the better algo-
rithm that can be implemented on a real-time platform for maternal activities recognition.
Overall, the proposed system recognize the activity with higher accuracy of 89%, which is
encouraging, effective, and reliable.

In future work, we are planning to investigate the main aspects. The first aspect is
considering the deep convolutional neural network for automatic features extraction and
recognition. On the other hand, we want to expand the dataset by incorporating more
activities and a larger number of participants. Furthermore, we are working on fusing
sensors including breathing and ECG sensors, and sensors installed at multiple locations
of body simultaneously.
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