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Transcription factors in the maintenance and survival 
of primordial follicles
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Primordial follicles are formed prenatally in mammalian ovaries, and at birth they are fated to be activated to primary follicles, to be dormant, 
or to die. During the early stage of folliclulogenesis, the oocyte undergoes dynamic alterations in expression of numerous genes, which are reg-
ulated by transcription factors. Several germ-cell specific transcriptional regulators are critical for formation and maintenance of follicles. These 
transcriptional regulators include: Figla, Lhx8, Nobox, Sohlh1, and Sohlh2. A subset of these transcriptional regulators is mutated in women with 
ovarian insufficiency and infertility. Establishment of this oocyte pool is essential for fertility. This review focuses on these transcriptional regula-
tors of female primordial follicles. 
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Introduction

Oogenesis, a type of gametogenesis, is the production of ova or 
egg cells in females. Oogenesis occurs in all sexually reproductive 
species, and it consists of different stages of ovum production. There 
are several stages in ovum maturation in mammals, namely, the oo-
gonium, primary oocyte, secondary oocyte, ootid, and ovum. In the 
first stage of oogenesis, the oogonium undergoes oocytogenesis, 
generating a primary oocyte through meiosis. Like the oogonium, 
the diploid primary oocyte contains two complete sets of chromo-
somes (4n). During meiosis, the primary oocyte produces a haploid 
secondary oocyte (2n). This process is halted halfway through until 

ovulation, when ootidogenesis continues to produce a released egg. 
In the final stage of oogenesis, the egg develops into the ovum, which 
is a mature egg cell. In humans and other mammals, the secondary 
oocyte becomes an ovum soon after fertilization with a sperm (Figure 1). 

Oogenesis occurs with folliculogenesis in mammals. Folliculogene-
sis is a complex process that depends on numerous factors including 
both extra-ovarian and intra-ovarian factors. Early folliculogenesis 
proceeds during embryonic development. Primordial germ cells 
(PGCs) are the origin of oocytes. PGCs appear in the endoderm near 
the yolk sac at the third to fourth weeks of gestation in the human 
and then migrate to the primitive gonad along the hindgut and dor-
sal mesentery by the 7th week of gestation [1]. After the arrival of 
PGCs in the gonad, the PGCs proliferate rapidly and then their num-
bers reach their maximum of up to 6 to 7 million at the 20th week of 
gestation. The PGCs enter meiosis and become primary oocytes from 
the 15th week of gestation [2]. Meiosis in primary oocytes is arrested 
at prophase I around birth. During meiosis, the primary oocyte be-
comes a primordial follicle by individual lapping with surrounding 
pregranulosa cells. Once primordial follicles are formed, they have 
three possible fates. Some of them are recruited for growth and dif-
ferentiation to be ovulated, which is accompanied by the synthesis 
of a unique set of proteins in both germ cells and surrounding so-
matic cells. Most of them remain dormant during the ovarian cycle. 
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Among them, some undergo the apoptotic pathway during follicle 
growth. Development of high quality oocytes during folliculogenesis 
is highly critical for proper fertilization and development because it 
affects early embryonic survival, the establishment and maintenance 
of pregnancy, and fetal development [3,4]. Primordial follicles are the 
smallest follicles in the mammalian ovary. During follicular develop-
ment, the primary oocyte in the primordial follicle undergoes numer-
ous germ-cell specific transcriptions which are crucial for the follicle‘s 
maintenance and survival until the end of the ovarian cycle. Howev-
er, the mechanism(s) of maintenance and survival of primordial folli-
cles remains unknown. Recent studies have described several germ 
cell-specific transcription factors in the ovary including factor in the 
germline alpha (FIGLA), newborn ovary homeobox protein (NOBOX), 
LIM-homeobox protein 8 (LHX8), spermatogenesis and oogenesis-
specific basic helix-loop-helix transcription factor 1 (SOHLH1), and 
SOHLH2 [5]. The knockout mouse models show premature ovarian 

failure (POF). This review is focused on these germ-cell specific tran-
scriptional factors, which might be crucial for understanding of the 
regulatory mechanism of maintenance and survival of primary oo-
cytes until ovulation. 

Factor in the germline alpha (FLGLA)

FIGLA is one of the well-known germ cell-specific transcriptional 
factors. FIGLA expresses in the oocyte as early as embryonic day 14.5 
(E14.5) [6]. FIGLA contains a basic helix-loop-helix (bHLH) domain 
which binds to a specific DNA binding element, E-box (CANNTG). FI-
GLA is involved in regulation of numerous germ-cell specific genes 
including zona pellucida protein 1 (Zp1), Zp2, and Zp3 through an E-
box motif (CANNTG) [6]. The E-boxes on the promoter of Zp1, Zp2, 
and Zp3 are conserved among species [7]. The physiological function 
of FIGLA was revealed by using a gene knockout mouse model. Figla 
deficient mice are sterile due to a defect of the primordial follicles in 
the ovary. Figla deficient mice lose all of the primordial follicles right 
after birth [8]. A recent study that performed whole gene profile anal-
ysis of the Figla deficient ovary revealed more downstream target 
genes including Nlrp family members (Nlrp4a, Nlrp4b, Nlrp4f, Nlrp5 
[Mater], Nlrp14), Pou5f1, Kit, Exo1, Zbed3, Dppa3, Oas1h, and Padi6 [9]. 
Interestingly, Figla deficiency shows a sexually dimorphic phenotype 
because Figla null males are fertile with normal testicular morpholo-
gy [8]. The ectopic expression of Figla represses testis specific genes, 
such as a Tdrd family member 6 (Tdrd6), Mvh, and Mili [10]. These find-
ings suggest that Figla activates numerous oocyte-specific genes 
and represses testis-specific genes at the same time [9,10] and that 
the dimorphic regulation of FIGLA is crucial for the formation and 
maintenance of primordial follicles. A recent study showed that a 
mutation of FIGLA, the deletion c.419-421 delACA (p.140 delN), was 
found in patients with POF [11]. The deletion c.419-421 delACA dis-
rupted the binding affinity of FIGLA to TCF3 [11]. TCF3 is known to be 
one of the FIGLA interacting factors [6,12]. 

Newborn ovary homeobox gene (NOBOX)

Nobox encodes a transcription factor containing a homeobox do-
main as a DNA binding site [13]. NOBOX belongs to a group of tissue-
specific homeobox genes and may play an important role in oogen-
esis and ovarian development. Nobox is preferentially expressed dur-
ing mammalian folliculogenesis. Nobox can be first detected in the 
oogonia as early as E15.5 and then remains abundant in oocytes 
throughout folliculogenesis [13,14]. A deficiency in Nobox shows a 
sexually dimorphic phenotype like that of Figla null mice. The gene 
knockout males are fertile and normal, but null females are infertile. 
Nobox null ovaries appear morphologically normal, containing pri-

Figure 1. Regulatory networks of transcriptional regulators, SOHLH1, 
SOHLH2, NOBOX, LHX8 and FIGLA (Modified from Choi and Rajkovic 
[5]). Black line, direct regulation; Blue line, putative regulation; ZP, 
zona pellucida; GDF9, growth differentiation factor 9; POU5f1, POU 
class 5 homeobox 1; PAD6, peptidyl arginine deiminase type VI; OOG1, 
oogenesin 1; cMOS, moloney sarcoma oncogene; ZAR1, zygote ar-
rest 1; OOSP1, oocyte secreted protein 1; NPM2, nucleoplasmin 2; 
DMRT1, doublesex and mab-3 related transcription factor 1; STRA8, 
stimulated by retinoic acid gene 8; CASP, caspase; BAX, BCL2-associ-
ated X protein; KITL, kit ligand; TDRD, tudor domain containing; OAS1, 
2’-5’ oligoadenylate synthetase 1; EXO1, exonuclease 1; NLRP, NLR 
family, pyrin domain containing; DPPA3, developmental pluripoten-
cy-associated 3; H1foo, H1 histone family; member O, oocyte-specific.
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mordial follicles [14]. However, Nobox null ovaries lost follicles rapidly 
after birth and impaired the transition of primordial follicles to pri-
mary follicles [14]. In microarray analysis, numerous germ cell-specif-
ic genes are regulated in the newborn ovary from Nobox null mice 
including Gdf9, Bmp15, Pou5f1, Zar1, c-Mos, Oog1, Pad6, Oosp1, Oas1d, 

Oas1d, Oas1e, and Oas1h. These are regulated either directly or indi-
rectly. NOBOX transregulates its target genes through NOBOX bind-
ing elements (NBE; TAA/GTTG/A) [15]. NOBOX appears to directly bind 
to Gdf9, Pou5f1, and Pad6 through the NBE(s) present on their pro-
moters [15,16]. In addition, one of the maternal genes, Npm2, con-
tains one NBE which is required for basal transcriptional activity in 
oocytes [17]. Interestingly, one of the male-determining genes, Dmrt1, 
is overexpressed in the null ovaries. This suggests that NOBOX regu-
lates sexually dimorphically during gametogenesis like FIGLA. A mis-
sense mutation, p.Arg355His, was found in the NOBOX homeobox 
domain in a POF patient [18]. The mutation disrupted the NOBOX af-
finity to targeting DNA binding elements and had a dominant nega-
tive effect on the binding of wild-type NOBOX to DNA. 

LIM-homeobox protein 8 (LHX8)

LHX8 is a member of the LIM-homeobox transcription factor family. 
LHX8 contains two LIM domains and one homeobox domain that 
are highly conserved with 93% identity between mice and humans. 
LHX8 plays an important role in tissue patterning and differentiation 
including that of neural tissues [19-21]. In the ovary, Lhx8 transcripts 
localize to oocytes in germ cell clusters and primordial, primary, and 
antral follicles in the mouse ovary [22]. Lhx8 is detectable as early as 
E13.5 [22]. A deficiency of Lhx8 leads to female infertility [7,22]. Lhx8 
null mice are infertile due to the absence of oocytes and impairment 
of the transition of primordial follicles into primary follicles [22]. At 
birth, histological examination shows that Lhx8-deficient ovaries are 
grossly similar to newborn wild-type ovaries. However, Lhx8 null ova-
ries fail to maintain the primordial follicles after birth. This phenotype 
is similar to that in Nobox deficient mice. The oocytes in primordial 
follicles of the Lhx8 null ovary have a problem with the transition from 
primordial to growing follicles and survival of the follicles. They exist 
until postnatal day 7. This is shorter than the survival in Nobox defi-
cient mice. An Lhx8 deficiency causes the misexpression of many 
genes, such as Gdf9, Pou5f1, Nobox, Kit, and Kitl [22]. The comparison 
of genes regulated in Lhx8 null and Nobox null newborn ovaries re-
vealed a common set of genes including the Nlrp family members, 
such as Nlrp14, Nlrp4c, and Nlrp4f [14,22,23]. These factors are also 
down-regulated in Figla null mice [9]. The function of Nlrp family mem
bers in the oocyte remains unclear. In addition, Stra8 is drastically up-
regulated in both Lhx8 and Nobox null newborn ovaries. Stra8 is de-
tectable in the ovary between E12.5 and E16.5 during embryo devel-

opment and then its expression is not detectable in the ovary [24]. 
Stra8 is crucial for the initiation of meiosis with premeiotic DNA repli-
cation, meiotic chromosome condensation, cohesion, synapsis, and 
recombination [25]. This suggests that the repression of the meiotic 
factor or the activation of other factors including Pou5f1, Gdf9, and 
Nlrp family members by either NOBOX or LHX8 may be important for 
the maintenance and survival of primordial follicles after birth.

Spermatogenesis and oogenesis specific basic 
helix-loop-helix protein 1 (SOHLH1) and SOHLH2

SOHLH1 and SOHLH2 are bHLH germ cell-specific transcription fac-
tors in the development of both the ovary and testis. The expression 
patterns of SOHLH1 and SOHLH2 are different from that of FIGLA, 
NOBOX, and LHX8. In the ovary, the expression of Sohlh1 and Sohlh2 

are confined to the germ cell, primordial follicles, and primary folli-
cles, but not in secondary and growing follicles [7,26]. This indicates 
that SOHLH1 and SOHLH2 may play important and unique roles in 
primordial follicle formation, activation, and survival. 

Ovaries of Sohlh1 deficient mice are completely devoid of follicles 
by 3 weeks after birth [7]. During early development, most oocytes in 
the 7-day-old Sohlh1 deficient ovaries are still enveloped by flat so-
matic cells similar to primordial follicles but now also contain multi-
ple empty follicles in the ovary [7]. The defect in primordial follicle 
maintenance and survival may result from the surrounding pre-gran-
ulosa cells. The disruption of Sohlh1 misregulates many germ-cell 
specific genes. Among those, Lhx8 is regulated directly by SOHLH1 
[7]. The phenotype of Sohlh2 deficiency has been shown to be very 
similar to that of Sohlh1 knockout [26,27]. Sohlh2 null ovaries form 
primordial follicles, but the primordial follicles limit growth and do 
not differentiate from surrounding granulosa cells into cuboidal and 
multilayered structures [26,27]. Sohlh2 deficient ovaries rapidly lose 
the follicles after birth, with few remaining by 14 days of postnatal 
life. The knockout mice ovaries misexpress numerous germ cell- and 
oocyte-specific genes, including Sohlh1, Nobox, Figla, Gdf9, Pou5f1, 

Zp1, Zp3, Kit, Oosp1, Nlrp14, H1foo, and Stra8. SOHLH2 may work to-
gether with SOHLH1. SOHLH1 and SOHLH2 can form heterodimer 
[27]. In addition, they coordinate germ cell development by the reg-
ulation of Kit expression [28-30]. 

Conclusion

The molecular mechanisms of maintenance and survival of primor-
dial follicles during ovarian cycles remain unclear. New insights from 
recent studies of a series of germ-cell specific transcriptional regula-
tors indicate that complex regulatory networks are involved in follicle 
formation and maintenance in the ovary. A knockout mouse model 
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shows that they do not share redundancy among factors, but a unique 
pathway. Analyzing their downstream target genes might elucidate 
more mechanisms and pathways for developing a better understand-
ing of the mechanism of activation and survival of ovarian follicles. 
The regulatory networks of primordial follicles will give us understand-
ing ovary-specific pathways and clues to regulate and treat female 
fertility like premature ovarian failure.
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