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Functional foods are natural products of plants that have health benefits beyond necessary
nutrition. Functional foods are abundant in fruits, vegetables, spices, beverages and some
are found in cereals, millets, pulses and oilseeds. Efforts to identify functional foods in our
diet and their beneficial aspects are limited to few crops. Advances in sequencing and
availability of different omics technologies have given opportunity to utilize these tools to
enhance the functional components of the foods, thus ensuring the nutritional security.
Integrated omics approaches including genomics, transcriptomics, proteomics,
metabolomics coupled with artificial intelligence and machine learning approaches can
be used to improve the crops. This review provides insights into omics studies that are
carried out to find the active components and crop improvement by enhancing the
functional compounds in different plants including cereals, millets, pulses, oilseeds,
fruits, vegetables, spices, beverages and medicinal plants. There is a need to
characterize functional foods that are being used in traditional medicines, as well as
utilization of this knowledge to improve the staple foods in order to tackle malnutrition and
hunger more effectively.
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INTRODUCTION

To address global food and nutritional security, there is a need to increase the agricultural production
and nutritive value of food. Assured access to nutritionally adequate and safe food is essential for
attaining the nutritional security. With urbanization and changing food habits, “smart foods with
higher nutrition per bite” is the need. The awareness of utilization of these foods for prevention and
treatment of certain diseases prompted the researchers to discover active compounds that render
health benefits. Foods that have an additional physiological benefits besides providing basic
nutritional needs were first referred to as “functional foods” in Japan in the mid-1980s. Broadly,
functional foods can be categorized according to the active components that have health benefits.
Based on their origin, they can be classified as naturally derived products (plant or animal sources) or
synthetic products (synbiotics, nutraceuticals) (Mohanty and Singhal, 2018). The functional
products from plant origin include phytochemicals such as polyphenolic compounds, alkaloids,
flavonoids, carotenoids, saponins, allyl sulfides, catechins, nutraceuticals, etc. (Table 1; Figure 1).
There are clear evidences from epidemiological studies and clinical trials that a plant-based diet can
reduce the risk of chronic diseases and disorders such as cancer (Velmurugan et al., 2005;
Aghajanpour et al., 2017; Sayeed et al., 2017), diabetes (Hannan et al., 2007; Ballali and Lanciai,
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2012; Alkhatib et al., 2017), obesity (Hill and Peters, 2002;
Riccardi et al., 2005; Baboota et al., 2013), cardiovascular
ailments (Alissa and Ferns, 2012; Hamid and Abd Hamid,
2019) and other effects on human health (Lobo et al., 2010).
Most of the functional foods with scientific supporting evidence
are the native/familiar foods that were used in traditional
medicine for generations (Hasler, 1998; Fokunang et al., 2011;
Abbott, 2014).

The scientific advances and next generation sequencing
technologies available in recent years have impacted
significantly on crop breeding and food science (Varshney
et al., 2009; Kato et al., 2011). There is a lot of scope to utilize
these technologies to understand the functional compounds that
have health benefits and to improve the crops with respect to its
nutritional status along with productivity related traits.
Utilization of different omics technologies in research related
to food and nutrition with the objective of improving the human
health and well-being is referred as foodomics (Capozzi and
Bordoni, 2013). An integrated use of omics technologies
approaches to increase the nutrient potential of any crop,
further applications in food processing and formulations can
influence the nutritional security to greater extent (Bagchi et al.,
2015; Tian et al., 2016).

The omics discipline comprises of four major broad areas like
genomics, transcriptomics, proteomics and metabolomics.
Integrated use of the omics technologies provides a holistic
approach to study the systems biology (Pazhamala et al.,
2021). Genomics includes the sequencing of whole genomes,
assembly and annotation of the sequences, study of the genes,

identification and development of molecular markers and
quantitative trait loci (QTLs) for target traits, genomics
assisted breeding, genomic selection, etc. (Varshney et al.,
2005; Kole et al., 2015; McGuire et al., 2020). Transcriptomics
deals with the dynamic expression of gene products in specific
tissue at particular stage. The study of differential expression is
quantified by using different molecular biology tools such as RNA
sequencing, microarrays, Serial analysis of Gene Expression
(SAGE), qRT-PCR, etc. While microarray, SAGE and qRT-
PCR technologies determine the abundance of defined
transcripts, the RNA-sequencing utilizes the advantage of
high-throughput sequencing to identify the novel transcripts
(Lowe et al., 2017). Proteomics can be effectively used to study
protein structure, function, and interaction with other proteins or
ligands such as bioactive compounds. Advanced techniques like
Matrix-assisted laser desorption/ionization Time of flight
(MALDI-TOF) and Liquid chromatography coupled to mass
spectrometry (LC-MS) are able to detect expression of specific
proteins. Metabolomics identifies and quantifies specific
metabolites present in a sample. Metabolomics can be
beneficial for quantification of biologically active compounds,
food fingerprinting, and food profiling. Techniques like Gas
chromatography coupled to mass spectrometry (GC-MS),
Liquid chromatography coupled to mass spectrometry (LC-
MS), Inductive couple plasma (ICP), nuclear magnetic
resonance (NMR), Near infrared spectrometry (NIR) have
been used for characterization of metabolites (Prakash et al.,
2018; Kumar et al., 2019). Besides these omics approaches,
genome editing tools like RNAi, CRISPR/Cas9, TALENs, ZFNs

TABLE 1 | Functional compounds and their health benefits.

Sl.
No

Compound Health benefits References

1 Tocopherols,
β-carotene

Antioxidants, reduce the risk of heart diseases and few types of cancers and protect
from age-related muscular degeneration

Sies and Stahl, 1995; Gul et al., 2015, Jacobo-
Valenzuela et al., 2011

2 α-linolenic acid Cardioprotective in nature, modulation of an inflammatory response, and improves
central nervous system functions

Stark et al. (2008)

3 Astaxanthin Antioxidant and anti-inflammatory improves blood circulation and brain functions,
promote an integrated immune response

Kidd, (2011)

4 Anthocyanins Acts as dietary antioxidants helps to prevent neural diseases, cardiovascular
problems, diabetes, inflammation and many other diseases

Yousuf et al. (2016)

5 Tannins Antioxidant, anti-inflammatory, anticancerous, antiallergic, antihelminthic and
antimicrobial activities

Sharma et al. (2019)

6 β-glucan Beneficial role in insulin resistance, dyslipidemia, hypertension, and obesity El Khoury et al. (2012)
7 Lycopene Antioxidant, anticancer, protect against cardiovascular diseases, modulation of

inflammatory responses, cholesterol reduction
Thies et al. (2017)

8 Flavonoids Antioxidant, prevention of coronary heart diseases, hepatoprotective and anti-
cancer activity

Yao et al., 2004; Yadav et al., 2020, Basu et al., 2018

9 Vitamin C Prevent scurvy, coronary heart diseases stroke and cancer Granger and Eck (2018)
10 Alkaloids Analgesic, antipyretic, antioxidants, anti-inflammatory, improves brain functioning,

antidiabetic and helps to treat gastroenteritis and chronic diseases
Derosa et al., 2016; Street et al., 2017, Adams et al.,
2014

11 Saponins Lowers blood lipids, lower blood glucose response and cholesterol levels, reduce
cancer risks

Shi et al. (2004)

12 Eugenol Antioxidants, anti-inflammation, helps to control hyperglycemia, elevated
cholesterol levels, neural disorders and cancer. Also, possess antimicrobial agent

Khalil et al. (2017)

13 Polyphenols Neuroprotectve, anti-aging, Antioxidant, anti-inflammatory Lau et al. (2005)
14 Isothiocyanates Lowers the risk of liver, breast, lung cancers Aghajanpour et al., 2017; Mohanty and Singhal,

2018; Kartikey et al., 2019
15 Phytosterols Anticancer, antibacterial, antiviral, and cholesterol-lowering activity Chongtham et al. (2011)
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can be utilized to improve the crop plants. Use of computational
and bioinformatics tools is indispensable while using all the above
mentioned technologies. Advances in data science with
applications of artificial intelligence and machine learning has
enabled deep learning of the data for better understanding of the
biological processes and crop prediction modelling in genomic
selections (Figure 2). In this review, we discuss about the
utilization of omics technologies in determining and
enhancing the active food compounds in major crop plants
including cereals, millets, pulses, oil seeds, fruits, vegetables,
spices and medicinal plants.

Cereals
Cereals are the major part of our daily diet and source of
carbohydrates but lack an adequate amount of nutrition in
terms of vitamins, and essential amino acids (Munck, 1972).

Hence there is a need to improve the quality and nutritional
parameters of cereals. Recent advances in genomics and genetic
engineering are useful in targeted improvements especially by
improving the quality and nutritional value in crop plants
(Sedeek et al., 2019). Several omics technologies have been
used to improve rice, wheat, barley especially for disease
resistance and improving the yield of the crops (Zenda et al.,
2021). However, there are only a few reports related to
deciphering the functional compounds in cereal crops using
modern biotechnological tools (Table 2). For instance, rice is
improved with higher carotenoid content leading to increased
Vitamin A (Dubock, 2019) and biofortified with micronutrients
like Fe and Zn (Welch and Graham, 2004; Trijatmiko et al., 2016).
A genetic engineering approach was successfully used to develop
“Golden Rice” with significant levels of β-carotene that will help
to combat vitamin A deficiency. Ye et al. (2000) and Shao et al.

FIGURE 1 | An infographics showing the functional components of the food and their potential health benefits to human beings.
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(2011) reported the marker loci/QTLs underlying the naturally
occurring variations of grain color and nutritional quality traits in
416 rice germplasm accessions, including 361 white rice, 50 red
rice, and six black rice across 41 marker loci. These markers could
be further used for marker-assisted breeding to improve rice for
nutritional qualities. The efforts were also made to dissect the
nutrient traits especially Fe, Zn and anthocyanin content using
genome-wide association studies on diversity panel consisting of
156 accessions of colored rice (Descalsota-Empleo et al., 2019).
QTLs for functional components like phenolic content, flavonoid
content and antioxidant capacity were identified using 127 double
haploid lines developed through anther culture (Jin et al., 2009).
Genome editing tools like CRISPR-Cas9 have also been utilized to
enhance the amylose content (Sun Y. et al., 2017b). There are also
efforts to develop fragrant rice by knocking out of betaine
aldehyde dehydrogenase (BADH2) gene using TALEN
technology (Shan et al., 2015).

Similar to rice, there are many reports to utilize the omics
approaches in wheat to improve the nutrition and functional
components. To list a few, an enriched wheat with high vitamin A
content was developed by transforming the two bacterial
carotenoid biosynthetic genes CrtB and CrtI into wheat
cultivar Bobwhite (Wang et al., 2014). In addition to this,
candidate genes involved in carotenoid biosynthesis and
catabolism have been elucidated using GWAS studies in wheat
(Colasuonno et al., 2017). Genomic regions for the color,

carotenoids, and polyphenol oxidase activity of flour in wheat
have been studied using linkage-based QTL analysis (Zhao et al.,
2013). Hussain et al. (2017) reported QTLs for several nutrients,
including Zn, Fe, Mn, Cu, Ca, Mg, etc. under saline conditions. In
wheat, candidate genes for enhancing the grain Zn content have
been identified by GWAS using high-density genotyping arrays
on 369 wheat genotypes (Alomari et al., 2018). Genetic
improvement in grain quality and micronutrients has been
instrumental in quality breeding for wheat (Distelfeld et al.,
2006; Balyan et al., 2013; Pu et al., 2014). Apart from this,
there is also a need to utilize genomics approaches to decrease
heavy metal (for example, Cadmium) uptake (Knox et al., 2009)
and improve digestibility with reduced flatulence (Sharma et al.,
2002). Genetically modified maize and wheat have showed
increased accumulation of folate (Vitamin B9) levels (Liang
et al., 2019).

Many economically backward countries rely on crops such as
sorghum and maize as their staple food. In maize, biofortification
with micronutrients like Zn and Fe (Zhao, 2007), enhanced
β-carotene (Muthusamy et al., 2014), and amino acids like
Lysine (Mertz et al., 1964; Shetti et al., 2020) have been
carried out to ensure the nutritional security. To dissect the
genomic regions for various metabolites in maize (Zea mays),
a metabolome-based GWAS was carried out (Zhou et al., 2019).
An integrated omics-based mapping to unravel flavonoid
biosynthesis was also attempted in maize (Jin et al., 2017).

FIGURE 2 | Integrated omics approaches for enhancing functional foods. In this figure, the crop categories specified are orderly arranged in descending manner
with respect to the utilization of omics technologies to improve functional foods. Abbreviations: GWAS, Genome-Wide Association Studies; MAS, Molecular Assisted
Selection; GS, Genomic Selection; qRT-PCR, Quantitative Real Time polymerase Chain Reaction; 2D GE, 2-Dimensional Gel electrophoresis; XRC, X-Ray
Crystallography; MALDI-TOF, Matrix-Assisted Laser Desorption/Ionization-Time Of Flight; LC-MS/MS, Liquid Chromatography—Mass Spectrophotometry; GC-
MS, Gas Chromatography—Mass Spectrophotometry, HPLC: High Performance Liquid Chromatography; UPLC, Ultra Performance Liquid Chromatography; NMR,
Nuclear Magnetic Resonance; CE, Capillary Electrophoresis and SFC, Supercritical Fluid Chromatography; RNAi, RNA interference; TALENs, Transcription Activator-
Like Effector Nucleases; ZFNs, Zinc Finger Nucleases.
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There have been extensive efforts to breed for quality protein
maize (QPM) with nearly as twice lysine and tryptophan content
than the usual (Gibbon and Larkins, 2005). In addition to this, a
transgenic approach has been used to increase protein by
reducing zein content (Huang et al., 2006), and increasing
Provitamin A content (Aluru et al., 2008). CRISPR-Cas9 and

TALEN approaches have been used inmaize to reduce phytic acid
content, a food inhibitor that chelates micronutrients and
prevents their bioavailability for mono gastric animals,
including humans (Liang et al., 2014).

The reports related to the use of omics approaches to enhance
functional compounds in barley (Hordeum vulgare) and oats

TABLE 2 | Study of functional foods in cereals and millets using biotechnological approaches.

S.
No

Crop Functional food Gene(s)/QTL(s) Methodology References

1 Rice β-carotene Daffodil &crtI gene Transgenic and expression
studies

Beyer et al. (2002)
GtHMG1, GZmPsy1 and GPaCrtI1 genes Tian et al. (2019)

Fe and Zn Ferritin Transgenic and interval
mapping

Lucca et al., 2002; Vasconcelos
et al., 2003; Zhang et al., 2014

genes (OsMTP6, OsNAS3, OsMT2D, OsVIT1, and
OsNRAMP7) and 7 QTLs for each Fe and Zn

GWAS Descalsota et al. (2018)

48 MQTLs and 8 genes related to grain Fe and Zn
concentration

MQTL analysis Raza et al. (2019)

α-linolenic acid rich chimeric gene consisting of a maize Ubi1-P-int and a
soybean GmFAD3 cDNA

Transgenics Anai et al. (2003)

Astaxanthin sZmPSY1, sPaCrtI, sCrBKT, and sHpBHY genes Transgenics Zhu et al. (2018)
α-tocopherol OsGGR2 gene RNA interference Kimura et al. (2018)
Phytic acid OsITP5/6K-1 gene RNA interference Karmakar et al. (2020)
Resistant starch sbe3-rs gene MAS Yang et al. (2020)

2 Wheat Micronutrients and
Vitamins

Gpc-B1 gene and DArT markers MAS Distelfield et al., 2006; Uauy
et al., 2006

Zn, Fe, Cu, Mn, Se
rich

QTLs for Zn, Fe, Cu, Mn, Se Interval mapping Pu et al. (2014)

Anthocyanins Ba gene
Pp3 and Pp-D1 genes

MAS Gordeeva et al., 2019;
Gordeeva et al., 2020

3 Wheat and
Barley

PUFAs Artificial D6-desaturase gene Transgenics using the biolistic
method

Čertík et al. (2013)

4 Sorghum Lysine BHL-9 Transgenics Zhao et al. (2003)
Protein hl gene and P721 opaque gene Mutation breeding and MAS Axtell et al., 1979; Welch and

Graham, 2004
Vitamin A Prolamin and lysine alpha-ketoglutarate reductase

genes z
Transgenics Lipkie et al. (2013)

Fe and Zn QTLs and candidate genes like CYP71B34, ZFP 8 QTL mapping Kotla et al. (2019)
starch and amylose Grain quality/starch pathway genes Sh2, Bt2, SssI,

Ae1, and Wx
GWAS De Alencar Figueiredo et al.

(2010)
Tannin antioxidant tan-1, tan-1a and tan-1b GWAS and expression analysis Wu et al. (2012)
β-carotene
andZeaxanthin

3 QTLs for β carotene and 4 QTLs forZeaxanthin GWAS Cruet-Burgos et al. (2020)

5 Maize Vitamin C and E rich DHAR cDNA Transgenics Chen et al. (2003)
pro-vitamin A crtB and crtI Transgenics Aluru et al. (2008)

lcyE MAS Yang et al. (2018)
lcyE, crtRB1, and o2 MABB Sagare et al. (2019)

Fe and Zn SNPs associated with kernel Fe and Zn content GWAS and QTL mapping Hindu et al. (2018)
6 Barley Hordothionin rich Hordothionin Mutation breeding and MAS Rao et al. (1994)

β-glucan Csl genes and QTLs GWAS and paired-end-RNA
sequencing-based
transcriptome

Cai et al., 2013; Chen et al.,
2014; Shu and Rasmussen
2014

Malting protein 13–30 candidate genes like metallothionein,
α-amylase, α-glucosidase, limit dextrinase, and
β-ketoacyl synthase

cDNA array-based gene
expression analysis and SAGE

White et al., 2006; Lapitan et al.,
2009

Palatable and easily
digestible

starch branching enzymes SBEIIa and SBEIIb RNAi technology Regina et al. (2010)

— 20 QTLs associated with TPC, FLC and AOA GWAS Han et al. (2018)
7 Oats β-glucan QTL’s for β-glucan GWAS, MAS, QTL mapping Gazal et al. (2014)
8 Pearl millet Fe and Zn QTLs (11 for Fe and 8 QTLs for Zn) QTL mapping Kumar et al. (2018)
9 Finger millet Calcium Calmodulin and Cax1 transporter genes Differential expression/

accumulation
Kumar et al. (2014)

10 Foxtail millet
(Setaria italica)

storage associated
genes

storage associated genes and noncoding RNAs Transcriptome analysis Qi et al. (2013)
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(Avena sativa) are limited as compared tomajor cereals. In barley,
the β-glucan content greatly improves the malting properties and
its presence has been found to increase palatability (Chen et al.,
2014). A gene expression study using SAGE analysis identified six
proteins associated with the malting property (White et al., 2006).
Other functional compounds like total polyphenols, flavonoids,
and antioxidant properties were studied in 67 cultivated and 156
Tibetan wild barley accessions using GWAS (Han et al., 2018). In
oats, a GWAS study was conducted in a global germplasm
collection to identify molecular markers associated with
β-glucan content (Newell et al., 2012; Gazal et al., 2014).

Sorghum and Millets
Sorghum and millets are small-grained cereals and seed grasses
that are traditional staple foods in African and Asian countries. In
recent times, sorghum and millets are being utilized as an
alternative to major cereals because of their higher nutritional,
mineral, dietary fiber content along with climate-resilient nature.
Besides, they are gluten-free and play a pivotal role in preventing
and curing several lifestyle health issues like diabetes (Anitha
et al., 2021). The genetic and genomic resources have been
developed in some of the small millets (Vetriventhan et al.,
2020) and efforts to utilize the genomic tools to improve the
nutrient components are underway (Table 2). The nutraceutical
property is mainly based on the kernel color in these crops. In this
regard, QTL analysis of endosperm color and carotenoid
(provitamin A) content in sorghum grains utilized in breeding
high provitamin sorghum crop (Fernandez et al., 2008). Another
effort using GWAS analysis with 404,628 SNP markers identified
novel marker-trait association for polyphenols in a global
diversity panel of 381 sorghum accessions (Rhodes et al., 2014).

There are limited efforts to utilize genomics tools in all other
millets for improving the nutritional properties. The
biofortification of millets seemed to be a good option for
improving the nutritionally rich millets (Vinoth and
Ravindhran, 2017). The QTLs controlling the content of
micronutrients like Zn and Fe were identified in pearl millet
(Kumar et al., 2018; Govindraj et al., 2019). Finger millet
(Eleusine coracana) has been studied at various stages of
growth and development using transcriptomics and was found
to have high absorption and accumulation of calcium during
grain development (Mirza et al., 2014). Glucosinolates in millets
were found to reduce carcinogen-DNA interaction resulting in
detoxification. Similarly, the isoflavones (phytoestrogens),
genistein, and daidzein were found to reduce the incidence of
many cancers, coronary heart diseases, and osteoporosis
(Bandyopadhyay et al., 2017). The bioavailability of the
micronutrients present in millets needs to be elucidated and
utilized in crop improvement.

Pulses and Oilseeds
Pulses are a rich source of protein, with low fat, high fiber content
and low glycemic index. Soluble fiber helps to decrease blood
cholesterol levels and control blood sugar levels, and insoluble
fiber helps with digestion. The biotechnological application for
nutritional improvement mainly concentrates on enriching
micronutrients and vitamins in pulses (Table 3). Pulses are
known for the functional component saponins and several
health benefits associated with them (Singh et al., 2017).
Although pulses have been studied for several biotic and
abiotic stresses at the molecular level, there are very few
reports related to the genetic dissection of antioxidant activity

TABLE 3 | Study of functional foods in pulses and oilseeds using biotechnological approaches.

S.
No

Crop Functional food Gene(s)/QTL(s) Methodology References

1 Soybean Vitamin E 21 QTLs QTL mapping Li et al. (2010)
α-tocopherol 6 QTLs associated with

α-tocopherol content
QTL mapping Park et al. (2019)

— 19 QTLs were identified GWAS Sui et al. (2020)
Tocopherol and tocotrienol At-VTE3 co-expressed with At-

VTE4
Transgenics Van-Eenennaam et al.

(2003)
2 Chickpea β-carotene, leutin rich 1-4QTLs QTL mapping Abbo et al. (2005)
3 Groundnut β-carotene, lutein and

cryptoxanthin
Phytoene synthase 1 (psy1) Transgenics Bhatnagar et al. (2010)

Anthocyanidin a putative candidate gene and
linked marker InDel02

eQTLmapping Huang et al. (2006)

Oleic acid ahFAD2 gene MAS Bera et al. (2018)
Resveratrol 9 QTLs identified ddRAD sequencing and High-

Density genetic map
Luo et al. (2021)

4 Safflower (Carthamus
tinctorious)

Gamma linolenic acid (GLA) Delta-6- desaturase gene Transgenics Devi et al. (2008)

5 Mustard (Brassica spp.) δ-tocopherol gamma-TMT gene Transgenics Yusuf and Sarin, (2007)
Carotenoid crtB Transgenics Shewmaker et al. (1999)
β-carotene, zeaxanthin,
violaxanthin and lutein

Epsilon cyclase gene RNAi technology Yu et al. (2008)

6 Sunflower (Helianthus
annuus)

Oleic acid FAD2 Transgenics Smith et al. (2007)

7 Canola Protein-rich ACC7 gene Transgenics Roesler et al. (1997)
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and nutrition-related traits. Biofortification of pulses with Fe and
Zn in lentils, chickpeas and field pea (Pisum sativum) has been
carried out to address global malnutrition and micronutrient
deficiencies (Thavarajah and Gupta, 2014). In chickpea, the
GWAS study conducted in 94 diverse chickpea genotypes
showed eight SNPs associated with Fe and Zn content in the
seeds (Diapari et al., 2014). Similarly, a GWAS study in lentils
identified two tightly linked SNP markers for Fe and Zn content
(Khazaei et al., 2017).

Omega-3 fatty acids are considered to be essential for brain
development, which is mainly available through oil seed crops in
human diet. The areas of crop improvement in terms of nutrition
in oilseeds rely on improving oil quality, resveratrol content and
improved shelf life (Pandey et al., 2014; Qi et al., 2014; Shasidhar
et al., 2017; Luo et al., 2021). Profiling of nutraceutical properties
of 60 groundnut cultivars differentiating in kernel colors has been
carried out and marker-trait association studies have been carried

out (Nayak et al., 2020). The expression of phytoene synthase
showed 50-fold increased levels of carotenoids in rapeseed using
genetic engineering (Shewmaker et al., 1999). An increased
expression of zeaxanthin, violaxanthin and lutein by targeting
the downregulation of the epsilon cyclase gene using RNAi
technology) has been reported in mustard (Yu et al., 2008).
The molecular mapping and QTL analysis of flavonoid genes
was also elucidated in rapeseed (Qu et al., 2016), soybean (Li et al.,
2016), and groundnut (Mondal et al., 2015). Efforts are being
carried out to use advanced biotechnological applications to
improve oilseeds nutritionally for further crop improvement
(Table 3).

Fruits
Fruits are promoted as functional foods as they are a rich source
of several antioxidants, polyphenols, minerals, soluble fibers,
vitamins especially C, A and E. They primarily consist of

TABLE 4 | Study of functional foods in fruits and vegetables using biotechnological approaches.

S.
No

Crop Functional food Gene Methodology References

1 Orange Lycopene Carotenoid and MEP pathway genes Mutation breeding Alquezar et al. (2008)
2 Pummelo Naringin Naringin In vitro and In vivo studies

followed by molecular docking
Cheng et al. (2020)

3 Apple Astaxanthin bkt and crtR-B genes Transgenics Jia et al. (2019)
Flavanols, anthocyanins and
hydroxycinnammic acid

79 QTLs identified for 17 polyphenolic content QTL mapping and candidate
gene mapping

Chagné et al., 2012

4 Grapes Flavonols, anthocyanin and
tannins

VviGST1, VviGST3, and VviGST4 Transgenic Pérez-Díaz et al.
(2016)

5 Watermelon Lycopene 2 candidate genes Cla005011 and Cla005012 MAS Wang et al. (2019a)
6 Walnut Walnut Protein

Hydrolysate (WPH)
Walnut Protein Hydrolysate (WPH) Invitro and In vivo studies Wang et al. (2019b)

7 Strawberry Total flavonoids 7 QTLs and 2 candidate genes (FaMYB1 and FaF3′H)
controlling flavonoid content identified

QTL analysis and Expression
studies

Karmakar et al.
(2020)

8 Tomato Anthocyanin Anthocyanin 1 (ANT1) TALENs and CRISPR/Cas9
achieved gene

Čermák et al. (2015)

Anthocyanin Phytoene desaturase (SlPDS), CRISPR/Cas9 Pan et al. (2016)
Lycopene Lycopene β/ε -Cyclase RNAi technology and

Agrobacterium-mediated gene
transformation

Ma et al. (2011)

Carotenoid Brassicajuncea3-Hydroxy-3-methylglutaryl-coenzyme
asynthase (BjHMGS)

Mutation breeding Galpaz et al., 2008,
Liao et al. (2018)

Carotenoids, Vit-C, Vit-E and
Phenolic acids

7 QTLs for carotenoids, 6 for Vit-C, 5 for Vit-E, 3 for
Glutathione, and a total of 43 QTLs for phenolic acids were
identified

QTL mapping Colak et al. (2020)

9 Cabbage Anthocyanin Purple (Pr) gene (flavonoid 3′-hydroxylase, dihydroflavonol
4-reductase, and leucoanthocyanidindioxygenase)

Transgenics Chiu et al. (2010)

10 Carrot Carotenoid DCAR 032551 gene Genome assembly and
Transcriptomics

Iorizzo et al. (2016)

11 Bell pepper Alkaloid compound-
Capsaicinoids

Deaminase (TD) and prephenate aminotransferase
enzyme identified

de novo transcriptome
assembly

Liu et al., 2013,
Bennett and Kirby,
1968

12 Potato Essential amino acid-rich
protein and rich in methionine

AmA1 Transgenics Chakraborty et al.
(2010)

Inulin producing Constitutive expression of the 1-SST and 1-FFT (genes of
globe artichoke)

Transgenics Hellwege et al. (2000)

β-carotene and lutein rich crtB gene Transgenics Ducreux et al. (2005)
13 Chilli β-carotene lycopene beta-cyclase (β-Lcy) gene Transgenics El Nagar, (2018)
14 Brinjal β-carotene crtB gene Transgenics Mishiba et al. (2020)
16 Sweet

potato
α-tocopherol tocopherol cyclase (IbTC) Transgenics Kim et al. (2019)

17 Broccoli Sulforaphane MAM1, myrosinase and FMOGS–OX2 genes Transgenics Cao et al. (2021)
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flavonoids including flavonols, flavones, isoflavones, flavanones
and anthocyanins, and non-flavonoid polyphenolics including
phenolic acids, lignans and stilbenes (Joy et al., 2018). Though
fruits are the major source of functional foods, systematic
experimental reports on the utilization of omics technologies
to improve functional components are limited to a few fruit crops
(Table 4).

In citrus, GWAS studies were conducted on 787 different
citrus fruits using 1,841 SNP markers, and marker-trait
associations were studied on fruit quality traits, including acid
%, taste, and aroma (Minamikawa et al., 2017). Specific locus
amplified fragment (SLAF) sequencing was performed over C.
reticulata × P. trifoliata F1 pseudo testcross population and have
constructed a high density integrated genetic map with 3,817
markers. This study has identified 17 significant QTLs of which
three colocalized genomic regions were observed for multiple
carotenoid constituents (Zheng et al., 2018). In another study, a
navel orange (Citrus sinensis L. Osbeck) mutant (“Cara Cara”)
was developed with bright red pulp with presence of lycopene
(Alquezar et al., 2008). The expression analysis of genes involved
in the carotenoid pathway using HPLC, northern hybridization,
and RT-PCR indicated the increased accumulation of lycopene
content in the mutant compared to navel orange. To elucidate the
basis of lycopene accumulation in Cara Cara, the carotenoid
profile and expression of three isoprenoids and nine carotenoid
genes in flavedo and pulp of Cara Cara and Navel fruits
throughout development and maturation were studied. The
results indicated the accumulation of lycopene along with
phytoene and phytofluene from early developmental stages in
pulp as well as peel (Alquezar et al., 2008). Lemons are known for
several functional components, including phenolics, vitamins,
minerals, dietary fiber, essential oils and carotenoids (González-
Molina et al., 2010). In the case of Sicilian blood oranges,
retrotransposons were shown to induce seed-specific
accumulation of anthocyanins during cold stress (Butelli et al.,
2012). Edmunds et al. (2012) reported that the anti-inflammatory
property of kiwifruit extract is due to the changes in the
expression level of genes involved in the immune signaling
pathway and metabolic processes using microarray technique.

The king of fruits “mango” (Mangifera indica) is a rich source
of various polyphenolic compounds and is found in all the parts
of the plant including pulp, peel, seed, bark, leaf, and flower.
Mango polyphenols, especially mangiferin, acts as an antioxidant
and has several health benefits (Masibo and He, 2008). The
transcriptomics and proteomics studies in mango have
predicted the involvement of genes involved in the
anthocyanin biosynthesis pathway during the fruit
development stage of mango (Wu et al., 2014). There is little
effort towards the use of biotechnological approaches to improve
the functional components of mango.

Red grapes are significant sources of anthocyanins, the main
compounds responsible for the color of red grapes and wine
(Mazza and Francis, 1995). Metabolite profiling of bioactive
components of grapes especially flavonols, anthocyanins, and
tannins indicated the presence of several bioactive compounds.
The quercetin and kaempferol content was found to be greater in
white grapes than red ones, but the red grapes were reservoirs of

other bioactive components such as myricetin, laricitrin,
syringetin and isorhamnetin (Mattivi et al., 2006). Resveratrol,
an antioxidant that is known to lower blood pressure, and act as a
chemopreventive with antiaging benefits are present in grapes.
These flavonoids not only provide health benefits to humans but
also help plants to fight against several biotic and abiotic stresses.
For instance, transformation of bHLH transcription factor gene,
VvbHLH1 from grapes into Arabidopsis, resulted in an increased
accumulation of flavonoids and enhanced salt and drought
tolerance (Wang et al., 2016).

In Japanese plum (Prunus salicina), the molecular marker
associated with transcription factors found in the flavonoid
pathway was used to study population diversity (González
et al., 2016). Date palm (Phoenix dactylifera) fruits are
composed of minerals (Se, Cu, K, and Mg), vitamins (C, A,
B6, B9, B2, B3) besides being a good source of total phenolics and
natural antioxidants (such as anthocyanins, ferulic acid).
Phenolic compounds and selenium present in date fruit
impart antioxidant activity (Guizani, 2013). Similarly,
transcriptome sequencing in Indian gooseberry (Phyllanthus
emblica) revealed the genes involved in flavonoid and vitamin
C biosynthesis (Kumar et al., 2016). In many fruits,
biotechnological approaches, including “omics” studies and use
of molecular markers for trait mapping to improve bioactive
components are very limited.

Vegetables
Among vegetables, most of the genomics studies have been
carried out in tomatoes as this crop is considered to be one of
the model plants in genetic transformation and other genomics
studies. The most critical functional component present in the
tomato is carotenoids, especially lycopene and anthocyanins. To
obtain lycopene-rich tomatoes, the genes encoding lycopene
β/ε-cyclase, responsible for the conversion of lycopene to
carotenoid, were silenced using RNAi technology. Significant
increases in lycopene content were observed in transgenic
plants (Ma et al., 2011). A mutation breeding approach was
also used to increase the carotenoid content of tomatoes by 30%.
Abscisic acid-deficient mutants in tomatoes have been shown to
increase the lycopene content (Galpaz et al., 2008). Further,
vegetables rich in anthocyanins were developed by
overexpression of specific genes of the carotenoid biosynthesis
pathway that induced a purple color, especially in tomato and
cauliflower (Brassica oleracea var. botrytis) (Gonzali et al., 2009;
Chiu et al., 2010).

Genome-editing technologies, especially CRISPR-Cas9,
has potential use in horticultural crops (Karkute et al.,
2017). Recently, this technique was used to edit five genes
that are involved in the carotenoid pathway to increase
lycopene content by inhibiting the conversion from
lycopene to β- and α-carotene in tomatoes that increased
lycopene content by five-folds (Li et al., 2018). In another
study, intense purple-colored tomato plants were obtained by
overexpressing an Anthocyanin mutant 1 (ANT1) gene that
encodes for Myb transcription factors using TALENs and
CRISPR/Cas9 approaches (Čermák et al., 2015).
Furthermore, phytoene desaturase (S1PDS), an essential
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enzyme in carotenoid biosynthesis, and phytochrome
interaction factor PIF 4 (S1PIF4) were targeted using
gRNAs with the stable transformed CRISPR/Cas9 system
(Pan et al., 2016). Most of the flavonoids in tomatoes are
present in the peel of the fruit. Hence, a holistic approach of
pathway engineering to increase the content of novel
flavonoids especially stilbenes in the flesh of the tomato
fruit was reported (Schijlen et al., 2006).

In carrot (Daucus carota subsp. Carota), a candidate gene,
DCAR_032551 that is responsible for carotenoid accumulation in
carrot taproot and is co-expressed with several isoprenoid
biosynthetic genes was identified from genome assembly and
transcriptomic studies (Iorizzo et al., 2016). A candidate gene-
based association study was carried out in carrots using 109 SNPs
in 17 candidates/carotenoid biosynthesis genes over 380 diverse
carrot cultivars, indicated the association of carotenoid content
with the root color (Jourdan et al., 2015). A terpene synthase gene
family of carrot was studied using QTL analysis and candidate
gene-based association on a panel of carrot diversity set of 85
cultivars. GBS approach was used to genotype the panel with
>168,000 SNPs (Keilwagen et al., 2017). Similarly, in bell pepper,
several putative candidate genes are involved in the biosynthesis
of capsaicinoids, such as Dihydroxyacid dehydratase (DHAD),
Thr deaminase (TD) and Prephenate aminotransferase (PAT)
were predicted from de novo transcriptome assembly (Liu et al.,
2013).

Besides, several transcriptomics studies related to functional
foods are available in crops such as lettuce (Lactuca sativa)
(Zhang et al., 2017). In general, there is much scope to use
genomics approaches to understand the molecular mechanisms

and to increase the functional components in fruits and
vegetables as evident by reports (Table 4).

Spices and Condiments
In spices and condiments, several studies have been carried out to
profile metabolites, especially flavonoids, tannins, and alkaloids
(Lee and Shibamoto, 2001; Shahidi and Ambigaipalan, 2015). In
cinnamon (Cinnamomum verum), DART-QToF-MS method
was utilized to discriminate true cinnamon from other species
(Avula et al., 2015). There are limited reports on trait mapping in
the case of spices (Table 5).

Most of the research in spices is related to the discovery of
functional components. For instance, garlic has organic sulfur
compounds as primary functional foods that have medicinal
properties to reduce common cold, blood pressure and
harmful cholesterol levels (Martin-Lagos et al., 1995). The
functional food in turmeric is referred as curcumin, which acts
as a acid neutralizer, blood purifier, tonic and antiseptic. The
biological properties of curcumin were explored by using protein
expression studies (Fang et al., 2011). The functional component
of cardamom (Elettaria cardamomum) is d-limonene with
antibacterial, anti-inflammatory, analgesic, and antispasmodic
activities (Nadiya et al., 2017). Similarly, eugenol and eugenyl
acetate, the functional components of clove (Syzygium
aromaticum) are natural oxidants (Lee and Shibamoto, 2001).
Coumarin, a functional component of cinnamon at lower doses
has blood-thinning, anti-fungicidal and anti-tumor activities
(Kawatra and Rajagopalan, 2015). Piperine from black pepper
(Piper nigrum) has antioxidant, anti-inflammatory, and
anticancer properties (Gorgani et al., 2017). Cumin (Cuminum

TABLE 5 | Study of functional foods in beverages, spices and condiments using biotechnological approaches.

S.
No

Crop Functional food Gene Methodology References

1 Coffee Caffeine N-methyltransferase genes, CaMXMT1 RNA interference method,
Transgenics

Ashihara et al. (2008)

65 caffeine associated SNPs identified Genome sequencing and
KEGG pathway-based analysis

Tran et al. (2018)

2 Tea epigallocatechingallate,
epigallocatechin, epicatechingallate

CsANR1 and CsANR2 Expression in E. coli Pang et al. (2013)
Kim et al. (2014)

Catechins and polyphenols Demethylase gene Transgenics followed by
metabolic engineering

Yadav et al. (2020)

Caffeine 27 QTLS were mapped to 8 linkage groups 2b-RAD Sequencing and High-
Density genetic mapping

Xu et al. (2018)

3 Cocoa Catechins and proanthocyanidins Glycerol-3-phosphate acyltransferase (GPAT)
genes, and lysophospholipid acyltransferase
(LPAT) genes

Expression studies in yeast Wei et al. (2018)

4 Cardamom d-limonene d-limonene RNA sequencing
Transcriptomics

Nadiya et al. (2017)

5 Clove Eugenol and eugenyl acetate Metabolites extracts Gas chromatography/mass
spectrometry

Lee and Shibamoto
et al. (2001)

6 Black
Pepper

Piperine Piperine Transcriptomics Hu et al. (2015)

7 Garlic Organic sulfur compounds Acetolactate synthase (ALS) gene Transgenics using the biolistic
method

Park et al. (2002)
Santhosha et al. (2013)
Al- Safadi et al. (2000)

8 Fenugreek Saponins diosgenin Gene expression studies Ciura et al. (2017)
9 Saffron Crocin made up of Apo carotenoids Carotenoids Induced mutation (gamma rays

and chemical mutation)
Khan et al., 2011;
Kyriakoudi et al., 2015
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cyminum) has cuminaldehyde that enhances appetite, taste
perception, digestion, vision, strength, and lactation. It is also
used to treat diseases such as fever, loss of appetite, diarrhea,
vomiting, abdominal distension, edema and puerperal disorders
(Sowbhagya, 2013). Ginger (Zingiber officinale) has gingerols,
shagols, and paradols with antioxidant, antimicrobial, and anti-
inflammatory potential (Butt and Sultan, 2011). Nutmeg
(Myristica fragrans) has tannin, flavonoid, and terpenoid
which are natural antioxidants (Assa et al., 2014). Coriander
(Coriandrum sativum) has carotenoids, polyphenols and essential
oils, which provides vitamin A and vitamin C (Laribi et al., 2015).
Fenugreek (Trigonella foenum-graecum) has quercetin,
kaempferol and vitexin derivatives which are anti-diabetic and
anti-nociceptive properties (Ghosh et al., 2015). Saffron (Crocus
sativus) has crocins, picrocrocin, and safranal, which is
antispasmodic, eupeptic, gingival sedative, carminative,
diaphoretic activities (Melnyk et al., 2010). Using mutation
breeding in saffron has increased yields (Khan et al., 2011)
that in turn increases the overall bioactive components per plant.

Transgenic research is still an emerging area in spices and
condiments. In garlic and turmeric (Curcuma longa), genetic
engineering approaches were utilized for developing herbicide
tolerant plants (Park et al., 2002; Shirgurkar et al., 2006).
Although there are some reports on the transcriptome of black
pepper fruits (Hu et al., 2015), ginseng (Panax ginseng) (Rai et al.,
2016), and cardamom (Nadiya et al., 2017) to study global
transcriptome, there are no reports related to functional
components in most of the spices. There is tremendous
potential to use genomics approaches including trait mapping,
transcriptomics, whole-genome studies and allele mining in case
of spices to demonstrate and increase the functional components.

Beverages
Beverage crops produce potable beverages other than water.
Major beverage crops include Coffee (Coffea spp.), Tea
(Camelia sinensis), Cocoa (Theobroma cacao), and Lemongrass
(Cymbopogon citratus). Coffee has caffeine as the primary
phenolic compound and is known to reduce the risk of stroke
and cancer. Caffeine in higher doses is harmful as it may lead to
insomnia, nervousness, restlessness, irritability, an upset
stomach, a fast heartbeat, and even muscle tremors. As a
result, there are efforts to improve decaffeinated coffee plants
using RNAi technology (Ashihara et al., 2008). Tea has catechins
and epicatechin as primary functional foods, and they are known
to possess chemopreventive activities against prostate and
ovarian cancers, anti-obesity and anti-diabetic effects. Efforts
are underway to elucidate the proanthocyanidin pathway, also
to reduce caffeine content (Pang et al., 2013). Lemongrass has
citral as its primary functional food which has antimicrobial and
medicinal properties. Little research has been performed on
this crop.

QTLs for flavonoid-related traits in a tea were identified using
a high-density genetic map (Xu et al., 2018). Several
transcriptomics studies have been carried out in tea to
elucidate genes involved in polyphenol synthesis, Catechin
biosynthesis and other regulatory networks (Mamati et al.,
2006; Wu et al., 2016; Sun P. et al., 2017). To knock down the

expression of the genes involved in caffeine biosynthesis, RNAi
was used to repress the expression of the gene encoding
theobromine synthase (CaMXMT1) that reduced the caffeine
content in the transgenic coffee plants up to 70% (Ogita et al.,
2003). In the case of tea, the functional characterization of the
proanthocyanidin pathway and potential applications in
metabolic engineering was elucidated (Pang et al., 2013).
Cocoa rich in catechins and proanthocyanidins has a
promising effect on lowering blood pressure, boosting moods,
and sharpening memory. Metabolic engineering of yeast for
cocoa butter production was attempted by cloning the genes
involved in triglycerol synthesis viz., glycerol-3-phosphate
acyltransferase (GPAT), lysophospholipid acyltransferase
(LPAT) from cocoa into yeast (Wei et al., 2018). Efforts are
being made to develop lemongrass varieties such as Jor Lab L-8
with higher amounts of essential oil and herbage production
(Mohan et al., 2016). The biotechnological applications have not
been effectively utilized to increase the functional components in
beverages and there are few reports related to this (Table 5).

Medicinal Plants
Medicinal plants are called so because of their antibiotic,
antidiabetic, antihyperglycemic, and antihyperlipidemic
properties. Most medicinal plants are not consumed as staple
foods, but as preventive medicines for several diseases ranging
from the common cold to complex diseases like cancer. Herbal
genomics has high potential to explore, though there are few
efforts related to molecular breeding and genetic engineering in
the medicinal crops (Chakraborty, 2018). However, metabolite
profiling of some medicinal plants has been studied. In the case of
a famous Ayurvedic crop Haritaki (Terminalia chebula), a
component of Triphala (an ayurvedic composition), the
metabolite profiling of polyphenols and evaluation of the
decoction as a chemopreventive agent was studied (Pellati
et al., 2013). Similarly, metabolite profiling was examined in a
highly traded South African medicinal plant commonly known as
pain brush lily (Scadoxus puniceus) and the bioactive compounds
were isolated (Naidoo et al., 2018). Efforts for profiling
polyphenols, alkaloids and other bioactive compounds are
being carried out in other Asian medicinal plants (Gibon
et al., 2006; Vega-Gálvez et al., 2011; Gantait et al., 2014; Hao
and Xiao, 2015; Saito, 2018). For instance, in the case of Candyleaf
(Stevia rebaudiana), the water extracts from leaf and calli were
shown to have antioxidant activity and contain bioactive
compounds including folic acid, vitamin C, catechin, quercetin
and pyrogallol. Higher reactive oxygen species (ROS) scavenging
activities were found in leaf extracts (Kim et al., 2011).
Transcriptomics studies have also been carried out in some of
the important medicinal plants including Ashwagandha
(Withania somnifera) to understand the secondary metabolites
which have therapeutic utilization (Tripathi et al., 2020).

Recent advances in metabolite and pathway engineering and
their utilization in medicinal plant research have positively
contributed to herbal genomics research. Most of the
molecular studies in medicinal plants involved either discovery
of the genes/enzymes/pathways related to secondary metabolites
or increasing the production of the secondary metabolites using
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elicitors, hairy root cultures or metabolite engineering
approaches.

FUTURE PROSPECTS

Current approaches in crop sciences using integrated omics
platform aims at providing a nutritionally rich, diverse
balanced diet to the society. Several leading edge technologies
in understanding and manipulating different segments of
scientific research areas viz. genomics, proteomics,
metabolomics etc. has enabled the researchers to enhance
contents of key nutrients in crop plants. Not just nutrition,
but reducing the unflavorful compounds (phytic acid,
acrylamide-forming amino acids, etc.) in food crops has
allowed people to consume a wide range of food crops. Bio
fortification has potential to solve nutrition deficiencies and in
this view several food crops viz. rice, maize, wheat, etc. have been
biofortified to have enhanced amounts of Fe, Zn, etc. (Ye et al.,
2000; Gil-Humanes et al., 2014; Mugode et al., 2014; Trijatmiko
et al., 2016). Crop improvement with new advancements in field
phenomics, employing applications of machine learning (Niazian
and Niedbala., 2020), nanotechnology and artificial intelligence
(Ben Ayed and Hanana, 2021; Zhang et al., 2021), biosensors like
lidar (Jin et al., 2021) followed by statistical analysis using data
science (Tong and Nikoloski, 2021) approaches will enable
researchers to precisely assess traits for plant breeding and
development (Deery and Jones, 2021).

In order to ensure the nutrional security, along with enhancing
the nutritional value, we need to work on reduced food-wastes that
has a significant economic, environmental and social impact (FAO,
2019). Several initiatives in estimating food waste and prevention
has been proposed (Moraes et al., 2021), however, devising
methodologies in estimating and reducing food wastage is still a
paradox (Richards et al., 2021). This can be featured as an
opportunity to overcome malnutrition in addition to food waste
reduction and stabilize bio-economywith sustainable processing of

food waste into bio-based products (Sharma et al., 2021). The
innovative technologies for extraction and microencapsulation of
bioactives using novel technologies inmetabolomics can be utilized
in enhancing plant based functional foods (Pattnaik et al., 2021).

The research in nutrition and omics technologies in food
science with epidemiological techniques should be classically
established (Palou et al., 2004). In the future, the advances in
foodomics and nutrigenomics can enable to achieve nutritional
security in most of the crops. Utilization of omics technologies to
identify the functional components in less explored crops like
fruits, vegetables, spices and medicinal plants is essential to
improve the functional components. There is a need to
integrate multi-omics technologies in functional food research
to elucidate and enhance the nutrition components in plants.
Nutrigenomics can provide insights into the interaction of
functional foods in human health and would provide allusion
towards scientifically personalized diet.
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