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During cardiac disease, t-tubules and dyads are remodelled and disrupted
within cardiomyocytes, thereby reducing cardiac performance. Given the
pathological implications of such dyadic remodelling, robust and versatile
tools for characterizing these sub-cellular structures are needed. While
analysis programs for continuous and regular structures such as rodent ven-
tricular t-tubules are available, at least in two dimensions, these approaches
are less appropriate for assessment of more irregular structures, such as
dyadic proteins and non-rodent t-tubules. Here, we demonstrate versatile,
easy-to-use software that performs such analyses. This software, called Tubu-
lator, enables automated analysis of t-tubules and dyadic proteins alike, in
both tissue sections and isolated myocytes. The programmeasures densities of
subcellular structures and proteins in individual cells, quantifies their distri-
bution into transversely and longitudinally oriented elements, and supports
detailed co-localization analyses. Importantly, Tubulator provides tools for
three-dimensional assessment and rendering of image stacks, extending exam-
inations from the single plane to the whole-myocyte level. To provide insight
into the consequences of dyadic organization for synchrony of Ca2+ handling,
Tubulator also creates ‘distance maps’, by calculating the distance from all
cytosolic positions to the nearest t-tubule and/or dyad. In conclusion,
this freely accessible program provides detailed automated analysis of the
three-dimensional nature of dyadic and t-tubular structures.

This article is part of the theme issue ‘The cardiomyocyte: new revel-
ations on the interplay between architecture and function in growth,
health, and disease’.

1. Introduction
In cardiomyocytes, invaginations of the sarcolemmal membrane form a complex
system, known as the t-tubular network. Although t-tubules are primarily
oriented transversely across the cardiomyocyte, a substantial fraction of ‘axial’
or ‘longitudinal’ tubules may be oriented along the long axis of the cell. Both
transverse and longitudinal elements form dyadic junctions with the sarcoplas-
mic reticulum (SR). This close localization of the dyadic membranes enables the
opening of L-type Ca2+ channels in t-tubules to trigger Ca2+ release from
opposing ryanodine receptors in the SR, eliciting contraction. A high density of
well-organized t-tubules and dyads facilitate synchronized Ca2+ release across
the entire myocyte and efficient triggering of contraction [1–5]. T-tubule and
dyadic organization vary between species and even within chambers of the indi-
vidual heart. Additionally, several studies have shown that these structures are
subject to considerable plasticity [2,5]. For instance, dyads are disrupted and
degraded during cardiac diseases such as heart failure, leading to impaired
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cardiomyocyte Ca2+ handling, and hence reduced whole-heart
contractility [2]. Given the importance of proper dyadic func-
tion, and the implications of remodelling during disease, t-
tubules and dyads have been subject to increasing research
interest during recent years. Therefore, robust and versatile
analysis tools are needed.

First and foremost, assessing dyadic remodelling requires
quality imaging of cardiomyocyte structures, acquired with
optimized labelling specificity and intensity. Once recorded,
dyadic structure has traditionally been quantified in two
ways; firstly, by density analyses (e.g. fraction of cell covered
by structure of interest) in binarized images, and secondly, by
regularity analysis using fast Fourier transformation (FFT).
While these approaches are practical and easily implemented,
both methods are sensitive to variations in image quality and
pixel intensity. A common recurring problem when analysing
density is that automated thresholding algorithms are sensitive
to the overall t-tubule signal, thus biasing threshold settings
towards lower values in cells with fewer t-tubules. By compari-
son, FFT analyses are, in addition to being susceptible to
intensity-driven bias, also sensitive to cell size and require
regular structures to yield readily interpretable results. An
automated IMAGEJ plugin using these methods was previously
published [6], but it was not until the Song laboratory created a
plugin called AutoTT that some of these shortcomings were cir-
cumvented [7]. Their plugin automatically normalizes
fluorescent intensity to allow for better comparison between
images with variable clarity and brightness of t-tubule staining.
It also calculates parameters describing t-tubule structural fea-
tures and density with better accuracy than previous attempts.
Although this program functions well on isolated cardiomyo-
cytes, it does not allow analysis of multi-cell preparations
such as whole-heart in situ preparations and cryosections. In
addition, the plugin relies on continuous structures, thereby
limiting its use on tissue where t-tubules or dyadic proteins
are more sparsely distributed. Another approach has used
matched-filter-based algorithms to circumvent the pitfalls of
thresholding [8]. However, this method also relies on t-tubule
regularity. Finally, although t-tubules and dyads are known
to have complex configurations in three-dimensional space,
available programs have until now been limited to two-dimen-
sional analyses of these structures, and have not enabled
examination of co-localization of dyadic proteins. Such ana-
lyses require not only careful thresholding of signals but also
accurate methods for skeletonization.

Here, we developed an automated approach to analyse t-
tubule and dyadic structures in images captured by confocal
and Airyscan microscopy. The Tubulator software employs
novel methods to circumvent the most common pitfalls occur-
ring when analysing such data, while enabling quantification
of the density, orientation and co-localization of t-tubule mem-
branes and proteins. The current software is more versatile
than previously published plugins, as it supports automated
analysis of different cell types and multicellular preparations,
and because it enables interpretation and reconstruction of
the three-dimensional nature of dyadic structure.
2. Methods
(a) Cardiomyocyte and cardiac tissue preparation
Animal experiments were approved by the ethics committee at
the University of Oslo and performed in accordance with the
Norwegian Animal Welfare Act and NIH Guidelines ((NIH pub-
lication no. 85-23, revised 2011). Wistar rat cardiomyocytes were
isolated by retrograde Langendorff perfusion, and either imaged
directly or fixated in 4% paraformaldehyde as previously
described [9].

Methods for collection of human tissue were approved by
the Regional Ethics Committee (project S-05172) in agreement
with The Declaration of Helsinki and the Council of Europe
Convention on Human Rights and Biomedicine. Left ventricular
tissuewas obtained from non-diseased donor hearts deemed unsui-
table for transplant owing to surgical concerns. Tissue was snap-
frozen in liquid nitrogen and, following cryosectioning (10–20 µm),
fixed in 4% paraformaldehyde for 30 min (see [10] for details).

(b) Labelling of t-tubules and dyads
Experimental imaging of t-tubules was performed by staining
live cells with di-4-ANEPPS (Sigma-Aldrich), di-8-ANEPPS
(Sigma-Aldrich), RH237 (ThermoFisher), CellMask (Thermo-
Fisher) or FM1–43FX (ThermoFisher). In fixed cells and tissue
sections, t-tubules were stained with wheat germ agglutinin con-
jugated to Alexa Fluor (488, 546 or 633). Dyadic proteins were
labelled with primary antibodies against Caveolin-3 (Cav-
3; Abcam, ab2912) and bridging integrator 1 (Bin-1; Santa
Cruz, Sc-23918), and secondary antibodies coupled to Alexa
Fluor 488 or 546 (ThermoFisher). Presented images of dyadic
proteins and t-tubules were obtained using an LSM800 Airyscan
confocal microscope (Zeiss, Jena, Germany) using a 63× magnifi-
cation oil immersion objective. To test the versatility of the
plugin, analysis of images captured with other confocal
microscopes (Zeiss LSM 510 and 710) was also performed.

(c) Set-up and usage of Tubulator
Tubulator was written in MATLAB and compiled to a stand-alone
application (https://gitlab.com/louch-group/tubulator-installer).
The software requires installation of MATLAB compiler runtime.
The Tubulator executable file can then be copied to anywhere on a
Windows PC. Technical details and limitations of Tubulator can be
found in the electronic supplementary material.

(d) Workflow of the software
A step-by-step user guide for Tubulator is provided in the elec-
tronic supplementary material. The workflow of the program is
demonstrated in figure 1a for a representative, isolated rat ventri-
cular cardiomyocyte immunolabelled for the dyadic proteins
Caveolin-3 and Bin-1. Based on rough manual estimation of
cell orientation and contours, Tubulator rotates and trims the
raw image to fit and centre the cardiomyocyte in the analysis
window. The ‘active contour’ [11] function is then used to auto-
matically define outer cellular borders and a sarcolemmal mask,
to allow subsequent construction of a cytosolic mask. The bias
that can occur when binarizing based on whole cell fluorescence
values is circumvented by use of a custom-made adaptive
threshold. This method of thresholding calculates local threshold
levels across the cytosolic compartment, thereby reducing errors
owing to uneven pixel intensity while ensuring that only struc-
tures of interest are highlighted. Based on the binarized image,
Tubulator calculates the fraction of the cell covered by t-tubules
or protein of interest.

Dyadic structures are examined in more detail, as the binar-
ized image is skeletonized followed by morphological closing.
Based on the resulting skeleton, distances to the skeleton are cal-
culated for each pixel in the cytosol. These distances are then
summarized in a ‘distance plot’, illustrating the distance from
all points in the cytosol to the nearest t-tubule or sarcolemmal
membrane; a critical determinant of the synchrony of cellular
Ca2+ release [12]. In addition, average, median and maximal
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Figure 1. Overview of Tubulator’s workflow. (a) The individual stages of image processing are illustrated for a rat ventricular cardiomyocyte stained with antibodies
against Caveolin-3 (green) and Bin-1 (red). First, the user is prompted to manually indicate the long axis of the cardiomyocyte, and roughly trace around the cell.
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intracellular distance and deviation are calculated and printed in
a text file to provide more information about density and regu-
larity of the examined structures. Lastly, Tubulator analyses the
fractions of transverse and longitudinal elements by analysing
the direction of neighbouring pixels in the skeleton.

An important feature of Tubulator is the ability to analyse cells
in tissue sections directly (figure 2a, left). The software enables
analysis of several individual cells in each tissue section and
can, provided that the analysed image is captured as a z-stack,
also calculate distances to the nearest t-tubule or membrane in
three-dimensional space (figure 2a, right). Three-dimensional
reconstructions of the calculated metrics can subsequently be
assembled using other programs (such as IMAGEJ, National
Institute of Health, USA) as shown in figure 2b, and explained
in more detail in [9].

(e) Benchmarking Tubulator’s performance
To test the accuracy and analytic power of Tubulator, an array of
synthetic cardiomyocyte phantoms (n = 37 cells) was created in
MATLAB (Mathworks, Natick, MA, USA), with known t-tubule
density and quantities of transverse and longitudinal elements.
In brief, these synthetics cells were created using an image
matrix consisting of 1024 × 1024 pixels, at a resolution of 6.67
pixels μm−1. In each matrix, the cell’s surface membrane was
simulated with a 900 × 200 pixel rectangle 7 pixels in thickness.
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Figure 2. Tubulator’s versatility enables advanced analysis of tissue sections in three dimensions. (a) Human ventricular tissue section analysed in two dimensions
(left) and three dimensions (right). Tubulator is able to perform detailed analysis on multiple cells from the same section in three dimensions. Each cell is analysed
by the same methods as used for isolated cardiomyocytes (figure 1), including three-dimensional capabilities for distance map creation and rendering (b).
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Within this rectangle, transverse and longitudinal lines repre-
senting t-tubules were drawn. Transverse lines were spaced at
intervals of 1.8 ± 0.3 µm, while longitudinal lines had an average
distance of 5.6 ± 1.2 between them. To simulate a variable t-
tubule density in both orientations, a random number generator
was used to determine whether a given line would be drawn.
The chance of losing a given line was set by the operator, varying
from 0% to 100%. Exact densities of transverse and longitudinal
tubules were calculated by counting the number of pixels con-
taining transverse lines inside the cell, divided by the area of
the cell. To simulate noise acquired during experimental
imaging, a noise map was superimposed on simulated t-tubule
images using random Gaussian noise created and filtered with
convolution of a circular averaging filter. After analysing the
final simulated images with Tubulator, comparison was made
with the performance of previously published software [6,7].
3. Results and discussion
Tubulator was developed to improve upon existing methods
for structural analysis of t-tubules and dyadic proteins (see
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[13–15]). Unlike previous contributions, the created software
does not rely on regular structures for morphological analy-
sis, and can be employed for examining the density,
orientation and co-localization of t-tubule membranes and
proteins in a variety of tissue preparations. Tubulator can
also process and display image stacks to reveal detailed infor-
mation of the three-dimensional nature of cardiomyocyte
substructure. Finally, the program provides functional insight
into the consequences of dyadic organization, by computing
‘distance maps’ known to correlate with Ca2+ release
synchrony and kinetics across the cell [12].

Tubulator’s adaptive thresholding method ensures binari-
zation unbiased by cell contents (e.g. low or high signal
density), while at the same time eliminating bias owing to vari-
ations in pixel intensity (electronic supplementary material,
figure S1). Importantly, estimations of density are made
prior to the skeletonization step, meaning that variations in
t-tubule diameter are accounted for. The subsequent skeletoni-
zation step in the analysis pipeline enables extraction of key
features of t-tubule/dyadic organization, allowing delineation
of transversely and longitudinally oriented structures
(figure 1b; electronic supplementary material, figure S2).
Unlike currently available software, the technique used for
these calculations is not based on FFT analysis, which is
dependent on structural regularity, but rather determines the
directionality of each pixel’s neighbours.

To benchmark Tubulator’s performance, synthetic cardio-
myocyte phantoms were created, with t-tubule densities
varying between 0% and 30% (figure 3a). Importantly, the
images comprised differing compositions of transverse and
longitudinal components. Example cells with high and low
t-tubule density are shown in figure 3a. We observed that
Tubulator accurately estimated t-tubule density, as outputs
were strikingly similar to known values in the simulated
images (figure 3b). Measurements of the densities and frac-
tions of transverse and longitudinal elements were also
found to be robust (figure 3b). To compare Tubulator’s capabili-
ties with previously published analysis tools (TTORG [6] and
AUTOTT [7]), the same analyses were performed using these
programs (figure 3c,d, respectively). As expected, these
macros were often unable to analyse cells with no transverse
elements, or very low overall t-tubule density. Indeed, of the
37 cells analysed, TTORG and AUTOTT failed to yield outputs
for the six images with the sparsest and least regular t-
tubule arrangements. This shortcoming highlights the pitfalls
of traditional FFT-based analyses, and the advantage of not
assuming the presence of regular structures. Notably, all pro-
grams estimated densities and fractions of transverse and
longitudinal elements which were significantly correlated
with actual values (figure 3b–d). However, Tubulator achieved
the strongest associations, and the improved performance of
Tubulator was not limited to cells with sparse t-tubules.
Thus, the program is well suited for analysis of cardiomyo-
cytes with a wide range of t-tubule or protein density.

As the arrangement of dyads in transverse and longitudi-
nal orientations is frequently complex, greater insight is given
by the produced distance maps. In addition to producing
colour-coded images, average, median, and maximum dis-
tance and variability are conveyed to give a nuanced
picture of both density and regularity of the analysed struc-
tures. For z-stacks, distances are additionally calculated in
three-dimensional space to yield valuable information about
the true three-dimensional nature of myocyte substructure.
Tubulator is also convenient to use for analysis of co-local-
ization between proteins or structures of interest. The output
image file contains both the binarized and skeletonized cell
which can be readily employed for subsequent co-localization
analyses. In addition, individual skeletons of transverse and
longitudinal elements are produced, which provides a scaffold
for assessing co-localization within these two orientations. As
an example, a rat ventricular cardiomyocyte labelled with Bin-
1 and Cav-3 is shown in figure 1a. Although previous reports
have indicated that there is robust expression of these proteins
along t-tubules [16], co-localization analysis enabled by
Tubulator showed that Bin-1 and Cav-3 do not fully co-localize.
Indeed, large fractions of transversely oriented Bin-1 were
present in the absence of Cav-3 staining, and longitudinal
co-localization was virtually non-existent (figure 1b).

In contrast to previously published software, Tubulator
performs analyses in tissue sections directly (figure 2). The
file structure outputted by Tubulator enables easy identifi-
cation of individual cells’ localization in a tissue section.
This feature is especially useful when, for example, investi-
gating regional differences in cardiac chambers [9,17].
Another obvious usage is whole heart in situ preparations,
where individual cardiomyocytes can readily be selected
for analysis [18,19].
4. Limitations
The main challenge for obtaining robust quantification of t-
tubules and dyadic proteins is proper thresholding of stain-
ing signals. Here, a custom-made adaptive thresholding
technique was developed to allow more accurate binariza-
tion. Although, this approach improves upon existing
methods, it does not overcome all pitfalls of binarization
entirely, and some risk of over- or under-estimating signal
density remains. However, we have sought to minimize
binarization bias by allowing the user to adjust the adaptive
thresholding in the program. Importantly, our method relies
on good image quality for optimal outputs and on rare
occasions a different thresholding method may be preferred.
Thus, Tubulator provides the possibility to analyse pre-binar-
ized images, or binarization based on mean fluorescence.

Tubulator does not directly assess t-tubule widths,
although previous work has shown that t-tubule dimensions
may be significantly altered during cardiac disease [20].
Nevertheless, relative changes in t-tubule width can be esti-
mated with Tubulator outputs, by comparing t-tubule
densities between two groups before and after skeletoniza-
tion. For example, we previously have shown that higher
t-tubule density observed during heart failure with preserved
ejection fraction was attributed to t-tubule dilation, since ske-
letonization reduced t-tubule signals to control values [15].
Alternatively, t-tubule widths may be assessed by
simultaneously staining t-tubule membrane and lumen [21].
5. Conclusion
In summary, we developed software suited for detailed
analysis of the three-dimensional organization of t-tubules
and dyadic proteins, with easy application to isolated cardio-
myocytes or tissue sections. We anticipate that Tubulator’s
versatility and novel features for data extraction will aid
researchers in interpreting data and generate new
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hypotheses. The software is freely available and can be
accessed by contacting the authors.

Ethics. Animal experiments were approved by the ethics committee at
the University of Oslo and performed in accordance with the Norwe-
gian Animal Welfare Act and NIH Guidelines ((NIH publication no.
85-23, revised 2011). Methods for collection of human tissue were
approved by the Regional Ethics Committee (project S-05172) in
agreement with The Declaration of Helsinki and the Council of
Europe Convention on Human Rights and Biomedicine.

Data accessibility. MATLAB files and codes are available here: https://
gitlab.com/louch-group/tubulator.

The data are provided in the electronic supplementary material
[22].
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