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Immersive software tools are virtual environments designed to give their users an

augmented view of real-world data and ways of manipulating that data. As virtual

environments, every action users make while interacting with these tools can be carefully

logged, as can the state of the software and the information it presents to the user, giving

these actions context. This data provides a high-resolution lens through which dynamic

cognitive and behavioral processes can be viewed. In this report, we describe new

methods for the analysis and interpretation of such data, utilizing a novel implementation

of the Beta Process Hidden Markov Model (BP-HMM) for analysis of software activity

logs. We further report the results of a preliminary study designed to establish the validity

of our modeling approach. A group of 20 participants were asked to play a simple

computer game, instrumented to log every interaction with the interface. Participants

had no previous experience with the game’s functionality or rules, so the activity logs

collected during their naïve interactions capture patterns of exploratory behavior and

skill acquisition as they attempted to learn the rules of the game. Pre- and post-task

questionnaires probed for self-reported styles of problem solving, as well as task

engagement, difficulty, and workload. We jointly modeled the activity log sequences

collected from all participants using the BP-HMM approach, identifying a global library

of activity patterns representative of the collective behavior of all the participants.

Analyses show systematic relationships between both pre- and post-task questionnaires,

self-reported approaches to analytic problem solving, and metrics extracted from the

BP-HMM decomposition. Overall, we find that this novel approach to decomposing

unstructured behavioral data within software environments provides a sensible means

for understanding how users learn to integrate software functionality for strategic task

pursuit.

Keywords: virtual environments, behavioral modeling, UX, Markov processes, contextual computing, human

computer interaction, hidden Markov models
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Introduction

Software logs collected during users’ interactions with a virtual
environment provide a complex, dynamic data source from
which patterns of human behavior can be mined. By treating
software as the sensor, users’ behavior is constrained only by
the limitations of the virtual environment, enabling collection
of natural behavior patterns in real-time. Such data provides
a high definition lens through which dynamic cognitive and
behavioral processes can be viewed, making the software-as-
sensor experimental paradigm a powerful tool for the study of
such behaviors. In this report, we describe new methods for
the analysis and interpretation of such data, utilizing a novel
implementation of the Beta-Process Hidden Markov Model (BP-
HMM) to model software activity logs collected from individuals
playing a simple computer game which they have never seen
before. We also offer experimental validation that this modeling
approach was able to capture meaningful variation in the actual
behaviors encoded by these logs.

HMMs have long been used to characterize the dynamics
of time-series data in a wide variety of domains, including
speech recognition (Gales and Young, 2008), gesture recognition
(Mitra and Acharya, 2007), and bioinformatics (Yoon, 2009). An
HMM is a type of Markov model that represents the dynamics
of a stochastic system as a set of states and state transition
probabilities, where the states themselves are not observable. A
data (observation) sequence is generated by an HMM according
to the set of observation probability distributions associated with
the hidden states, and the state transition probabilities of the
model, both of which are learned from the data (Rabiner and
Juang, 1986). Our selection of an HMM-based approach for
modeling software activity logs was motivated by the hypothesis
that canonical behavior patterns in the logs could be quantified by
the parameters of an HMM representation of the data sequences.
The properties of the hidden state observation probability
distributions represent distinctly different “modes” of behavior
as distributions over the frequencies of temporal co-occurrence
of the activity logs. The state transition probabilities capture the
dynamics of how these behavior modes interact.

The use of HMMs for the analysis of software activity logs
is not without precedent, and has proven successful in other
domains, including analysis of click-stream data for assessment
of web-browsing behavior (Ypma and Heskes, 2003; Laxman
et al., 2008; Schwartz et al., 2011; Melnykov, 2014), and
for identification of insider-threat patterns in computer usage
and database access logs (Thompson, 2004; Ted et al., 2013).
Traditional HMMs are designed to represent the dynamics of
a single underlying Markov process. Methods for extending
single-sequence HMMs to more complex, multi-series datasets
include coupled HMMs (Brand et al., 1997), and mixed HMMs
(Altman, 2007), which are utilized in several click-stream analysis
studies (Ypma and Heskes, 2003; Melnykov, 2014). Similarly, in
this study we were interested in identifying canonical behavior
patterns in the ensemble of software logs, utilizing the BP-HMM
approach to multi-sequence modeling. The BP-HMM identifies a
global library of activity patterns (states) shared by an ensemble
of related data sequences, and assigns a subset of these behaviors

to each sequence individually. Each sequence is modeled as an
HMM, but the states populating these models are pulled from a
global pool, allowing for direct comparisons between the models
(Fox et al., 2009). This means that data from different individuals
or from the same individual across multiple sessions can be
described using the same state-space. Using the BP-HMM we
were able to identify canonical behavior patterns in the software
logs representative of learning, skill-acquisition, and mastery of
the game. To our knowledge, this study is the first to apply the
BP-HMMmethod to software activity logs. It has previously been
used for the discovery of activity patterns from video collections
(Hughes and Sudderth, 2012).

In this methodology report, we illustrate how the BP-HMM
can be applied to the analysis of sequential behavior within
software environments. Sequential behavior was captured as part
of a pilot experiment during which participants interacted with
a simple computer game for the first time. Participants had to
learn to play the game and acquire points through self-driven,
unstructured exploration of the game’s interface. Using data
collected from this experiment, we demonstrate that quantitative
metrics extracted from modeling output contain information
related to performance and user experiences. Finally, we discuss
practical applications of the BP-HMM method for analysis of
data in unstructured virtual environments, software-based task
analysis, usability evaluation, and dynamic software adaptation.

Materials and Methods

Participants
Participants were 20 members of the Cambridge, MA
community, recruited through online advertisements
(Craigslist). Participants were eligible on the basis that they
were able to normally perceive color and whether they had either
normal or corrected vision. Prior to engaging in laboratory
tasks, all participants were distributed a consent form and intake
questionnaire online. Participants who acknowledged the online
consent form, and completed intake questionnaires were invited
to the laboratory for testing procedures. Once in the laboratory,
participants gave signed informed consent. All methods were
approved by the New England Institutional Review Board
(NEIRB; Protocol # 13–401). Of the 20 participants, 42% were
female, 47% identified as Caucasian while the other half of
participants identified as Asian (5%), Hispanic (5%), of African
descent (∼26%), and Indian (∼11%); the remaining participants
declined to state. On average, participants were 33.53 years of age
(Range = 37 years, SD = 11.25 years). The sample was generally
educated above the high-school level with most reporting a
B.A. level education (68%), and only 5% reporting a M.A. level
education.

Laboratory Procedures
Intake Questionnaires
Once enrolled in the study each participant was distributed
an intake questionnaire, hosted by surveymonkey.com.
Questionnaires contained demographic items (age, ethnicity,
education, etc.), as well as measures of analytic aptitude. The
latter included; self-reports for the ability to use math in everyday
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situations [Subjective Numeracy Scale (SNS); Fagerlin et al.,
2007]; and analytic problems that require algebraic formulation
to solve, where an intuitive answer is almost certainly incorrect
(Cognitive Reflections Test; Frederick, 2005); publically
available, analytic questions involving sequencing or algebraic
problem solving, in the style of Scholastic Aptitude Test (SAT)
problems.

Questionnaires also solicited responses to measures of
problem solving approach and cognitive style, including the
rational-experiential inventory (Epstein et al., 1996), which
gauges a propensity for deductive (rational) or inductive
(experiential) problem solving styles. It also included the Need
for Cognition scale (Cacioppo et al., 1984), which measures
participants’ desire for challenging cognitive problems, and the
Need for Cognitive Closure scale (Webster and Kruglanski,
1994; Roets and Van Hiel, 2011), which addresses whether
participants are willing to “settle” for answers to challenging
problems for the sake of closure. Finally, the intake assessment
included the Maximization Scale (Nenkov et al., 2008), which
accounts for individuals’ likelihood to strive for the best answer
or alternative to a problem, at the expense of time. These
items have been previously informative in studies regarding
analytic problem solving (Poore et al., 2012, 2014). All measures
were selected given their relevance to information foraging
and analytic decision-making. Scaling, completion rates, and
descriptive statistics for intake questionnaire measures are
given in Supplementary Material (Tables 1–7), as well as cross
correlations between questionnaire measures, task dependent
variables and modeling output.

Data Collection
Having completed intake questionnaires, participants were
invited to the Draper Laboratory (Cambridge, MA) for a
1 h session to complete tasks involving human computer
interactions. Each participant was asked to play two sessions of
a game called Wiggle, developed by the University of Southern
California, Institute for Creative Technologies (USC-ICT; Ware
and Bobrow, 2004, 2005) (see Figure 1; top panel). The game
provides users with a 10 × 10 matrix of colored tiles. The
goal of this game is to maneuver tiles into groups of 3 of
the same color, using a finite set of acceptable moves (see
Figure 1; bottom panel). Creating groups of 3 like-colored
tiles scores points for the player. This game was presented
to participants on a Hewlett-Packard touchscreen desktop
computer—all participants interacted with the game exclusively
with touchscreen inputs.

In order to manipulate the tiles presented on the interface,
users can either select (Sel) a tile by tapping it, or they can drag it
to the side, which is called a wiggle (W). When the user wiggles,
all tiles in the grid of the same color move with it, revealing the
spatial relationships between all tiles of that color. In order to
move a tile, the player must first select the one they want to move,
and then tap the location they want to move it to. If the new
location creates a group of three tiles of the same color, this event
is labeled a swap (S). If not, none of the blocks actually move, and
the event is logged as a reswap (R).

The goal in using this game for the present study was
to examine the different strategies participants might take in

FIGURE 1 | USC-ICT’s “Wiggle” Demonstration Game. Top panel. The

game presents users with a 10× 10 matrix of colored tiles. Users are required

to form groups of 3 adjacent sets of the same colored tiles. Doing so provides

points and produces a chime. Bottom Panel: Users are constrained in how

they can interact with the tiles. They can select a tile by tapping on it, and

attempt to move that tile to an adjacent location by tapping on that location. If

this move results in a grouping of 3 tiles of the same color, the user has made

a swap, which scores points, and causes the entire matrix configuration to

change. If the attempted move is to an adjacent location, and does not

complete the pattern of three, this is treated like a failed swap attempt, and

categorized as a reswap. This activity doesn’t change the interface. Finally,

users can also wiggle the tiles on the board by selecting a tile and dragging it

to the side. This move causes all tiles of the same color to move with it,

revealing spatial relationships between all the tiles of the same color on the

board. This function is designed to aid in searching for swap opportunities.

Participants are given 10min to complete this task.

interacting with the game. As such, no participants were told
exactly how to play the game or how to interact with the colored
tiles. Instead, half of participants were not told anything about
how to play the game, save that their task was to learn how
to play the game. The other half were given some instruction
that the goal of the game was to “score points by grouping
like objects,” but they were not told how to do so. Additionally,
half of participants were given a version of the game that
enabled the wiggle function, but were not told about this
function or how to use it. The other half of the participants
interacted with the game without this feature. Participants played
the game in two sessions, each lasting 10min. This resulted
in a mixed between and within subjects 2 [goal (instruction)
vs. no goal (no instruction)] × 2 (wiggle vs. static) x 2
(session) research design; participants were randomly assigned to
conditions.

Post-session Questionnaires
Following each session, participants filled out a brief
questionnaire asking them about their experiences with the
game. Questionnaires included an abbreviated version of the
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Bedford workload measure (Roscoe and Ellis, 1990), including
questions pertaining to self-reported task difficulty and mental
effort, as well as game engagement (Brockmyer et al., 2009;
Procci and Bowers, 2011). As part of this questionnaire,
participants were given an opportunity to report what they
thought the rules of the game were, using a free-response
format.

Behavioral Data Collection and Extraction
The Wiggle software incorporates an activity logger which
generates a time-stamped sequence of activity codes for each
game-play session, where each activity code (i.e., Sel, S, R,
W) corresponds to one of the four activities described above
(i.e., select, swap, reswap, wiggle). This software instrumentation
allows us to generate a time-series of participants’ activities
for each of their sessions, of which there were 40 total across
participants. The raw time-series of activity sequences were then
passed through a parser designed to extract context from some
of the sub-sequences in the dataset. For example, a potential
attempt to move a block must be preceded by selection of the
block to be moved, so we reinterpreted rapid sequences of select-
wiggle, select-swap, and select-reswap completed within 50ms
as simply wiggle, swap, and reswap, respectively. Since we were
interested in understanding the sequence of actions the player
intended to make, we felt that including the context surrounding
activities would confound the intent of behaviors (e.g., swap)
with the coded sequence used to implement that intent (e.g.,
select-swap).

Using the re-coded sequences, we extracted an additional
feature from the data. For each logged activity, we computed the
time delay between the current and previous activity, generating
a continuous-valued feature vector capturing the rate at which
each activity was performed. Figure 2 depicts this process.
Combining the temporal feature with the activity logs generated
a 2-dimensional mixed-type data sequence with categorical and
continuous components.

Modeling User Behavior
The entire ensemble of data sequences was jointly modeled
as a single BP-HMM. In the following, we present a general
overview of HMMs, the interpretation of its model parameters,
and extension to ensemble modeling with BP-HMMs.

Hidden Markov Models
A Markov model represents the dynamics of a stochastic system
as a set of states and state transition probabilities. At any
given time, the system can be described as being in one
of Kstates, s1, s2, . . . , s3 and the probability of transitioning
between states is conditioned on the current state of the system.
An HMM also assumes Markovian state transition dynamics,
but the states themselves are not observable. Instead, the
observations (data sequence) are a probabilistic function of
hidden states, which emit the observations according to their
individual observation probability distributions. A K-state first
order discrete HMM is fully characterized by the following set of
parameters:

• The set of M possible observations (symbols) generated by the
underlying discrete process, described as:

V = {v1, v2, . . ., vM}

• The set of K hidden states in the model:

S = {sk} , 1 ≤ k ≤ K

• The state transition probability matrix, A, containing the
probabilities of transitioning from every state in the model to
every other state. If the current state of the system at time t
is qt :

aij = P
(

qt+ 1 = sj|qt = si
)

, 0 ≤ aij ≤ 1,

N
∑

j=1

aij = 1

The matrix A =
{

aij
}

for 1 ≤ i, j ≤ K.

• The set of observation probability distributions, θ, for each of
the hidden states. The discrete HMM is designed to capture the
dynamics of a sequence of symbols drawn from a finite library
of M possible observations. The form of the observation
probability distributions of each hidden state is therefore
an M-dimensional categorical distribution. For a given
state k:

θk (i) = P
(

vi at time t|qt = sk
)

, 1 ≤ i ≤ M

FIGURE 2 | The Wiggle computer game logged the sequence of user

activities using 4 behavior codes (select, swap, reswap, and wiggle).

We derived a second feature from this time series that is representative of the

rate at which these behaviors occurred by computing the time delta between

activities. At the top of the diagram is an example of a raw data sequence.

The row of the table labeled “Categorical Feature” contains the sequence of

behavior codes derived from the raw data, and the bottom row of the table

contains the corresponding time delta between the previous and current

activity. This process created the mixed categorical-continuous time-series

dataset used in this analysis.
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FIGURE 3 | Diagram of a fully connected (ergodic) 3-state Hidden

Markov Model. S1, S2, and S3 represent the hidden states, O1, O2, and O3

are observations emitted by the hidden states, and aij represents the

probability of transitioning from state i to state j.

The parameters of each distribution, θk(i) for 1 ≤ k ≤ K
consist of the set of

{

p1, p2, . . . , pM
}

k
event probabilities, where

∑M
i= 1 pi = 1. pi can be interpreted as the likelihood of observing

symbol i while the system is in state k.

• The set of initial state distributions, Z = {zk}, where

zk = P
(

q1 = sk
)

, 1 ≤ k ≤ K

Figure 3 graphically depicts the structure of a 3-state, fully
connected HMM. S1, S2, and S3 represent the three hidden
states, and O1,O2, and O3 are random variables representing
the observations emitted by each state according to its emission
probability distribution.

A key assumption we made when choosing to model the
data sequences with HMMs is that a first-order Markovian
representation of the underlying dynamics of the stochastic
process is adequate—the probability of transition to a future state
is conditioned only on the current state, and none that preceded
it. We felt that this was a fair assumption to make given the
nature of the data, but concede that there could be higher-order
underlying dynamics in the data.

The Beta-process Hidden Markov Model
The BP-HMM can be thought of as a kind of latent feature model,
where the “features” represent a (potentially unbounded) set of
system states, and each data sequence has been generated by an
HMM populated by some subset of these states, with sequence-
specific state transition dynamics. Each sequence ismodeled as an
HMM, but the states populating these models are pulled from a
global pool, allowing for direct comparisons between the models
(Fox et al., 2009). The full set of parameters defining the BP-
HMMwith a library of K shared patterns (features), learned from
an ensemble of N sequences is:

• The set of sparse binary vectors f (i) =
[

f
(i)
1 , f

(i)
2 , . . . , f

(i)
K

]

, for

1 ≤ i ≤ N, indicating the presence or absence of each of
the K features in the ith sequence. A value of ‘1’ in this vector
indicates that the feature is ‘active’ in the sequence’s HMM. The
rows of the binary N x Kmatrix F contain the indicator vectors
for the entire ensemble.

• The set of Kobservation probability distributions
θ = {θ1, θ2, . . . , θK}. Each θk is a categorical distribution
composed of the set of

{

pk1, pk2, . . . , pkM
}

event probabilities,

where
∑M

i= 1 pki = 1.
• The set of N state transition matrices, 5 =

{

π
(1),π(2), . . . ,π(N)

}

. Since the state transition matrices are

sequence-specific, the size and interpretation of the elements
of each matrix differ according to which features are active
in that sequence. For a sequence π

(i) with L active features,
π
(i) will be an L x L matrix whose rows and columns contain

the probabilities of transitioning between these states. For this
analysis, we chose to use sequence-specific state transition
matrices.

The set of features assigned to each sequence is encoded in the
N x K sparse binary indicator matrix, F, which is a member of
the infinite set of binary matrices with N rows and a potentially
infinite number of columns. The beta process is a stochastic
process that can be used to identify the cardinality and structure
of F, based on the underlying dynamics of the latent feature
model.

Let bk be the ensemble-wide frequency of occurrence
of feature k, and θk represent the data generating model
corresponding to this feature. The global variables controlling
the distribution of the latent features across the ensemble, and
the properties of each feature, are generated by an underlying
stochastic process, the beta process (BP):

B|B0, γ, β∼BP (β, γB0) ,B =

∞
∑

k= 1

bkδθk

The random variable, B is drawn from the BP; it is the set of
weights defining the inclusion probability of each feature in the
model. The BP is parameterized by a mass parameter, γ , which
influences the total number of active features in the ensemble,
and the concentration parameter, β , which influences how those
features are distributed across sequences in the ensemble. For
each feature, θk ∼ B0 marks its data generation parameters
(Hughes et al., 2012). Each column of the binary matrix F is
generated by a sequence of independent Bernoulli draws, fik ∼

Ber
(

bk
)

, for i = 1, 2, . . . ,N.
Fox et al. first described the application of the beta process

prior to an ensemble of time-series data, where the features
were autoregressive processes, and each sequence was modeled
as an AR-HMM (the BP-AR-HMM) (Fox et al., 2009). In this
work, we implemented the version of the BP-HMM described
in Hughes and Sudderth (2012), where the data-generating
parameters of each feature (θk) are multinomial distributions
of V activity codes, and each sequence is modeled as an
HMM populated by a subset of these features, with sequence
specific state transition dynamics. We used the V-dimensional
symmetric Dirichlet distribution, with concentration
parameter λ0 as the conjugate prior of the multinomial
distributions:

θk|B0∼Dir (λ0, λ0, . . ., λ0)
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We converted the final multinomial distributions describing
each state into categorical distributions by normalizing over the
total number of observations, which allowed us to more easily
interpret the parameters as activity rates instead of raw activity
counts.

As in Fox et al. (2009), the transition distributions are feature-

constrained: π (i) =

{

π
(i)
k

}

. Each π (i) contains the parameters

governing the ith object’s transition probabilities among its active

features. To obtain π
(i)
j from each state j for sequence i, a set of

individual transition weights, η(i), is drawn, and then normalized
by the number of active features assigned to sequence i:

η
(i)
jk
|α, κ∼Gamma

(

α + κδ
(

j, k
)

, 1
)

, π
(i)
j =

[

η
(i)
j1 η

(i)
j2 . . .

]

⊗ fi
∑

k|fik= 1
η
(i)
k1

,

where δ
(

j, k
)

is the Kronecker delta function, equal to 1 if j = k.
fi is the binary indicator vector for sequence i, where a value
of 1 for fik indicates that feature k is active for sequence i, and
⊗ is the vector product operator. Here, the value of κ has been
added to the parameters of the Gamma distribution from which

the values of η
(i)
jk

are drawn. This addition contributes some extra

“stickiness” to the state transitions, putting more emphasis on
intra-state vs. inter-state transitions (Fox et al., 2011).

We used the Bayesian nonparametric optimization process
implemented in Michael Hughes’ NPBayesHMMMatlab toolbox
to fit the BP-HMM to our ensemble of data sequences (https://
github.com/michaelchughes/NPBayesHMM). The toolbox
employs Markov Chain Monte Carlo (MCMC) methods for
learning and inference. The MCMC method alternates between
resampling the binary feature assignments given observations
and the current state of the dynamic properties of the model, and
updating the properties of the model, given the binary feature
assignments. An in-depth description of this process is beyond
the scope of this report, but is described detail in Fox et al.
(2009), Hughes et al. (2012).

BP-HMM parameter selection
The BP-HMM learning process requires specification of
(nominally) 4 parameters used by the optimization routine.
Each of these parameters influences the structure and properties
of the final solution, and by tuning them appropriately, they
can enforce domain-specific constraints on the final solution.
Below, we describe the four parameters, their role in influencing
the properties of the final model, the combination of values we
experimented with, and the final set of parameters we selected:

• γ : The total number of active features in each data sequence
has a Poisson distribution with mass parameter γ . Larger
values of γ increase the number of features expected to be
active in each sequence. We tested values of γ = {2, 3, 4, 5}.

• β : The beta process has a concentration parameter, β , which
controls the degree to which features are shared across
sequences. Larger values of β encourage more overlap in the
set of active features across sequences. We set β = 1 in this
analysis.

• κ : The state transition probabilities of the model govern the
likelihood of transitioning from one state to the next, based on
the current state. The “stickiness” parameter κ is used to place
additional mass on the distribution governing self-transitions.
This encourages discovery of a model that can generate
state sequences with more temporal persistence, favoring
longer intervals of intra-state occupation over frequent inter-
state transitions (Fox et al., 2009). Larger values of κ

create more intra-state “stickiness.” We tested values of
κ = {50, 100, 200}.

• λ0: The observation probability distributions of each feature
are modeled as categorical distributions. The optimization
routine learns the parameters of these distributions
using Bayesian non-parametric methods, which require
specification of a conjugate prior for these distributions.
The natural conjugate prior of a multinomial distribution
is a uniform Dirichlet distribution, with concentration
hyperparameter λ0. Smaller values of λ0 encourage sparser
categorical distributions, while larger values nudge the
distribution closer to uniform. The choice of λ0 also has an
overall effect on the total number of features the modeling
process generates. Conceptually, features with smoother
distributions individually explain more of the data than
those with more sparse distributions, thus requiring fewer
total features to explain all of the data in the ensemble. We
experimented with values of λ0 = {2, 3, 5, 10}.

We chose large values of κ to strongly encourage intra-state
transitions. Any additional parameters were set to the default
values implemented in the NPBayesHMM toolbox. For each
parameter combination, we ran the optimization algorithm for
10,000 iterations, and selected the model parameters at the last
iteration as the final set.

BP-HMMmodel selection
Each parameter combination generated a slightly differentmodel,
so we implemented a clustering technique to identify individual
models that were representative of the unique properties of all
the models in the ensemble. We first grouped the models by
number of features, generating 7 groups with feature libraries of
size s = {7, 8, 10, 11, 13, 14, 15}.

For groups with more than one member, we chose a single
model to represent the group of solutions using the following
method:

a. For a group with feature library size s, we collected all
of the 60-dimensional categorical observation probability
distribution parameters from each member, and clustered
them into s clusters using K-means with a Euclidean distance
metric.

b. For each group member, we computed the distance between
each of its categorical distribution vectors and its assigned
cluster centroid, and then summed these values, generating a
metric representative of how close each distribution fell to the
full set of cluster centroids.

c. The solution with the minimum total distance to cluster
centroids was selected as the representative solution of the
s-state models.
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Clustering the solutions in this way was designed to identify
the single solution within each group that had categorical
distribution parameters most similar to all of the other group
members.

Although our final set of models generated 7 different
representations of the data, we observed that each model was
capturing essentially the same dynamics in each sequence with
varying levels of granularity dictated by the number of states in
the model. For the sake of simplicity, we have chosen to present
our final analysis of the 10-state model only. We felt that this
model represented the best trade-off between under- and over-
fitting of the dataset. The parameter combination corresponding
to the final 10-state model is {γ = 3; λ0 = 5; κ = 200;
β = 1}.

Vector Quantization
The data sequences to be modeled are not natively discrete,
and therefore must be re-coded to satisfy the constraints of the
discrete HMM representation. The 2-dimensional mixed state
categorical/continuous feature vector derived from the players’
activity logs were converted to discrete feature vectors using a
simple vector quantization technique.

For each of the four activity log types (select, swap, reswap,
andwiggle), all of the corresponding continuous-valued temporal
features were clustered using K-means clustering. A set of
centroids representing clusters of temporal values were identified,
and the data points assigned to each cluster were re-coded

with a corresponding cluster number. The K-means algorithm
requires a priori specification of the number of clusters to
generate from the dataset, and through experimentation we
decided to use 15 clusters to represent the range of temporal
features for each activity log. Each data sequence was re-
coded using this vector quantization scheme, generating a new
categorical observation vector composed of values from a 60-
symbol alphabet, where each symbol represents both an activity
log and temporal feature centroid. Figure 4 depicts a sample
discrete observation probability distribution for the 60 possible
observations. The height of each small bar corresponds to the
probability of observing the symbol, and each bar corresponds to
a centroid representing a cluster of inter-activity temporal feature
values. The bars are sorted in order of increasing inter-activity
time value (faster slower) from left to right for each activity
type. The parameters describing each hidden state’s observation
probabilities characterize the behavior of the individual in that
state in terms of what activities they performed and how quickly
they performed them.

Using the procedures described above, we fit a BP-HMM
to the ensemble of data collected in our pilot study and
characterized the quantitative parameters of the model in
terms of actual observed subject behaviors in the game-
play context. We also used participants’ questionnaire data
and task performance metrics to quantitatively (statistically)
examine whether the BP-HMM approach meaningfully captured
true variation in participants’ behavior. In this way, we

FIGURE 4 | Example of a discrete observation probability

distribution of the 60-symbol alphabet used to encode the

activity logs and temporal features. Each small bar corresponds to

a centroid representing a range of temporal inter-activity values. The

height of the bar represents the relative probability of observing the

corresponding symbol. The bars are grouped by activity log type, and

the height of the larger blocks is equal to the total probability of

observing each activity log, summing across all temporal values. The

actual inter-activity times represented by one symbol from each group

are depicted below the graph.
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attempted to provide robust evidence for the validity of
BP-HMM approach as a method for analyzing sequential
behavior.

Results

Overall Task Performance
As part of post-session questionnaires, participants were asked
to provide, in their own words, what they believed the game-
play rule was that governed the accumulation of points. These
responses were then scored as “correct” or “incorrect” by two
independent raters who were blind to participants’ condition and
BP-HMM modeling results. Participants who simply reiterated
the instruction (hint) to “score points by grouping like objects”
were not given “correct” ratings. After initial ratings were
made, inter-rater reliability statistics were computed using
Cohen’s Kappa model (Cohen, 1960; Sim and Wright, 2005) for
participants’ responses following each session. Kappa statistics
for sessions 1 and 2 were 0.71, falling well within an acceptable
range of agreement given the number of observations and
high a priori likelihood of agreement (50%) (Sim and Wright,
2005). Following estimation of inter-rater agreement, the singular
discrepancy was reconciled. See Table 2 for correct/incorrect
determinations for session 1 reports, and Table 3 for session 2
reports. Overall, response rates were poor. Of the participants
who did report, those that correctly identified the rule (n =

5) were also those given an initial “hint.” However, many
participants who were given this “hint” did not correctly identify
the rule.

The number of swaps each participant made during the
task is synonymous with points gained; they reflect successful
groupings of tiles. Therefore, the number of swaps serves as a
continuous performance metric as well. To characterize gross
performance on this metric, we averaged the number of swaps
exhibited by each participant across both sessions, as well as
participants’ Likert-Scale responses for both post-session reports
of task difficulty, workload, and engagement. We examined
differences on these three measures across the four conditions—
Wiggle w/o Instructions, Static w/o Instructions, Wiggle w/Goal
Instructions, and Static w/Goal Instructions. One participant
was removed from all analyses due to systemic “floor effect”
in post-session reports (gave all low scores, ignoring item
wording). A simple One-Way Analysis of Variance (ANOVA)

revealed no significant differences for either self-reported task
engagement or task-related workload. However, we found that
the average number of swaps is significantly different across
conditions [F(3, 18) = 10.66, p < 0.01], and that self-reports
for task difficulty also significantly differed across conditions
[F(3, 16) = 8.90, p < 0.01]. Post-hoc comparisons (Bonferroni
corrected) further revealed that for both significant effects, the
Static w/Goal Instructions condition was significantly different
from all other conditions. Participants in the Static w/Goal
Instructions condition uniformly exhibited more swaps than
any other condition (p = 0.01–0.001), and reported less
task difficulty (p-value range = 0.09–0.002). Additionally, spot-
checking of participant data revealed that these effects were not
driven by any single outlier, but represent a uniform difference
between conditions; participants in the Static w/Goal instructions
condition ranged between an average of 134–336 swaps during
their sessions, exceeding the average number of swaps in any
other condition (see Table 1). This suggests that participants
benefited from knowing that the goal of the game was to
acquire points, and that the wiggle function added no value. In
fact, without appropriate context (e.g., explicit instructions), the
added functionality may have made the game more complicated
for participants. These findings were further explored through
both heuristic and quantitative decomposition of BP-HMM
models.

BP-HMM Modeling Results
The BP-HMM parameters characterize subjects’ interactions
with the computer game. We interpreted these parameters
in the context of the actual dynamics of game-play, and
developed qualitative heuristics and quantitative metrics for
identifying distinct patterns of strategic interactions with the
game interface. We then evaluated these metrics against
independently collected data from intake and post-session
questionnaires. This approach was designed to determine if
the models were able to systematically explain variation in
the independent data, or if the BP-HMM method was merely
“fitting noise,” providing no inferential value for understanding
participants’ experiences with the game. The analysis was
by necessity post-hoc, since the models generated by the
BP-HMM are completely data driven, making traditional
a priori hypothesis-testing approaches to model validation
impossible.

TABLE 1 | Cell means and standard deviations for task-dependent performance and experience measures.

Independent variables × measure Wiggle condition: wiggle function enabled Static condition: wiggle function disabled

Mean swaps Mean difficulty Mean engaged Mean swaps Mean difficulty Mean engaged

No instruction condition: no instructions given M = 33.33 M = 6.80 M = 3.00 M = 56.25 M = 5.63 M = 2.80

SD = 16.55 SD = 0.76 SD = 0.34 SD = 23.21 SD = 1.49 SD = 0.34

Instruction condition: only given goal to acquire M = 20.75 M = 6.67 M = 2.86 M = 207.40 M = 3.7 M = 2.85

the most points SD = 17.73 SD = 1.04 SD = 0.73 SD = 109.41 SD = 0.84 SD = 0.60

Means are values for each measure, averaged across both play session. Swaps indicate successful groupings of tiles in the Wiggle game; therefore, mean swaps are redundant with

game-related performance. Self-reports for task-dependent difficulty and engagement were sampled following each session in Post-Session surveys.
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Shared Feature Activation Patterns
Our subject population was separated into sub-groups of people
with/without the wiggle function enabled in the game. By jointly
modeling all sequences together, we were able to identify patterns
of behavior exhibited by participants in both the static and
wiggle conditions, as well as patterns that were unique to the
experimental conditions. The ensemble feature activation map
captures the shared feature structure, as shown in Figure 5. The
rows of the map correspond to each data sequence, and they are
sorted by subject condition, with all static participants clustered
in the top rows, and wiggle participants toward the bottom. The
columns of the matrix correspond to model states (behaviors).
Green cells indicate “active” features in each sequence. The
states were sorted according to the sum of the probability
values assigned to wiggle-related symbols in each of the states,
increasing from left to right (1 10). Sorting the features in
this way reveals activation patterns clustered on the diagonal for
the static and wiggle groups, indicating that behaviors unique
to subject condition are captured by the properties of different
states. Based on the total probabilities assigned to wiggle-related
symbols, we observed that the model automatically created 5
states with a non-negligible probability of observing a wiggle
move, and 5 with probabilities close to zero. We will refer to
these groups of features as “wiggle states” (6 10) and “static
states” (1 5), respectively. Theoretically, all wiggle-related
symbols in the static states should have exactly zero probability
of occurrence. However, the stability of the optimization routine
used to model the ensemble requires that there be at least
some small likelihood assigned to each symbol in the alphabet,
resulting in the non-zero probabilities we observed. We felt
that this small inaccuracy was acceptable given that it allowed
us to model all sequences simultaneously, regardless of subject
condition.

Heuristics Extracted from Hidden State Distribution

Parameters
The observation probability distributions characterize subjects’
interactions with the computer game in terms of what they
did and how quickly they did it. Within the 10-state model,
we heuristically identified subsets of behaviors representative of
distinctly different strategies for naïve exploration of the game
interface, and behaviors representative of mastery of the rules of
the game.

Random search states
Figure 6 depicts the activity distributions for states 1, 2, 8, and
10. The distributions of the static states (1 and 2) are dominated
by swap and reswap activities. The relationship between these
activities captures the degree to which the participants moved
around the full grid of tiles as they attempted to identify the
color matching rule that scores points. The negligible number
of swaps and large number of reswaps indicates that individuals
observed in these states haven’t yet discovered the color matching
rule—they are still experimenting. The dominant, co-occurrence
of select and reswap activities in these states suggests an element
of random exploration. The relatively large probabilities of select
activities indicates that participants observed in these states were

FIGURE 5 | Feature activation map for the ensemble of data

sequences. Each row corresponds to a single session for a participant. Static

participants had the wiggle tile-sorting function disabled during their

interactions with the game. Columns correspond to the number assigned to

each hidden state, and green cells indicate that the state in that column was

active for the corresponding participant/session.

searching for patterns across the entire set of tiles, rather than
focusing on a particular sub region. A similar pattern emerged in
state 8, with the addition of wiggle activities. We also categorized
wiggle states 9 and 10 as random search behaviors, although they
are dominated more heavily by wiggle activities.

Sequential search states
Figure 7 depicts the activity distributions of states 5 and 7 which
are dominated by reswap activities in static state 5, and reswap +
wiggle activities for wiggle state 7. As in the random search
states, the negligible probability assigned to swap activities in
these states indicates that they capture behavior of individuals
who haven’t yet discovered the rule. However, the probabilities
associated with select symbols are also very low, indicating
that new tile selections were limited to the region directly
adjacent to the currently highlighted tile. The properties of this
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FIGURE 6 | Observation probability distributions for states 1, 2,

8, and 10. Each of these states has been identified as a “random

search” state. They represent the behavior of participants who

haven’t yet discovered how to score points in the game, as

demonstrated by the low probabilities assigned to swap activities.

Wiggle states 8 and 10 are dominated by wiggle activities, indicating

that while in these states, participants spent most of their time

exploring that function.

state appear to capture a behavior pattern we observed, which
can qualitatively be described as a “sequential search” strategy.
Participants exhibiting this behavior systematically, sequentially
selected adjacent blocks horizontally across rows, and vertically
down columns. Participants with the wiggle function enabled also
exhibited this behavior, interleaved with periods ofwiggle activity.

Success states
Figure 8 depicts the activity distributions for states 3 and 4, which
are dominated by select and swap activities in the static states
(3 and 4), with a negligible contribution from reswaps. Of all
the wiggle-states, state 6 was the only one with a non-negligible
contribution from swap activities, so it appears as though it is a
success state, or at least more successful than search states.

State Sequence Statistics
The BP-HMM assigns a subset of states to each sequence from
the shared global library, and identifies unique state transition
probabilities for each sequence. From these model elements, we
identified the most likely state sequences from each raw activity
sequence. We then calculated the amount of time spent in each
state by each participant in each session. The state sequence

and relative amount of time spent in each state capture the
dynamics of participants’ strategies as they evolve across each
session of game play.When paired with performance criteria, this
information yielded insights into which strategies/combinations
of strategies led to successful identification of the rules of the
game, and how knowledge condition and access to the wiggle
function affected strategy and performance.

Table 4 contains the proportion of time spent in each state
by each participant for each session, and whether they were
“successful” in discovery of the game rule from the perspective
of modeling output, based solely on the criteria that they spent
a non-negligible proportion of time in the states exhibiting high
swap rates (3, 4, 6). Analysis of the state-duration data based on
this heuristic revealed the following observations:

First, “goal” condition participants were more likely to
discover the rule. The only participants who discovered the rules
of the game were those who were told at the beginning of their
session that the goal was to “get points by grouping like objects.”
All of the static (non-wiggle) participants who were given this
hint eventually discovered the rule. The only participant in the
wiggle condition who discovered the rule was also given this hint.
Second, access to the wiggle function did not seem to aid in the
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FIGURE 7 | Observation probability distributions for states 5 and 7.

Each of these states has been identified as a “sequential search” state.

They represent behavior of participants who haven’t yet discovered how

to score points in the game, as demonstrated by the low probabilities

assigned to swap activities. We believe these states are capturing a

specific type of search strategy wherein participants systematically,

sequentially selected adjacent tiles moving across rows and down

columns.

FIGURE 8 | Observation probability distributions for states 3 and

4. Each of these states has been identified as a “success” state.

They represent behavior of participants who have discovered the

rules of the game, as demonstrated by the large probability

assigned to the swap activities, and relatively small probabilities

assigned to reswaps.

discovery of the rules of the game. Only one of the 11 participants
with wiggle functionality spent time in any of the success states.
In all of the wiggle states, the probabilities associated with wiggle
activities dominated all others, indicating that these participants
actually spent most of their time wiggling, regardless of state, to
the detriment of discovery of the rules of the game.

Finally, sequential search strategies did not appear to aid
in rule discovery. No participants who spent any time in the
“sequential-search states” (5 and 7) were successful. For the static
participants, none of the individuals who were given the rule hint
employed the sequential search strategy at all. The raw activity
rates observed during sequential search intervals tended to be
much higher than those recorded during random search. This
method inevitably generated random matches, simply due to
the physics of the game, but the agnostic selection of tiles in a
deterministic pattern may have made it more difficult to recreate

the moves that generated these randommatches, which could aid
in rule discovery.

Comparisons between Heuristic Decomposition of

Modeling Output and Independent Performance

Metrics
A comparison between independent raters’ assessment of the
participants’ understanding of the rules for scoring points in
the game, and those identified through heuristic interpretation
of the modeling parameters reveals substantial overlap. Of the
5 participants identified by raters as discovering the rule after
session 2 (see Table 3), all of them were similarly identified by
model-driven heuristics (see Table 4). One participant that was
not classified as successful by the raters in session 1 (see Table 2)
was identified through model-driven heuristics, although the
same participant was identified as having successfully identified
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TABLE 2 | Verbatim self-reported rule descriptions following Session 1 of game play, by subject.

Subject Condition Rule description Correct?

1 WiggleNo hint N/A

2 WiggleHint Moving the cross No

3 WiggleHint I think there was no rule and it colors moved automatically No

4 No wiggleNo hint N/A

5 No wiggleNo hint Don’t think just act… No

6 WiggleNo hint Touching different squares No

7 WiggleNo hint Choosing certain colors No

8 WiggleNo hint N/A

9 No wiggleNo hint N/A

10 WiggleHint Just clicking on one particular color box No

11 No wiggleNo hint There was no rule No

12 WiggleNo hint N/A

13 WiggleNo hint Not sure but I think it was about getting a certain color combination No

14 WiggleNo hint To put colored squares into groups and clusters No

15 No wiggleHint Finding and clicking a single color squares surrounded by three squares of a different color No

16 No wiggleNo hint Match three or more colors in a group next to each other Yes

17 No wiggleHint Three similar colored blocks needed to align, two blocks together with one block on top/side of the other two blocks Yes

18 WiggleNo hint The rule was to be fast, because gaining points was totally random No

19 No wiggleHint Acquire points by grouping 3 or more boxes of the same color together Yes

20 No wiggleHint Move one block to make at least 3 touching/adjacent blocks of the same color Yes

N/A indicates that participant gave no response.

the rule in session 2 by both methods. One additional participant
who was classified as successful from model-based criteria gave
no data in post-session reports. While quantitative performance
metrics (e.g., n swaps) clearly align with heuristic assessments of
BP-HMMmodeling output, because swapping behavior was used
to train the models, it cannot be thought of as an independent
metric, so comparative findings are not informative.

Statistical Assessment of Shared Information
between Modeling Output, Game Performance,
and Independent Self-Report Data
The purpose of a heuristic decomposition of the BP-HMM
model parameters as they relate to performance metrics serves
to illustrate the interpretability and qualitative insight that
the approach yields. We also examined whether quantitative
metrics extracted from the model contain information that is
stochastically related to independent data from intake and post-
session questionnaires, and assessed the extent to which BP-
HMM modeling outputs add information beyond raw data
extracted from game play, such as activity rate. The goal of
these analyses was to evaluate whether the approach produces
information that is meaningfully related to user experience and
performance, or whether it is simply modeling noise.

Derivative Metrics from Modeling Output
The BP-HMM states encode the temporal relationships between
activities performed by participants interacting with the software.
Therefore, a key comparison to be made is how the shape of
the distributions describing these relationships differs between
the states. States with platykurtic (diffuse) distributions represent

modes of behavior that reflect integration of the available
software functionality (a uniform probability of observing
activities within a state). States with a leptokurtic (peaked)
distribution represent models of behavior reflecting a strong
behavioral bias for specific activities. By classifying each state
as having a peaked or diffuse distribution and combining
information from state sequence activities, one can then
quantitatively describe each participants’ behavior based on the
percentage of time they spent in states with either peaked or
diffuse distributions. This kind of metric putatively captures the
participants’ understanding for how to integrate the activities to
accomplish the task, rather than use them independently.

Using this “peakedness” metric, we sorted the states into two
groups in order to maximize power in analyses with self-reports.
We experimented with two different methods for grouping the
states, in an effort to identify a robust solution (see Table 5

for classification results). First, we collapsed the 60-dimensional
categorical distributions into 4 dimensions by summing the
probabilities assigned to the 15 centroids (see small bars Figure 4)
representing each of the 4 activity types. We then estimated the
population excess kurtosis of the four values for each state, and
classified states as “diffuse” (platykurtic or uniform) or “peaked”
(leptokurtic) based on whether values reached excess kurtosis for
uniform distributions (−1.2; Decarlo, 1997).

Second, we took the average of the centroid values in each
activity, for each state, and interpreted the maximum of these
4 values as a measure of “peakedness” of that state. Using the
average of these values across all states, we categorized states as
“peaked” if their state-specific average was above the maximum
average value across all states, and as “diffuse” if it fell below.
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TABLE 3 | Verbatim self-reported rule descriptions following Session 2 of game play, by subject.

Subject Condition Rule description Correct?

1 WiggleNo hint N/A

2 WiggleHint By grouping blocks with similar colors No

3 WiggleHint At first I thought I was making the colors move, but in the end i was convinced that it was automatic yet I still sought

for the rule of the game

No

4 No wiggleNo hint N/A

5 No wiggleNo hint Don’t think too much… No

6 WiggleNo hint Touching the different squares No

7 WiggleNo hint N/A

8 WiggleNo hint N/A

9 No wiggleNo hint N/A

10 WiggleHint Don’t know the exact rule No

11 No wiggleNo hint There is no rule No

12 WiggleNo hint N/A

13 WiggleNo hint The more of the same colors the higher the score No

14 WiggleNo hint To put colored squares into groups and cluster them No

15 No wiggleHint Turn three squares of the same color into four squares by annexing a fourth neighboring square of a different color Yes

16 No wiggleNo hint Still matching 3 or more of the same color Yes

17 No wiggleHint Three matching colored blocks needed to line up, in any direction Yes

18 WiggleNo hint Gain more points by moving methodically across the screen/row No

19 No wiggleHint Points are acquired by moving colored blocks one space at a time to construct groups of 3 or more boxes of the

same color

Yes

20 No wiggleHint Move one block to make sure 3 adjacent blocks of the same color are touching Yes

N/A indicates that participant gave no response.

Both classification methods resulted in the same decisions.
States 1, 5, 8, 9, and 10 fell into the “peaked” category, and
states 2, 3, 4, 6, and 7 fell into the “diffuse” category. We then
calculated the percentage of game time that participants were
observed in the peaked category of states, for each session, and
across both sessions. Given that these variables were calculated
as percentages, subtracting 1 from these values would give the
percentage of time participants were observed in the diffuse
category of states.

Shared information between modeling output and

independent self-reports
Correlation analyses revealed a strong relationship between the
time participants spent in peaked and diffuse states and game
performance across sessions. Participants who spent more time
in peaked states than diffuse states were less likely to correctly
swap tiles in their first session (r = −0.68, p < 0.01). This is to
be expected given that the states that exhibited more swapping
behavior were agnostically classified as diffuse states. However,
almost all of the participants who spent more time in peaked
states were almost categorically incorrect in post-session 2 self-
reports of the governing rule for scoring points, as indicated by
independent raters [t(12) = −7.13, p < 0.001; see Figure 9].
They also self-reported expending more mental effort in their
first session (r = 0.49, p < 0.05), but not their second
(r = 0.25, p = 0.05), and were more likely to report more
difficulty with the task across sessions (r = 0.62, p < 0.01, see
Figure 10).

We also found that participants who spent more time in
peaked states exhibited a higher activity rate (r = 0.49, p < 0.05),
generating more logs across sessions. Moreover, high activity
rates across sessions were related to incorrect self-reports of the
Wiggle game rule [t(12) = −3.06, p < 0.01] and self-reported
task difficulty across sessions (r = 0.57, p < 0.05). Therefore,
we examined whether the BP-HMM derived peakedness metric
was a stronger indicator of incorrect self-reports, independent
of activity rate in predicting self-reported task difficulty. Because
our sample size was too limited to perform a step-wise logistic
regression comparing the independent effects of time spent in
peaked states and activity rate on incorrect self-reports of the
rule in the same model, we calculated the effect sizes (Cohen’s
d) of each predictor from t-tests The effect of time spend in
on correct/incorrect determinations was d = 4.11, a medium
to strong effect size. However, the effect of activity rate was
1.77, a weak effect. To evaluate the independence of the two
predictors on task difficulty we used step-wise regression. At
the first step, we entered activity rate as a predictor of task
difficulty. At the next, we added to the model the time spent in
peaked states across sessions. We found that at the second step,
activity rate is no longer a significant predictor of task difficulty
(b∗ = 0.35, p = 0.14), while the time spent in peaked states,
remains a (marginally) significant predictor of task difficulty
(b∗ = 0.45, p = 0.07). Taken together, this suggests BP-HMM
modeling output not only predicts independent performance and
self-reports of experience in systematic ways, it also adds more
predictive information than raw behavior alone. These findings
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TABLE 4 | Proportion of session time each participant spent in each state.

Subject Session Hint? Hidden state #

1 2 3 4 5 6 7 8 9 10

STATIC

4 1 N 0.67 0.29 0.04

4 2 N 0.86 0.14

5 1 N 0.22 0.13 0.65

5 2 N 0.31 0.42 0.04 0.23

9 1 N 1

9 2 N 1

11 1 N 0.25 0.75

11 2 N 0.91 0.09

15 1 Y 0.25 0.32 0.43

15 2 Y 0.40 0.60

16 1 Y 0.12 0.88

16 2 Y 0.05 0.95

17 1 Y 0.88 0.12

17 2 Y 1

19 1 Y 0.04 0.96

19 2 Y 1

20 1 Y 1

20 2 Y 0.30 0.70

WIGGLE

1 1 N 1

1 2 N 1

2 1 Y 1

2 2 Y 1

3 1 Y 0.01 0.95 0.04

3 2 Y 0.03 0.01 0.22 0.74

6 1 N 0.09 0.17 0.01 0.69 0.04

6 2 N 0.17 0.39 0.16 0.05 0.23

7 1 N 0.01 0.09 0.81 0.09

7 2 N 0.02 0.31 0.04 0.56 0.08

8 1 Y 0.65 0.35

8 2 Y 1

10 1 Y 0.66 0.34

10 2 Y 0.07 0.93

12 1 Y 1

12 2 Y 1

13 1 N 0.14 0.86

13 2 N 0.07 0.93

14 1 Y 0.08 0.15 0.11 0.66

14 2 Y 0.01 0.01 0.50 0.48

18 1 N 0.01 0.37 0.10 0.52

18 2 N 0.11 0.82 0.07

Participants who eventually discovered the color-matching rule are highlighted green. Participants in the “goal” condition—told to “group like-colored tiles”—are highlighted in blue.

generally align with insights from heuristic evaluations as well
(above).

We also found that the correlation between the time spent in
peaked states in session 1 is highly correlated with time spent in

those states in session 2 (r = 0.84, p < 0.001). To investigate this
further, we extracted each participant’s unique state transition
probabilities, and calculated the average likelihood that each
participant would transition between diffuse and peaked states,
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TABLE 5 | Classification of states based on kurtotic qualities of

categorical distributions.

States Kurtosis of average

(−1.2)

Average of

maximum (0.039)

State 1 1.714 0.047

State 2 −5.652 0.032

State 3 −4.657 0.033

State 4 −5.568 0.030

State 5 3.973 0.055

State 6 −1.402 0.023

State 7 −4.393 0.036

State 8 3.104 0.043

State 9 1.714 0.044

State 10 2.771 0.048

Values indicate metrics describing the peakedness of categorical state distributions from

centroid values. Parentheses indicate cutoff points for classification—excess values are

classified as peaked. Red colored cells are classified as peaked states, blue as diffuse

states.

and whether they would transition to other states within the
same category (we excluded probabilities for transitioning into
the exact same states as these tend to be much higher). A simple
within-subject t-test indicates that participants were more likely
to transition to states within the same category than to transition
between categories of states [t(18) = 6.01, p < 0.001]. These
findings suggest that once participants discovered a suitable
strategy for how to play the game, they generally didn’t deviate

FIGURE 9 | Average time spent in kurtotic states by participants who

were identified by blind raters as having correctly described the rule

governing how to accumulate points in Wiggle. Participants who correctly

reported the rule after both sessions were significantly less likely to spent time

in kurtotic BP-HMM states.

from that strategy, even if it required more effort and resulted in
fewer points scored.

We also conducted a One-Way ANOVA across the
four experiment conditions—Static w/o Instructions, Static
w/Goal Instructions, Wiggle w/o Instructions, Wiggle w/Goal
Instructions—with the time spent in peaked states as a dependent
variable, followed by corrected post-hoc pairwise comparison.
Results show a main effect of condition [F(3, 17) = 7.84,
p < 0.01], with post-hoc comparisons illustrating that
participants in the Static w/Goal condition evidenced less
time spent in peaked states compared to Wiggle w/o Instruction
(1M = −0.66, p < 0.05), andWiggle w/Instruction Instructions
(1M = −0.90, p < 0.01), but no difference from participants
in the Static w/o Instruction (1M = −0.66, p = 0.15)
category. This resonates with our comparisons against task
performance—participants spending the most time in diffuse
states also performed the best, and participants who performed
the best were in the static rule condition. However, this analysis
shows a demarcation between Static and Wiggle conditions in
terms of how users integrated software functionality. It suggests
that the insertion of a new activity may have led users to focus
on wiggling over finding out how select and swap activities were
related.

We did not observe any associations between the time spent
in either diffuse or peaked states and intake self-reports. This
was also true for raw behavioral data. However, we found that
participants’ likelihoods for transitioning from peaked states to
other peaked states was inversely related to intake self-reports
measuring a Need for Cognition (r = −0.75, p < 0.01) and
positively related to self-reported Need for Closure (r = 0.55,
p < 0.05). The Need for Cognition inventory taps proclivities
related to pursuing mentally engaging, challenging problems
with a reasoned approach. They are also related to success in
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FIGURE 10 | Association between average time spent in peaked states

and self-reported task difficulty. Illustrates that BP-HMM modeling output

can be reduced to metrics with intuitive and predictive utility. First, metrics

describing the structure of states have bearing on users’ understanding of

how game interface functions are integrated. Second, participants who rely on

specific functions, without exploring (or trying to discover) other ways of

interacting with the game interface report difficulty with the game task (above).

analytic tasks and analytical aptitude (Cacioppo et al., 1984;
Poore et al., 2014). In contrast, the Need for Closure scale
is designed to capture a desire for unambiguous tasks and
completion of problems for the sake of closure, rather than
accuracy or completeness (Roets and Van Hiel, 2011; Poore
et al., 2014). Taken together, these analyses suggest that BP-
HMM models can capture meaningful information related to
user experience and that this information can be informative
beyond raw data extracted from software logs (e.g., activity
rate).

Discussion

In thismethods report, we describe a novel implementation of the
BP-HMM for modeling and analyzing behavioral data extracted
from software activity logs. We conducted a pilot experiment
using a simple game that required participants to learn the rules
of that game (i.e., how to get points) through experimentation
with its interface functionality. Some participants were given
more information than others, and some participants were
given more functionality to make sense of. After modeling
activity logs generated during game-play using a BP-HMM, we
identified systematic differences in the strategies participants
used, based on the parameters of the model. Only a few
participants demonstrated knowledge of the actual rules of the
game, while others came close—they tended to occupy a few
states that evidenced some degree of proficiency in integrating
tool functions. Other participants’ behavior appeared to indicate
hypothesis testing and other exploratory patterns. Still others
settled on sequential search patterns that generated some points,
but were more effort-intensive.

Subsequent statistical analysis of raw performance indices
(number of swaps) across the task design suggested that
users with more information and less functionality to explore
performed better, in general. Additional analysis of metrics
derived from modeling output supported descriptive analyses.
Quantitative assessment of the “peakedness” of the categorical
distributions of each hidden state revealed two well-defined
categories of states, representative of how diffuse or focused
participants’ interactions with the game’s functions were. We find
that the time users spent in these two categories of states was
significantly related to participants’ self-reports of task difficulty
and expenditure of mental effort. Metrics derived from the
model parameters also added value in predicting these outcomes
beyond raw behavior (e.g., activity rate). Finally, we find that
the likelihoods associated with participants’ transitions to states
within the same category were strongly and inversely related
to individual difference measures of rational problem solving
styles and desires for intellectual challenge. Taken together, we
provide sufficient evidence that the BP-HMM approach for
modeling behavior within software environments is capturing
real variation in user behavior that relates to both task-dependent
outcomes and individual difference measures.

The BP-HMM approach shows promise in enabling a wide
range of discoveries from how people interact with software
environments. For example, recent research in the cognitive
neurosciences has focused on the rewarding aspects of gathering
or “foraging” for information to reduce outcome uncertainty
in both social and non-social environments (Behrens et al.,
2008; Niv and Chan, 2011; Kolling et al., 2012; O’reilly, 2013;
Chau et al., 2014). Much of this research is conducted with
impoverished stimuli—static images presented in sequence. BP-
HMM and other approaches for modeling behavior in dynamic
virtual environments can provide rich information to support
more complex modeling of the brain behavior-interactions that
occur when individuals forage for information in more realistic
task environments.

Our approach also has applications for intuitive software
design, software adaptation, and personalized learning. The
BP-HMM approach creates a progressive library of software
usage states that might be leveraged to automatically indicate
when users are exhibiting specific kinds of behavior that have
previously been linked to positive or negative outcomes. For
instance, in the simple computer game described in this study,
we found that the sequential search strategy was not helpful in
discovery of the rules of the game. In fact, none of the participants
employing this strategy were able to figure it out. As part of
an adaptive interface design, real-time user behavior can be
monitored for patterns reminiscent of this strategy. If detected,
feedback to the user, implicit or explicit, might then be provided
to help steer them toward a more preferred state.

Caveats
Our pilot validation study is very simple—additional replication
and research is needed to ensure that the BP-HMM approach
and derivative metrics are extensible to larger applications,
with fewer intrinsic dependencies between functions. Modeling
activity data to make inferences about performance, where one
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of those activities is convoluted with performance itself is also
problematic. In addition, we did not collect any information
from the participants regarding prior experience with similar
computer games, so it is unclear how this factor may have
influenced their interactions with the software. While our
assessment of the validity of the BP-HMM approach was by
necessity post-hoc, we believe we were able to identify many
content agnostic metrics that revealed non-trivial associations
with self-report data, and other behavioral data. This would
advocate for cautious optimism in the extensibility of the BP-
HMM approach.

Nonetheless, the Wiggle game provides a compelling test case,
given that it is a simple task, with rules that are not unlike
many popular commercial titles, such as Bejeweled or Candy
Crush. Additionally, it provided an opportunity to scale the
combinatorics of functionality by toggling the wiggle function for
some users. The fact that users performed more poorly with the
function activated is interesting given that the ability to grab like-
colored elements on the screen to better see patterns in the tiles is
highly effective. But, without proper context, the wiggle function
only added to the burdens on participants to learn how it could
be integrated with other functions, and how it could be used to
score points.

Future Directions
Future efforts will examine the utility of BP-HMMs for
the assessment of significantly more complex, vertically
integrated data analysis tools designed to enable visualization
and analysis of “Big Data.” A richer software environment
provides significantly more opportunity to study how software
integration affects naïve users’ intuitive approaches to problem
solving. The functionality and organization of the analytic
should enable the problem solving process, but establishing

a metric against which this can be judged is challenging.
To that end, we will use the BP-HMM to identify patterns
representative of analytic work flow, and examine whether the
software functions impede or enable this flow, as measured
by overall performance in an analytic task. We believe that
this new work will help further extend these methods to fully
immersive environments with user-independent behaviors,
and enable behavioral scientists to make full use of software
as a naturalistic human ecology that is also a measurement
medium.
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