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A b s t r a c t Diverse data sets have become key building blocks of translational biomedical research. Data types
captured and referenced by sophisticated research studies include high throughput genomic and proteomic data,
laboratory data, data from imagery, and outcome data. In this paper, the authors present the application of an XML-
based data management system to support integration of data from disparate data sources and large data sets. This
system facilitates management of XML schemas and on-demand creation and management of XML databases that
conform to these schemas. They illustrate the use of this system in an application for genotype–phenotype correlation
analyses. This application implements a method of phenotype–genotype correlation based on phylogenetic optimi-
zation of large data sets of mouse SNPs and phenotypic data. The application workflow requires the management and
integration of genomic information and phenotypic data from external data repositories and from the results of
phenotype–genotype correlation analyses. Our implementation supports the process of carrying out a complex workflow
that includes large-scale phylogenetic tree optimizations and application of Maddison’s concentrated changes test to
large phylogenetic tree data sets. The data management system also allows collaborators to share data in a uniform
way and supports complex queries that target data sets.
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A primary goal of biomedical research is to arrive at a better
understanding of biological systems and underlying mecha-
nisms of complex diseases and to translate this knowledge
into timely disease diagnosis and effective treatment. There
is widespread recognition1 of the value of integrating infor-
mation from locally generated data sets and from external
data sources such as public databases (e.g., GenBank,2 The
Jackson Laboratory,3 and the Mouse Phenome database
[MPD]).4 The ability to reference data from diverse sources is
an invaluable mechanism for researchers to better analyze in-
formation, statistically evaluate results, and prioritize disease
candidate genes, transcripts, and proteins for further study.

Over the past few years, widespread adoption of high
throughput molecular methods in biomedical research has
led to substantial increases in the size and complexity of
data used in research studies. Genotype–phenotype correla-
tion analyses of the type described here have benefited

from a sustained growth in the number of validated single
nucleotide polymorphisms (SNPs) for many model orga-
nisms and patient populations. These studies have also
benefited from the considerable effort now under way to
make phenotypic variation among inbred mice available in
digital formats.5 However, researchers are often exasperated
by the vastness, complexity, and lack of interoperability in
data resources. In practical terms, this means that researchers
spend more and more of their time assembling, documenting,
and updating data sets.

We have developed a data management and integration
framework for developing applications to query and examine
information from multiple data types and large data sets and
to share data generated in a research project in a distributed
environment such as the Grid. The salient features of the
framework include support for (1) distributed and coordi-
nated management of data definitions as XML schemas, (2)
querying of distributed data sources as XML databases, and
(3) on-demand creation of databases that conform to well-
defined and published schemas; this ability allows for creat-
ing and managing medium- and long-term caches of external
public data sources on a storage system. This framework
has been used in several applications, including a Grid-
enabled biomedical image management and analysis appli-
cation and an application to manage data from SNPlex
analyses. The metadata service component (Mobius Global
Model Exchange) of the framework is also being employed
in the caGrid software infrastructure of the cancer Bio-
medical Informatics Grid (http://cabig.nci.nih.gov) (caBIG)
effort.

We presented a brief overview of the framework in an earlier
work.6 In this work, we implement an application using the
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framework to support genotype–phenotype studies. This
application is part of a larger project that studies the genetic
bases of coronary artery disease. The overall application
workflow incorporates novel methods to discover candidate
genes, sequence similarity searches, and data integration to
correlate genotypes and phenotypes. A key step in the work-
flow is the management and integration of genotypic and
phenotypic data from multiple sources. In this paper, we pro-
pose and implement a schema for storing and managing out-
put from phylogenetic tree optimization operations. We also
describe how the framework is used to create and manage
local caches of external data sources for data integration
and analysis. The key contribution of this research study is
to elucidate a middleware framework designed to provide in-
vestigators with a uniform way of interacting with a hetero-
geneous collection of data sources. Investigators can use
these tools to invoke complex queries and design workflows.
To demonstrate the value of this approach, we describe our
implementation of a complex workflow that includes large-
scale phylogenetic tree optimizations and application of
Maddison’s concentrated changes test to large phylogenetic
tree data sets. We should note that this article focuses on
the design and implementation of the software system to sup-
port the application. The scientific findings from synthesis of
information from databases supported by our implementa-
tion will be presented in a future publication.

Background
Federated and parallel database technologies have been de-
veloped by the database management systems community
to enable efficient access to distributed data sources.7–10

Two main types of virtualization are offered by a federated
database management system: (1) transparency in the hetero-
geneity of attribute names, data schemas, and query lan-
guages of data sources and (2) masking the distributed
nature of the sources, that is, the client sees a unified, virtually
centralized system. Our approach draws from the notion of
database federation to provide a unified view of disparate
data sets. However, the system described in this paper not
only allows federation of existing databases, but also enables
on-demand creation of distributed databases and integration
of user-defined data processing with data storage.

Model-management tools11,12 and mediator-based systems
have also been employed for integration of semantic in-
formation and data across heterogeneous data sets.13 The
mediator-based architecture developed by Ludäscher et al.14

provides support for creation, management, and querying
of integrated view definitions. Their system enables linking
of data at the semantic level that encodes the domain spe-
cific knowledge about data elements and their relationships.
Mediation-based knowledge integration layers need to inter-
act with a data management layer to access data sources;
that is, semantic queries submitted by clients through a por-
tal interface are translated into queries against databases
controlled by the data management layer. Our system
addresses the requirements of the data management layer.

Grid computing has emerged as a widely accepted mecha-
nism to harness computing, storage, and data resources that
are hosted at different locations and connected over wide
area networks (e.g., the Internet).15,16 As Grid computing
has become more prevalent, a service-oriented view of the

Grid has been proposed. The Open Grid Services Architecture
(OGSA),17,18 the core set of standards developed by the
Global Grid Forum (GGF),19 builds on and extends the Web
Services technologies20 to address standard mechanisms
and definitions for creating, naming, and integrating Grid
services. There are some recent efforts to develop database
technologies on Grid and Web services. Bell et al.21 develop
interfaces, data models, and security support for relational
databases using Web services. Smith et al.22 address the prob-
lems associated with distributed execution of queries in a
Grid environment. They describe an object-oriented database
prototype running on Globus.23 Narayanan et al.24 imple-
ment a Grid-enabled infrastructure to support management
and querying of scientific data sets stored in distributed col-
lections of flat files. The OGSA Data Access and Integration
Services25 (DAIS) working group of the GGF is a focused ef-
fort that has been developing the service definitions and stan-
dards, drawing from the core OGSA standards, for data
access and integration in the Grid. Our software system has
been designed as a Grid-aware system and can take advan-
tage of emerging standards. In fact, the XML-based data
management system employed in this paper builds on the
evolving OGSA-DAIS standards.

A number of large projects have been driven by the need to
access distributed repositories. The Biomedical Informatics
Research Network (BIRN)26 project, funded by the National
Institutes of Health (NIH), targets shared access to medical
data in a wide-area environment. The BIRN focuses on sup-
port for data sets generated by neuroimaging studies. The
Shared Pathology Informatics Network (SPIN)27 initiative is
intended to provide a virtual database of human tissue spec-
imens. It develops an Internet-based software infrastructure
to support a network of tissue specimen data sets and the clin-
ical information associated with these data sets. It allows
searches and requests from approved researchers into these
data sets while making sure that patient confidentiality
requirements are met. Several multi-institutional research
projects have been funded by the European Union to investi-
gate the application of Grid technologies for manipulating
large medical image databases.28–30 The caBIG is an initiative
supported by the National Cancer Institute (NCI). The goal of
this initiative is to develop applications and the underlying
systems architecture for a nationwide cancer research net-
work. The caBIG Grid software infrastructure (called caGrid)
will facilitate distributed management and sharing of a vast
array of data sources and analytical tools hosted at multiple
institutions. The Mobius Global Model Exchange (GME)
component of our framework is used in the caGrid infrastruc-
ture to manage XML schemas, which represent the structure
of data objects that are managed and shared in the caBIG
environment.

Design Objectives
Our main objective is to support a set of core functions for
management and integration of data from disparate data
sources and different data types. We implement this support
in the form of a framework consisting of a set of tools and
loosely coupled services, which can be directly used or ex-
tended and customized for a particular application. In this
section, we present the set of functions that have motivated
the design of our framework.
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Virtualization
One of the challenges that an application developer has to
overcome is the fact that different storage formats and data-
base management technologies may be employed by each
data source. Querying and accessing data in such a setting be-
come challenging, as applications need to interact with differ-
ent types of systems. When a new data source is incorporated
into the environment, application developers have to update
their applications to interact with the new data source cor-
rectly. The goal of virtualization is to hide the heterogeneity
of software systems used by different data sources by en-
abling access to the sources with well-defined interfaces and
common information exchange protocols. In our framework,
this is achieved by services and communication protocols that
expose data sources as XML data sources.

Management of Data Types
In a setting where data can be consumed by disparate clients,
it is important to be able to define the structure of a data type
and to publish and manage this definition. A schema pro-
vides a formal and complete representation of the structure
of a data type and can act as a contract of data representation
between data producers and data consumers. In this way, a
client can correctly interpret a data object served by a data
source and client programs can interact with the data source
programmatically. Our framework provides support for cre-
ating, publishing, and managing data types as XML schemas
in a distributed environment.

On-demand Creation of Local Caches of
External Data
Virtualization provides a mechanism to hide the complexity
and heterogeneity of external data sources. However, there
are cases in which it is desirable to create local caches of
data from multiple data sources.

1. Snapshots: In some applications it is important to be able to
maintain a local snapshot of the data source. For instance,
a community of researchers may want to compare the per-
formance of various statistical or data mining algorithms
directed at a static data set. Such studies often involve re-
peated requests to the database. By storing a snapshot of a
data source, the query load on the original data source can
be reduced.

2. Interface stability: Both the data attributes and the interface
of a data source may change over time. In such cases, it is
useful to maintain a data source view on which analysis
operations can continue to function.

3. Query optimization: A data source may provide suboptimal
infrastructure for associative queries. For example, the
data source might allow a client to only download or up-
load files, despite the fact that these files can be structured
documents and queried. By creating an optimized data-
base on the contents of such files, complex queries can be
executed efficiently.

Distributed Execution of User-defined Operations
Processing of data by user-defined operations is a common
aspect of data analysis in almost every application domain.
In the context of data management and integration, user-
defined functions can be implemented to extract the data of
interest from one or more data sources and transform them
into a format that complies with published schemas and is

more efficient to manage and query. It is also desirable (and
necessary in some cases) to be able to compose multiple
user-defined operations into a data flow network and take
advantage of distributed and parallel computing clusters
for more efficient processing.

System Description
Mobius Framework
Our implementation builds on the Mobius framework.31,32

Mobius supports distributed creation, versioning, manage-
ment, and semantic discovery of data models and data
instances, on-demand creation of databases, federation of
existing databases, and querying of data in a distributed
environment. Mobius services employ XML schemas to
represent data definitions and XML documents to represent,
manage, and exchange data instances. In the context of data
integration, the management of data definitions and data
adhering to those definitions is of particular importance. We
present the two Mobius services, GME and Mako, which
provide the required functionality.

Mobius Global Model Exchange
Mobius adopts the philosophy that data standards should be
allowed to evolve organically, but they should be managed
under a common infrastructure. In this vein, Mobius imple-
ments a distributed service, the GME, for schema manage-
ment. The GME provides a well-defined protocol and
service implementation for publishing, versioning, and dis-
covering XML schemas in a distributed environment. A
schema can be a completely stand-alone description of a par-
ticular data set or it can be an elaborate composition of new
attributes and references to multiple existing schemas. By
referencing other schemas and entities in other schemas, a
user can compose more complex data types from simple data
types. Since references from a schema to other schemas are
allowed, it is essential to ensure referential integrity. Once a
schema is published to a GME instance, it is assigned a
version and made available for use by other clients. Once pub-
lished, a schema cannot be modified; however, a new version
of the schema can be published.

The architecture of GME is similar to the Domain Name
Server (DNS). A schema published through a GME instance
has to be registered under a namespace. Namespaces enable
publishing and management of schemas in a controlled
way. A hierarchy of namespaces can be created (like domain
names in DNS) and managed by multiple GMEs, each of
which is an authority for a set of namespaces and delegates
responsibility of subnamespaces to subordinate GMEs. Any
published schema can be discovered or resolved through
any given GME instance, as the authority hierarchy can be
navigated, while the storage of schemas can be distributed
across a collection of GMEs.

It is reasonable to expect that data types captured in a study
will evolve over time; new data attributes may be added or
existing attributes may be modified or deleted. It is therefore
necessary to support evolution of schemas in a controlled
way so that existing programs do not break when a schema
goes through changes. The GME architecture formalizes the
concept of versions. Any changes made to a data schema re-
flect either a new version of that schema or a completely new
schema under a different name or namespace. This restriction
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is an important one because it facilitates the evolution of data
types while enabling clients and services to still make use of
the older versions of the schema.

Mobius Mako: Data Storage and Retrieval
A critical component in supporting access to heterogeneous
data sources is the mechanism by which the data sources
are exposed (or virtualized). Mako is a strongly typed data
storage service that provides a set of well-defined interfaces
that expose a data source as an XML data source; since
Mako is a distributed service, its interfaces are motivated
by the work of the Data Access and Integration Services
working group in the Global Grid Forum.33 The Mako client
interfaces are similar to those of an XML database. For exam-
ple, a relational or object database, once exposed through
Mako service interfaces, could be queried using XPath as
opposed to SQL or OQL (Object Query Language). When an
XPath query is received by Mako, it is translated into the
query language of the back-end database system; our current
implementation of Mako provides support for accessing XML
views of existing relational databases via the XQuark Bridge
tool (www.xquark.org) and native XML databases via the
XMLDB API standard.

Virtualization of data sources as XML data sources trades off
some amount of native optimization and expressivity of the
underlying data resource in favor of uniformity of data ac-
cess. This trade-off is acceptable in most cases, since in the
process of virtualization, the salient features of the individual
data sets of interest have been made prominently available
and accessible in the data model being exposed to the client.
Often underlying data are aggregated, projected, and denor-
malized into the corresponding XML view, making attributes
of interest easily accessible via XPath queries. While this ap-
proach has been very successful, we have identified that there
are still occasions when a higher level of expressivity is re-
quired by some clients and data aggregation scenarios. The
root of this limitation is that XPath does not support expres-
sion of joins between documents and document collections.
It is solely a data access or location language. Queries, there-
fore, are limited to accessing the data model as designed by
the virtualization process. To support more complex user-
defined filters, joins, and more complex queries, we are in
the process of developing XQuery support in Mobius.

Virtualization, using Mako, of a data source to a common
access model makes it easy and uniform for applications,
services, and clients to interact with the data source.
Nevertheless, for the service provider, the problem of access-
ing the native data source remains. Mako abates this problem
by providing implementations for common data storage
mechanisms (e.g., support for relational databases using
the XQuark Bridge tool) and a simple method for extension
to new storage and data management systems. The imple-
mentation of Mako also provides a custom back end named
MakoDB, which is an XML database layered on top of
MySQL and optimized for data interactions within the
Mako framework. MakoDB provides many advanced fea-
tures such as (1) the ability to uniquely reference and re-
trieve individual elements, (2) support for on-demand
creation of optimized databases from XML schemas (pub-
lished in GME), and (3) efficient storage and retrieval of
binary data.

The structure of a database in Mako is required to comply
with a schema registered in the GME. In this way, Mako en-
forces all data sets stored and exposed to the Grid to conform
to strongly typed, published, and discoverable data models.
Each data collection in Mako can be restricted to only accept
XML documents from a set of certain schemas. When an XML
document conforming to a schema is submitted to a Mako
server that accepts said schema, the document is stored and
indexed so that the instance data in the document can be
queried and subsets of the data can be retrieved.

System Implementation
Our implementation consists of three main services: (1) a
metadata service, (2) a data service, and (3) a distributed
execution service. The metadata service is built on the GME
and provides tools to support management of data models
in a distributed environment. An application developer can
create, register, and modify schemas that define the structure
of data sets managed by the data service. The data service im-
plements tools for efficient storage, management, and query-
ing of distributed data sets. The data service is layered on the
Mobius Mako service and designed to take advantage of
aggregate storage capacity of distributed disk-based storage
platforms and clusters. Using the on-demand database crea-
tion capabilities of Mako, local caches of data stored in exter-
nal data repositories can be created and managed in this
service. The distributed execution service is designed to allow
execution of user-defined data processing procedures on com-
pute clusters. A more detailed description of the distributed
execution service and the underlying runtime system can be
found in our earlier work.34,35 The distributed execution ser-
vice works in tandem with the metadata and data services.
The input and output of a data processing component can
be described using XML schemas to enable better type check-
ing. Moreover, data output from an application component
can be stored in databases maintained in the data service.

An application developer using our system is expected to
implement application-specific schemas for data types and
user-defined operations for data filtering and format trans-
formations. As an example, consider integration of informa-
tion from protein databases from SwisProt, gene data from
the National Center for Biotechnology Information (NCBI)
Gene, genome annotations from the University of Southern
California (USC), and pathway information from the Kyoto
Encyclopedia of Genes and Geonomes (KEGG). In this case,
the developer will need to create XML schemas that define
each data type (i.e., protein, gene, genome annotations, and
pathways) and define join attributes that will be common
across these data types. These schemas can be registered in
the metadata service. The next step would be to develop cus-
tomized Mako services that will expose each data source
(SwisProt, NCBI Gene, USC, KEGG data servers) as XML
data sources that conform to the schemas registered in the
metadata service. Alternatively, the application developer
can implement data extraction and translation components,
which will interact with the individual data sources and cre-
ate XML documents that conform to the schemas registered in
the metadata service. Using the distributed execution service,
the data extraction and translation components can be exe-
cuted on a cluster system and the local caches of the remote
sources can be created. User-defined operations are not lim-
ited to format translations only; more complex operations
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(e.g., translation of mass spectral data to predicted peptide
sequence) can also be implemented, registered, and executed
in the system.

Clearly, there are several steps and application-specific imple-
mentations that an application developer has to do before
being able to implement support for data integration and
management in the application. However, once the data sour-
ces have been exposed using common protocols and service
interfaces and/or the local caches of the remote data sets
have been created, many client programs can be developed
without needing to customize each program for each data
source. In addition, since the data types are published in
the metadata service and data sources are accessed via uni-
fied protocols and service interfaces, other researchers also
can develop applications that can access the same data.
These are the main strengths of our framework. Using
our framework, application developers, data providers,
and users in a distributed environment can define, publish,
and share common data types and implement uniform
mechanisms for data source access. This enables data integra-
tion, and client programs can operate, even if the back-end
data server technologies are different and changed over time.

Status Report
In this section, we describe an application that we have devel-
oped for phenotype–genotype correlation studies as part of
an ongoing research project on coronary artery disease
(CAD). These studies involve collaboration between biomed-
ical researchers (Dan Janies, Andrew Johnson, and Farhat
Habib) with different expertise and analytical skills. They re-
quire support for the management, sharing, and integration
of data generated by each researcher and gathered from exter-
nal resources. This support was originally realized using flat
files and awk scripts. This approach was labor intensive,
prone to errors, and inefficient when the researchers wanted
to work with numerous large data sets. By implementing
the application using the framework described in this paper,
we have facilitated access to different data sets via a uniform
interface, allowed more effective sharing of data among the
collaborators, and enabled execution of complex queries on
large data sets.

The application presents a workflow for combined analysis of
genome wide DNA polymorphisms (SNPs) and phenotype
data for cardiac function, blood composition, and lipid me-
tabolism among a variety of mouse models. Given the high
labor and reagent costs necessary to evaluate candidate genes
in a wet laboratory, it is entirely reasonable to expect that can-
didate genes can be prioritized for empirical studies based on
initial discovery and characterization via in silico association
studies. The emerging field of in silico association of genetic
variants to disease traits has shown some success.36–38 A
major limiting factor in the field remains the availability of
densely sampled DNA data across diverse strains of mice.
This limitation should be substantially reduced because
sequencing of whole genomes for 15 diverse mouse strains
is underway (http://mouse.perlegen.com/mouse). In silico
methods have been controversial as they appear quite power-
ful for penetrant (the likelihood that a given gene will result in
disease) traits but less powerful for incompletely penetrant
traits such as those that have quantitative variation or are
controlled by multiple genes.39 However, the labor and

expense necessary for mapping of quantitative and polygenic
traits in mouse breeding regimens are considerable.40

Another limitation of mouse studies in general is that genetic
components of complex traits in mice are not necessarily
relevant to human etiologies. For instance, the human gene
CETP plays a role in cholesterol processing, but no mouse
CETP gene has been discovered.41 Thus, our workflow in-
cludes means to rapidly evaluate the applicability to human
disease of a candidate gene discovered in mice.

Application Overview
We have implemented a method of phenotype–genotype cor-
relation based on phylogenetic optimization of large data sets
of mouse SNPs and phenotypic data. We have adopted a phy-
logenetic approach because the hereditary relationships of
laboratory mice strains mean that they are not statistically in-
dependent entities, thus rendering standard statistical tests
inappropriate.42 Our method takes a global approach by
optimizing the SNP data into phylogenetic trees to minimize
the mutations necessary to explain the observed variation.
Phylogenetics sorts variation into attributes that result from
common ancestry and those that have evolved indepen-
dently. In doing so, it can identify mutations that occur in
step with the phenotypic changes of interest. Once a set of pu-
tative phenotype–genotype correlations has been established,
we assess the statistical strength of the correlation and the hu-
man biomedical relevance of candidate genes. This filtering
process needs to take into account both phylogenetic tree–
related statistics, merged with preexisting information con-
tained in mouse and human gene annotations. The results
can be used to (1) identify candidate genes that are already
known to be relevant to the human disease under study,
(2) detect novel candidate genes that are then prioritized
for empirical follow-up, and (3) identify false positives.
While some results are well-known candidate genes for
CAD, other genes have not previously been described as
candidates. Such novel candidates are prioritized for empir-
ical follow-up.

Our application provides the researcher with a mechanism to
systematically support the integration of locally generated ex-
perimental information, with information obtained from di-
verse sources. The application consists of two main parts. In
the first part, a researcher calculates one or more phylogenetic
trees from SNPs using a phylogenetic tree optimization pro-
gram called POY.43 The researcher may incorporate pheno-
typic data into the construction of the trees or optimize the
phenotypic data onto a tree based only on genotypic data.
Once a satisfactory tree has been found, the researcher cre-
ates, using POY and the phylogenetic tree, a table of inferred
mutations and phenotypic changes among strains of mice (an
example of the table is provided in Figure 1). The inferred mu-
tations and the phenotypic changes are then examined using
Maddison’s44 concentrated changes test to score putative cor-
relations among the mutations and the phenotypic changes.
Any highly correlated SNPs are output for each phenotype.
The actual implementation of these steps is explained for
our use cases in the section ‘‘Finding Single Nucleotide
Polymorphisms of Interest in Specific Use Cases.’’ The second
part of the application carries out an evaluation of the bio-
medical relevance of the candidate SNPs. Using a graphical
user interface, the researcher selects the list of well-correlated
SNPs to guide the search for haplotype blocks. The researcher
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then gathers annotation data on the biomedical relevance of
genes contained in the haplotype blocks from multiple sour-
ces, including Mouse Genome Informatics (MGI).45 Finally,
the researcher assesses the relevance of the candidate gene(s)
based on the annotation data, primary biomedical literature,
and the presence of human orthologs. These steps are de-
scribed in detail in the section ‘‘Estimating Haplotypes in
Strains of Interest and Using Annotation Data to Assess
Biomedical Relevance of Candidate Genes.’’ Execution of all
the steps in the application requires sharing data among the
researchers responsible for various analyses and the integra-
tion of the results with public data sources.

Finding Single Nucleotide Polymorphisms of
Interest in Specific Use Cases
The first part of our application searches for mutations that
change in step with phenotypes among diverse strains of
mice. In this paper, we used data sets from the Mouse
Phenome Database (MPD) and GNF2. To facilitate the study
of complex genetic diseases in mouse models, the Jackson
Laboratory has compiled an extensive MPD.4 Phenotype
data from many mouse strains are collected from the litera-
ture and via collaboration with experts through consistently
applied protocols. The data are compiled into a database
and flat files for download. In addition, a large number of
SNP data sets are now publicly available in the MPD. The
mpd146 data set available in the MPD is a compilation of
439,942 single and multiple nucleotide polymorphisms

genotyped by many research groups for 17 mouse strains.
We analyzed SNP data for 15 strains represented in mpd146,
for which there were accompanying phenotype data in the
MPD. The phenotype data were selected from a lipid study
data set titled ‘‘Paigen2’’46 in the MPD. The GNF2 database
contains 8,944 SNPs.38 Although the GNF2 data have fewer
SNPs, the data sets are more uniform in strain coverage, in-
clude a larger number of strains (a total of 48 strains), and
are more evenly distributed along the genome. Phenotype
data were available in the MPD for 39 of the strains repre-
sented in the GNF2.

In the application, we use the commands -replicate -tbr -spr of
POY43 to simultaneously align the sequence data for charac-
ters longer than 1 as various trees are constructed and refined
by POY in searching for an optimal tree and alignment. The
need for an algorithm such as POY to coordinate alignment
and tree construction arises from length differences in multiple
nucleotide polymorphisms (MNP) that are part of mpd146. In
the case of the GNF2 data, the alignment is fixed because each
polymorphism is of length 1 (i.e., an SNP). As a result of the or-
ganized nature of the GNF2 data set, data prealigned by any
tree search program (such as TNT47) could be used as input.
To efficiently store and query the POY output, we developed
a data model (Fig. 1) and the corresponding XML schema.
This model represents a view of the POY output that accom-
modates a forest, containing one or more trees, implied by
the data and analytical parameters (e.g., the number of repli-
cates examined and edit costs for transformations imposed).
The data model also includes information on the branches of
each tree that represent inferred ancestor–descendant relation-
ships. For each branch, transformations in the nucleotide and
phenotype data from the inferred ancestral states to descen-
dant states are assigned and output by POY. The transforma-
tions considered in the use cases include mutations, insertion
events, or deletion events in nucleotide data and changes in
phenotypes (e.g., from normal to elevated non–high-density
lipoprotein (HDL) cholesterol plasma levels). A branch may
contain multiple transformations (Fig. 1).

Our phylogenetic tree schema complements the schema
being developed in the TreeBase component of the CIPRes
project (http://www.phylo.org/). Our schema supports
transformations assigned to various branches that occur in
trees and their implied alignments. The TreeBaseII schema,
on the other hand, expresses data types and attributes for stud-
ies and related publication references, analyses, matrices, taxon
labels, and trees. To have a more comprehensive data model for
phylogenetic trees, our data model could be combined with the
TreeBaseII schema to capture transformations, implied align-
ments, and information on studies and publications.

Once phylogenetic trees are constructed, we need to assess the
potential that a phenotypic trait is correlated with a DNA pol-
ymorphism by chance. To assess the significance of a given
SNP, we use Maddison’s44 concentrated changes test (CCT).
The CCT is a measure of correlation between two binary char-
acters on a phylogenetic tree. It produces a p-value for the type
one error on the null hypothesis that the DNA polymorphism
is associated with the trait by chance. Since the CCT works on
binary data values, the phenotype data are made suitably bi-
nary by using a threshold value such as exceeding a standard
deviation above or below the mean (e.g., the mean value and
standard deviation value of non-HDL cholesterol levels)

F i g u r e 1 . (Top) The data model for the output from POY,
a program for phylogenetic tree optimization. The rectangles
and arrows represent the element types and parent-child rela-
tionships. The contents of the square brackets denote the attri-
butes associated with a node type. For example, a branch
element type has attributes for the ancestor node, the descen-
dant node, and the minimum and maximum length as com-
puted by the POY program. (Bottom) An annotated example
of section of tabular POY output depicting inferred transfor-
mations in three characters on a branch of a phylogenetic
tree. Character 1 is a phenotype that changed from state
1 in the ancestor (HTU6) to state 2 in the descendant (strain
C57BL10J). This change could be from normal to elevated
non–high-density lipoprotein cholesterol plasma levels. Char-
acter 2 is a single nucleotide polymorphism (SNP), in which
change could have occurred along this branch but is ambigu-
ous due to missing data. Character 3 is an SNP, in which a
transition mutation occurs. This could be SNP rs3023213 as
depicted in Figure 2.
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(Fig. 2). The SNPs are often naturally biallelic and thus binary.
The CCT determines whether the observed changes in a binary
character are concentrated on the branches of a tree that has a
particular state of the second character. A step in computing
the CCT is to extract the sets of transformations from the
branches of interest from the phylogenetic tree and compute
intersections and differences of these sets. For instance, one
can look for transformations that occur in a group of branches
but do not occur in another branch. In our implementation, the
phylogenetic tree output from POY can be queried using
XPath to search for and extract the branches of interest. The
CCT calculations in our case determine whether changes in
phenotype are concentrated on the branches that have a de-
rived allele for an SNP of interest (i.e., a recent mutation).
We count the number of gains and losses of the phenotypic
character over the whole tree and the number of these gains
and losses that fall on branches reconstructed to have the
derived allele for an SNP of interest.

Although the CCT is implemented in Maddison et al.,48 a user
can only calculate the CCT for one pair of characters at a time.
In addition, counting the gains and losses of the dependent

character has to be done manually. In the research we describe
here, we calculate CCTs for very large numbers of SNPs and
phenotypes using the macro language in a command line–
driven version of Tree analysis using New Technology
(TNT).47 Given that there were often several most parsimoni-
ous optimizations of an SNP, we used the delayed trans-
formation (DELTRAN)48 optimization to obtain a unique
reconstruction of each SNP. Once compiled, the CCT values
are stored in the data management and integration system.
We have developed a simple schema that consists of the
following attributes: cct_value, character, position, trait, and
SNP id. The SNPs can be filtered using XPath queries into
the CCT data stored in the system (e.g., /snp[(traits/trait/
@cct_value , ‘‘.05’’)] will return SNPs that have significant
p-values for the concentrated changes test).

Estimating Haplotypes in Strains of Interest and
Using Annotation Data to Assess Biomedical
Relevance of Candidate Genes
Portions of the genomes of inbred mouse strains are often
similar over large distances, complicating attempts to finely

F i g u r e 2 . Two views of the same phylogenetic tree of females of mouse strains displaying correlated changes of a phenotype
and a genotype across 15 mouse strains. The right tree depicts phenotypic change in non–high-density lipoprotein (non-HDL)
cholesterol plasma levels in female mice after six weeks of atherogenic diet. Black branches indicate strains (C57BL/6J and
CAST/EiJ) with non-HDL levels greater than one standard deviation (sd) above the mean after treatment. Genotype observations
for each strain for the SNP of interest (rs3023213; T or C) are indicated on the left tree. Boxes at the terminal branches of the trees
indicate genotype or phenotype observations in databases for those strains. Concentrated changes test results for this phenotype–
genotype correlation differ for females (p ¼ 0.004) and males (p ¼ 0.088) (not shown).
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map the genetic basis of traits.49 Thus, in silico approaches
that identify correlated markers must also consider the ge-
nomic context of those markers.37,38 Although SNPs vary in
density throughout the mouse genome, they lie within genes
or in intergenic regions, thus providing the potential for res-
olution at the locus level (defined by the SNP and flanking
DNA). However, the genomic context of the SNP of interest
is very important because an SNP may vary with a pheno-
type, yet may only be associated with the causal gene via link-
age disequilibrium. We have implemented a simple algorithm
that takes an SNP of interest from the previously described
steps as input (e.g., rs3023213 from Figure 2) and returns a
range on the genome containing 1 or more markers, thus
defining a region of similarity between the query strain pair
(e.g., C57BL/6J and CAST/EiJ from Figure 2). Because this
process is repeated many times for different regions resulting
in many potential candidate genes, an integrated database
support was designed.

To evaluate the potential biomedical relevance of candidate
genes that fall within the region of similarity for the pheno-
type of interest, a researcher needs to retrieve and organize
knowledge from various data sources. A challenging issue
is the need for querying and integrating data from several
public data sets. Internet-based biomedical and genomic
data repositories differ, in both data formats and mechanisms
by which clients can query and retrieve data. A data source
might be accessed via a Web service interface or, alternately,
the data source might be a Web or ftp site from which the
data set of interest needs to be downloaded. Our approach
to supporting integration of data from multiple resources
and complex queries is to create caches of subsets of external
data sources in our data management and integration system.

Data collection from external data sources can be done man-
ually or can be automated in our system. In the manual mode,
the user can download a data set from an external data source
and load it into the system using one of the available data ex-
traction and loading programs. The data loading programs
identify the input data set format and generate a set of
XML documents, which are then stored in Mako servers. In

the automated mode, our system can support processes,

referred to as spiders (or data extractors), that scrape the

individual data resources for data. A data source catalog

maintains the data access method or the Web site wrapping

service to retrieve data files from an Internet repository and

the extractor method to parse data attributes and attribute

values from the retrieved data files. The distributed execution

service can be used to execute spiders and data extraction and

loading programs on a PC cluster. In this way, multiple data

sources can be accessed and processed concurrently. A spider

for each data resource can be executed to obtain the relevant

data. The results, returned by each spider, are mapped onto

the corresponding data model using the data extraction and

loading methods, and then are stored in the system.

We have implemented data models for data subsets from dif-

ferent sources so that the contents of data files downloaded

from a data source can be stored in the system and queried

along with other information. These data models are de-

scribed as XML schemas, which are stored and managed by

the metadata service. Once a set of files from an external

data source are downloaded, they are parsed using the corre-

sponding extractor method and XML documents, which con-

form to the corresponding data model (XML schema) and are

Table 1 j List of Data Sets Currently Managed by the
Data Management and Integration System

Data Set Explanation

Mpd146, Paigen 2, GNF2 Mouse phenome database
MGI_Coordinate.rpt MGI sequence coordinates
Gene_association.mgi Gene ontology (GO) annotations

of mouse markers
Go_terms.mgi GO terms and GO IDs
HMD_HGNC_Accession.rpt Human and mouse orthology
HMD_HumanSequence.rpt Human and mouse orthology

with sequence information
HMD_OMIM.rpt Human and mouse orthology

with human OMIM IDs

These data sets are obtained from the Jackson Laboratory.4,50

F i g u r e 3 . Data models for the HMD Human Sequence (left) and mpd146 (right) data sets.
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created and stored on Mako servers. In our current imple-
mentation, we have parsers and data models for a number
of databases that can be downloaded from the Jackson
Laboratory and for the GNF2 data set. These data sets include
MPD-merged mouse strain SNPs (mpd146), Gene Ontology
terms data set, Human and Mouse Orthology with Human
Online Mendelian Inheritance in Man (OMIM) IDs, MGI
Sequence Coordinates, and Human and Mouse Orthology
with Sequence information (Table 1). The data models of
the mpd146 and HMD Human Sequence data sets are shown
in Figure 3 as examples. Clients can access and query the da-
tabases through a graphical user interface that allows execu-
tion of a number of query templates (Fig. 4).

Detailed results obtained through this application will be
presented elsewhere (Habib et al., in preparation). Here we
present an example of the types of results obtained. An
example query (rs3023213) identified NNMT (nicotinamide
N-methyltransferase) as a candidate gene for high non-HDL
levels in female mice of strains C57BL/6J and CAST/EiJ,
within a block on mouse chromosome 9. NNMT is highly
expressed in liver tissue and is known to exhibit large differ-
ences, in level and activity, between mouse strains and gen-
ders51 and among humans.52 N-methyltransferases (e.g.,
NNMT) are involved in the biochemical synthesis of homo-
cysteine, a cardiovascular disease risk factor. NNMT was
recently implicated as a genetic factor for plasma homocyste-
ine levels, in a genome-wide linkage study in humans.53 The
potential link between N-methyltransferases, homocysteine,
and cholesterol levels is supported by findings in a knockout
mouse model.54

Performance: Creation of Local Caches and
Data Querying
In the first set of experiments, the performance of the system
in the format translation and on-demand database creation

(data loading) step is examined. Figure 5 shows the execution
time for data sets extracted from the mpd146, MGI Gene
Association, and MGI coordinate databases from the
Jackson Laboratory. In these experiments, the data extractor
was run on a machine with a Pentium IV 3-GHz central pro-
cessing unit (CPU) and 1,024 MB of memory. The data server
machine was an SMP node with dual Xeon 2.4-GHz CPUs
and 2,048 MB of memory. The two machines were connected
to each other over a Gigabit switch. All timings are in seconds
and represent the execution time from a single run for each
data set. In our implementation, the extractor reads one or
more data rows from the data set file and transforms them
into XML documents, conforming to the corresponding

F i g u r e 4 . A view of the Client Interface after a query has been executed for a single nucleotide polymorphism (rs3023213)
correlated with higher non–high-density lipoprotein cholesterol levels (see also Figure 3). Within this block of genetic similarity
between the query strains (C57BL/6J and CAST/EiJ), a candidate gene, NNMT (nicotinamide N-methyltransferase), for the trait
was noted.

F i g u r e 5 . The execution time of the data set extraction
and loading step for the gene association, mpd146, and coor-
dinate data sets.
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schemas. When an XML document is created, the extractor
submits the document to a Mako server over the network for
storage. It can be expected that running the data extractors
and the data servers on two separate machines will incur
communication overhead. To reduce this overhead, these two
components could be colocated. We should note that our
implementation allows for placement of a data extractor on
the machine where the data server is. However, in many cases,
machines hosting data servers may not be configured to run
user-defined operations because of security and performance
concerns. Our experiments emulate such a configuration.

As is seen in Figure 5, the bulk of the execution time is spent
submitting XML documents to the data server; the time to
parse a data file and create XML documents takes less than
5% of the overall execution time on average. In this experi-
ment, the data extraction and loading time for the Gene
Association data set was about 20 minutes. The reason for
this is that the data set used in the experiment contained
about 90,000 rows. The XML schema for this data set gener-
ates an XML document for each row, containing all the attri-
butes as XML node elements. Hence, the extractor had to
submit 90,000 documents to the data server, thus incurred a
large network communication overhead. The data loading
time for the coordinate data set was much less because there
were about 18,000 rows in total. We observe that the
execution time increases linearly as the number of rows
increases. This is a performance bottleneck in our current
implementation. The network overheads would be more
pronounced in a more distributed environment (e.g., the
Grid). To reduce the network overhead, multiple documents
could be combined into one buffer by the runtime system,
and this buffer could be submitted to the server. This requires
that the server can handle buffers containing more than one
XML document. We are in the process of adding this function-
ality to the data service component.

The number of data rows for the mpd146 data set was
439,942. If a single XML document were created for each
row of this data set, the execution time would be around
105 minutes. Since our current implementation does not sup-
port concatenation of multiple documents into one buffer and
processing of such buffers, we developed an XML schema
that allowed us to combine multiple rows of the data set
into one XML document. In our experiments, we stored
10,000 rows of the data set in one XML document, thus sub-
mitting only 44 documents to the data server. As seen in the
figure, the execution time of the data extraction and loading
step for mpd146 is less than that of the Gene Association
data set because of this optimization.

In the next set of experiments, we look at the query execution
performance. The current client interface supports two types
of queries. The first query type specifies an SNP identification
(rsID) and two strains. In the second type of query, the client
inputs a chromosome and a genomic location range. Our ex-
perimental results show that the first type of query takes on
average about eight times longer to execute than the second
type of query. We tried three different queries for each query
type; the first query returned one result row, the second 33 re-
sult rows, and the last one 241 result rows. The average exe-
cution time of the first query type was 76 seconds, whereas
the second type of query took 9 seconds on average. When
the first type of query is submitted, the mpd146 data set is

first searched to find the chromosome corresponding to the
rsID and a corresponding genomic location. Next, a region
of genetic similarity between the two query strains is com-
puted as follows: multiple accesses to the mpd146 data set
are made to find the third mismatch in alleles between the
strains in regions downstream and upstream from the loca-
tion identified by the rsID. On the other hand, the second
type of query requires only two accesses to the mpd146
data set to extract the corresponding SNP accession numbers
and other information required. In either query, once the
range values are determined, the upper and lower bound
values are used to find the list of marker accession IDs (see
Figure 4, the left-most column). The marker accession IDs
are used as join attributes to extract information from other
databases, where the marker accession ID of a data element
matches one of the marker accession IDs in the list obtained
from the coordinate data set. Figure 6 shows the execution
time of the second type of query as the query size is scaled
up. We executed three different queries in this experiment;
the number of rows returned was 27, 161, and 472 rows.
The timing numbers are the average execution time over
four runs of each query size. As seen from the figure, the
execution time increases in proportion to the size of the
query results. The standard deviations were 0.15 (27
rows), 0.04 (161 rows), and 0.73 (472 rows) seconds in these
experiments.

Limitations
There are several issues that have not been addressed in our
current implementation. The first issue stems from the use
of XPath as our querying language. Although our system
can support XPath queries of any complexity, the XPath lan-
guage does not support joins on XML databases; it provides
the basic data-subsetting capabilities. In our implementation,
queries involving joins between different data sources have
been implemented as client side operations; that is, individual
data sets are accessed using XPath queries and any joins be-
tween the data subsets are performed in the client applica-
tion. We are currently working on integrating a subset of
XQuery functionality (i.e., support for XQuery FLWR expres-
sions) in our framework. This will make it possible to support
more complex queries without implementing client side
extensions.

Another limitation of our current implementation is that
it does not support integration at the semantic level. It pro-
vides the core support needed to enable management of

F i g u r e 6 . Query execution time as the query size is
scaled.

298 KURC ET AL., XML-based System for Data Synthesis



data types and data instances. A semantic integration compo-
nent can be layered on this core support. However, we recog-
nize that establishing semantically meaningful relationships
between data elements from different resources is a complex
issue that requires innovative solutions in the semantic layer.
An approach to address semantic interoperability is to stan-
dardize common data elements, controlled vocabularies,
and taxonomies and implement these standards in a frame-
work. There are a number of standardization efforts such
as SNOMED (Systematized Nomenclature of Medicine),
LOINC (Logical Observation Identifiers Names and Codes),
and DICOM (Digital Imaging and Communication in
Medicine) for naming and description of data attributes and
data. In cancer research, the NCI Center for Bioinformatics
has developed the Cancer Data Standards Repository and
the Enterprise Vocabulary Services to serve as a controlled
vocabulary source in order to enable common semantics
across related databases. There is also an ongoing effort in
the caBIG initiative to define common data elements and
controlled vocabularies to support multi-institutional basic
and clinical cancer research projects. We have implemented
a prototype service in Mobius to support management of
semantic information using resource description framework
(RDF). We plan to extend this prototype and integrate it in
our software system. We also plan to use the caBIG technolo-
gies as they become available to provide support for manage-
ment and use of controlled vocabularies as well as common
data elements.

A performance bottleneck in our current implementation is
the data-loading overhead. A network overhead is incurred
if data extractors and Mako servers are located on different
machines. The data-loading overhead also stems from the
fact that during data loading, each row in the source database
is encoded in an XML document and submitted to a Mako
server. This overhead could be reduced by combining multi-
ple documents into a message buffer that is submitted to the
server. Our current implementation does not support multi-
ple documents in a single buffer. We plan to incorporate
this performance optimization into our implementation in fu-
ture. Another approach to reduce the data loading overhead
would be to colocate extractors and Mako-servers. We also
observed that the cost of executing the first type of query
(as explained in the section ‘‘Performance: Creation of Local
Caches and Data Querying’’ is expensive. This is because of
the need for multiple accesses to the database to find the
bounds for the region of genetic similarity. This overhead
could be reduced by implementing data prefetching and
in-memory caching. In this strategy, the entire set of attributes
required for computing the bounds would be prefetched from
the database and cached in an in-memory data structure (e.g.,
an array) in the application client when the client is started.
This would reduce the overhead of querying the database
multiple times. However, a caching mechanism would
need to be implemented in the client to manage the in-core
data structure if the set of required attributes did not fit in
memory.

Conclusions
In this paper, we presented the application of an XML-based
generic metadata and data management system for manage-
ment and integration of data in a biomedical application.

XML has become a de facto standard for representing struc-
tured and semistructured data sets in heterogeneous and dis-
tributed environments. The software infrastructure presented
in this paper provides core services and common protocols
for (1) distributed, but coordinated, managing of metadata
definitions, (2) exposure of subsets of data stored in ad hoc
data warehouses and enterprise information systems, and
(3) on-demand creation of databases along with management
of complex data analysis workflows. These capabilities make
it possible to support the management and querying of dis-
tributed collections of heterogeneous biomedical data sets
and integration of such data sources in a unified framework.
This type of common distributed data environment, with
strongly typed data, can enable implementation of applica-
tions that can remove barriers to better synthesis and analysis
of information in translational research.

In this work, the data management and integration frame-
work allowed us to manage and query much larger data
sets from phylogenetic tree optimizations, apply CCTon large
data sets, and integrate data from external repositories effi-
ciently. Without the ability to create and manage local caches
of public databases, it would have required the application to
submit large numbers of queries to the respective database
servers, thus incurring a lot of network overhead and load
on those servers. Moreover, the software system enabled the
researchers to share data in a more uniform way and to exe-
cute complex queries on large data sets. This was a major step
forward from using simple shell and awk scripts to manage,
filter, and integrate data generated and referenced in the
application.

The development of the application involved close collabora-
tion between a group of biomedical researchers and a group
of information technology developers. In this collaboration,
we observed that the analysis of the requirements was the
most challenging part. This was mainly because it required
a good understanding of the scientific application as well as
the capabilities of the software system by both groups. This
process proved that the development of good software ap-
plications to support biomedical research is only possible
through close collaboration of application domain experts
and information technology developers.

Although we focused on one application in this paper, our
system is extensible and customizable for other applications.
In another collaborative project, we have developed an
application to support data sets from SNPlex analyses. In a
follow-up to that implementation, we are developing a qual-
ity control application that will enable integration of data
obtained from multiple experimental and bioinformatics
analysis techniques done on the same or overlapping groups
of samples. The system will allow a user to query data based
on individual or groups of data collection/analysis tech-
niques, perform joins between different data subsets, and
carry out statistical analyses on the selected data. For exam-
ple, a user will be able to query for all samples, for which at
least one data collection/analysis technique has generated a
different result. Using our framework, we are also imple-
menting an application similar to the application in this paper
for study of coronaviruses and influenza A viruses. The appli-
cation will support management and analysis of data from
phylogenetic tree optimizations, results from bioinformatics
analysis methods, and integration of data obtained from

299Journal of the American Medical Informatics Association Volume 13 Number 3 May / Jun 2006



public repositories to the overall workflow. We plan to report
on the status of these applications in a future paper.

The Mobius framework presented in the paper is available for
download from our Web site (www.bmi.osu.edu). We plan to
make the application implementation available for download
in future after further performance testing and improvement
are carried out and a user guide for the application has been
written. In the meantime, interested readers are encouraged
to contact the authors of this paper.
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