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A B S T R A C T   

Many schools and universities have seen a significant increase in the spread of COVID-19. As such, a number of 
non-pharmaceutical interventions have been proposed including distancing requirements, surveillance testing, 
and updating ventilation systems. Unfortunately, there is limited guidance for which policy or set of policies are 
most effective for a specific school system. We develop a novel approach to model the spread of SARS-CoV-2 
quanta in a closed classroom environment that extends traditional transmission models that assume uniform 
mixing through air recirculation by including the local spread of quanta from a contagious source. In addition, 
the behavior of students with respect to guideline compliance was modeled through an agent-based simulation. 

Estimated infection rates were on average lower using traditional transmission models compared to our 
approach. Further, we found that although ventilation changes were effective at reducing mean transmission 
risk, it had much less impact than distancing practices. Duration of the class was an important factor in deter-
mining the transmission risk. For the same total number of semester hours for a class, delivering lectures more 
frequently for shorter durations was preferable to less frequently with longer durations. Finally, as expected, as 
the contact tracing level increased, more infectious students were identified and removed from the environment 
and the spread slowed, though there were diminishing returns. 

These findings can help provide guidance as to which school-based policies would be most effective at 
reducing risk and can be used in a cost/comparative effectiveness estimation study given local costs and 
constraints.   

1. Introduction 

Since March 2020, when The World Health Organization [1] 
declared the outbreak of Severe Acute Respiratory Syndrome Corona-
virus 2 (SARS-CoV-2) a pandemic, public health organizations have 
been challenged to devise proper guidelines, practical interventions, and 
effective policy actions to slow the spread of the disease. Despite 
ongoing vaccination programs against COVID-19, new cases have 
remained relatively high [2]. Governments and public health systems 
should be prepared for the possibility that COVID-19 continues to exist 
and becomes a recurrent seasonal disease. Achieving herd immunity is 
still a challenge considering individuals who are either not eligible to 
receive the vaccine or decline to be immunized [3], and is unlikely to be 
achieved in some countries such as the US [4]. Furthermore, recent 
changes in the strain of SARS-CoV-2 in the United Kingdom, South Af-
rica, and India, as well as its increasing propagation across the globe, 
have posed new challenges for countries – even ones with high rates of 

vaccination – to return to normal [5,6]. Therefore, providing impactful 
non-pharmaceutical interventions and guidelines is, and will remain, of 
importance. There are a number of impactful non-pharmaceutical in-
terventions that help to contain the outbreak including practicing social 
distancing, providing high quality air filtration and ventilation, and 
performing surveillance testing and contact tracing. However, since 
differences in individual behavior and risk of infection vary by location, 
interventions need to be tailored accordingly [7]. 

Schools and universities have had higher than average infection rates 
and require particular attention. For instance, US cities with universities 
have higher death rates than average [8], and vaccinations are still not a 
mandate for many schools and universities [9]. In order to assess public 
health actions, it is important to gain an understanding of the spread of 
COVID-19 in closed environments as well as behavioral aspects of sus-
ceptible individuals. Significant literature exists on simulating the 
spread of COVID-19 through compartment models or social-network 
analysis [10–12]. Agent-based models (ABMs) have also been widely 
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used to incorporate the propagation of COVID-19 at the interpersonal 
level based on individual actions [13]. 

Given the airborne nature of SARS-CoV-2 [14,15,16], there is 
considerable potential for exposure when inhaling microscopic aerosols 
and respiratory droplets at short to medium distances in closed envi-
ronments. A commonly used model for estimating the risk of airborne 
transmission of viruses was developed by Riley and colleagues based on 
an epidemiological study of a measles outbreak [17]. This model has 
widely been used for quantitative assessment of infection risk associated 
with airborne diseases, including analyzing ventilation strategies in 
clinical and other closed environments [18,19]. However, the assump-
tion of homogenous transmission in this model is limiting and a more 
precise analysis at the particle level will better estimate transmission 
risk. Although modeling non-homogenous transmission is difficult, 
computational techniques such as Monte-Carlo simulation are an 
effective approach for estimation [20]. 

We present a two-stage approach, at the particle and interpersonal 
levels, to estimate incremental risk of infection with SARS-CoV-2 in 
closed environments. We further estimated the epidemiological aspects 
through an agent-based simulation. The benefit of conducting a 
modeling and simulation approach is that it can assess the impact of 
policy actions which are currently not implemented for a specific pop-
ulation and can provide guidance for future clinical trial designs [21, 
22]. As demonstrated in Fig. 1, we estimated the impact of multiple 
policy actions on the spread of COVID-19 among students in schools and 
universities and performed scenario-based analyses in order to compare 
the level of effectiveness associated with those interventions. These in-
terventions included classroom distance requirements, air recirculation 
levels, contact tracing, class scheduling, and length of class periods for a 
fixed total number of class hours 

2. Materials and methods 

2.1. Particle level: traditional vs novel estimation of quanta emission 

In a recent study, Buonanno et al. [23,24] estimated the quanta 
emission rate of an infectious subject using a forward emission 
approach. Based on the Wells-Riley emission rate formula, they calcu-
lated the quanta emission rate of SARS-CoV-2 as a function of respira-
tory parameters for varying droplet concentrations produced during 
expiratory activities such as whispering, speaking, and breathing, 
ranging from 0.80 μm to 5.5 μm particles [25]. The quanta emission rate 
(ERq, quanta h− 1) is defined by: 

ERq = cv.ci.Vbr.Nbr.

∫10μm

0

Nb(D).dVd(D) eq -1  

where cv is the viral load in the sputum (RNA copies mL− 1), ci is the ratio 

between one infectious quantum and the infectious dose expressed in 
viral RNA copies, Vbr is the volume of air exhaled per breath (cm3), Nbr 
is the rate of breathing (breath h− 1), Nb(d) is the concentration of 
droplets (part cm− 3) as a function of droplet diameter (D), and Vd(D) is 
the volume of a single droplet (mL) as a function D. 

The quanta concentration in an indoor environment at the time t is 
defined as: 

n(t)=
ERq⋅I

IVRR.V
+

(

n0 +
ERq⋅I
IVRR

)

⋅
e− IVRR. t

V
(
quanta m− 3) eq -2  

where n0 represents the initial number of quanta in the space, I is the 
number of infectious agents present in the indoor environment, V is the 
volume of indoor environment under study, and ERq is the quanta 
emission rate (quanta h− 1) mentioned previously. IVRR (Infectious Virus 
Removal Rate) is the sum of the air exchange rate via ventilation, the 
particle deposition on surfaces (e.g., due to gravity or surface absorptive 
characteristics), and viral inactivation [26]. 

Transmission risk is a function of the exposure time (t) of susceptible 
agents and the cumulative quanta concentration over time: 

R=

⎛

⎜
⎝1 − e

− IR
∫T

0

n(t)dt

⎞

⎟
⎠ (%) eq -3  

where IR is the inhalation rate (h− 1) of the agent in exposure (affected by 
their type of respiratory activity), and T is the total time of exposure (h). 

One shortcoming of the Wells-Riley based models for estimating the 
airborne transmission risk of viruses is that they assume homogeneous 
mixing of air in indoor environments. In other words, the number of 
infectious agents present in an indoor environment and the volume of 
the environment are the determining factors to calculate transmission 
risk. Although this assumption makes it easier to perform computational 
analysis, it ignores that the closer a susceptible agent is to an infectious 
source the higher the risk of transmission will be for that agent. 

We modified this traditional approach by taking into account the 
quanta emitted directly to a subject in the vicinity of an infectious agent, 
as well as the additional quanta level spread through ventilation. We 
discretized the indoor space into cells in which at most one agent is 
present. For instance, if 4 subjects are seated 2 m apart in an enclosed 
space of volume that is 6 × 6 × 3 m3, each subject is surrounded by a 3 ×
3 × 3 m3 cell. We assumed that each person inhales particles present in 
their cell, while their exhaled particles cross to other cells [27]. This 
leads to the airborne spread of viral load from the infectious agent to 
susceptible individuals. Further, the particles are then spread homoge-
nously through the indoor space through the ventilation system. 

2.1.1. Direct transmission of the viral load - Monte Carlo simulation 
In order to estimate the quanta directly emitted by an infectious 

individual, we assumed that agents produce quanta through respiratory 

Fig. 1. A schematic diagram of the role for agent-based simulations on clinical and experimental trial design and policy assessment.  
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activities like breathing or coughing. In a recent study, Guo et al. [28] 
developed an approach to obtain the spatial distribution for the proba-
bility of infection using fluid mechanics approaches combined with the 
Wells-Riley model with the aim of optimizing of built environments and 
determining the optimal distribution of people or facilities in the 
confined space. In another recent study, Zhanga, et al. [27]. Modeled the 
distribution of droplet aerosols in an air-conditioned room based on the 
airflow velocity of coughing and breathing. Although different respira-
tory activities produce droplet aerosols with different diameters (vary-
ing from 1 μm to 100 μm) and different transmission distances (based on 
the type of activity, for example coughing), airborne pathogens can 
spread up to 6 m away from the mouth opening. We focused our study on 
infection prevention policies for a closed environment (i.e., classroom) 
and model droplet aerosol spread as a cone-shaped blend of particles 
coming out of the mouth and nose. The distribution of particles in the 
quanta-cone is assumed to follow a quadratic decay, meaning that the 
average number of quanta over each slice of equal thickness of the cone 
along its height is constant. Fig. 2 illustrates the quanta-cone. 

The second step for estimating the direct quanta emission rate is to 
determine how many infectious particles directly enter the surrounding 
cells of other agents in the vicinity of an infectious one. We used Monte 
Carlo simulation to produce the quanta cone where any infectious agent 
is located. The height, radius, and density of the quanta-cone are chosen 
based on the characteristics of SARS-CoV-2 and the type of respiratory 
activities we target. 

2.1.2. Indirect transmission of the viral load 
Droplet aerosols produced by an infectious person will eventually 

rise and enter the air ventilation system or fall and remain on the ground 
[14]. Therefore, not only do droplets directly infect agents close enough 
to the source, but they also homogenously return to the indoor space 
through the ventilation system. We assumed that all infectious airborne 
pathogens eventually get recirculated but allow different filtration rates 
to be set as a parameter in the model. Therefore, circulated air contains a 
fraction of quanta that is far away from the infectious source. 

In order to determine the indirect quanta emitted by each individual, 
considering the assumption of homogeneity of ventilated particles in the 
air, we counted the number of particles inside the virtual cell sur-
rounding each person. By adding up the direct and recirculated quanta 
emitted to non-infected agents within their specific cell, we obtained the 
total quanta and calculated the transmission risk of COVID-19 for each 
individual. 

2.2. Interpersonal level: an agent-based simulation 

We developed an agent-based simulation of a classroom with stu-
dents seated randomly throughout the class based on distancing re-
quirements and a teacher located in front of the class, in order to track 
the propagation of SARS-CoV-2 among students over the course of the 
semester. The agent-based model tracks specific agent locations and 
captures student behavior with regards to their adherence to guidelines 
as an important factor in the spread of the disease. 

2.2.1. Properties of autonomous agents and the environment scope 
We assumed that the likelihood of whether a student attends class 

while experiencing mild symptoms is based on their level of stress and 

Fig. 2. A schematic view of sample quanta-cone with the height of 2.5 m and diameter of 1.2 m, derived using Monte Carlo simulation.  
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resilience. An agent can either be healthy (susceptible), exposed but not 
infectious, asymptomatic, pre-symptomatic, mildly symptomatic, 
severely symptomatic, immune, or deceased in any stage of the simu-
lation. They transferred from one state to another based on the proba-
bility determined from the transmission risk model. There is limited 
literature on how long a recovered person is immune to reinfection and 
so we conservatively assumed that the recovered student remained 
immune throughout the semester. 

Several factors such as demographic characteristics of the students, 
the degree to which they trust science, and their perceived risk of 
COVID-19, influence how well they comply with regulations [29]. More 
importantly, stress level and resilience heavily affects a student’s mental 
well-being [30] and therefore how well they can decide whether or not 
they show up to class when experiencing mild, indistinguishable 
symptoms. Sex is also considered to affect the level of adherence to 
Covid19 guidelines [31]. Note that the symptoms of COVID-19 are 
largely indistinguishable from those caused by other types of respiratory 
virus infections [32]. The higher a student’s stress level, the more likely 
they are to not show up while having mild symptoms such as coughs or 
low-grade fever. The higher their resilience, the less likely they experi-
ence severe disease symptoms and the more likely they attend the class 
while being infectious. 

We used a decision-making algorithm to estimate the probability of 
attending class. Students were randomly assigned a stress level of high/ 
low and a resilience level of high/low, as well as a level of adherence to 
rules based on their sex. For high stress level, the probability of showing 
up was (1 – level of adherence to rules) × (1 – stress level impact ×
resilience level impact). This implies, for example, that high resilience 
level can reduce the impact of high stress and together increase the 
probability of showing up. In other words, students decide to attend the 
class while having mild symptoms with a probability of (1 – level 
adherence to the rules) unless they have a high stress level. High stress 
level increases their anxiety and perhaps their need to contact health-
care providers rather than neglecting symptoms. The impact of stress 
level was balanced by the level of resilience; low resilience amplifies the 
impact of high stress while high resilience reduces the impact of high 
stress. 

Classroom size and layout are parameters that allow the model to be 
run with any number of students in any desired classroom setting. In 
order to capture the incremental effect of school policies on the spread of 
the disease, we do not consider the case where students get infected 
outside of the classroom. Fig. 3 shows an example of a 49-seat classroom 
filled with 40 students and one teacher with different initial health 
states. 

2.2.2. Model parameters and assumptions 
Parameters, rates, and factors used in the model are presented in 

Table 1. Some of the model parameters, such as incubation period, 
follow a distribution based on the uncertainty in the characteristics of 
diseases. We assumed at least one infected student was present in the 
classroom on the first day in order to address the patient zero problem 
[33]. As a result, all simulations would contain a form of disease prop-
agation. Moreover, we held the assumption that an average student 
wears a two-layer cloth mask, which provides on average of 70% pro-
tection against droplets [34]. 

The model was coded in Python via Jupyter Notebook Version 2.0.0., 
in an object-oriented programming framework. The source code and 
other related information can be found at http://GitHub.com/Rey-Za 
farnejad/Agent-Based-Analysis-of-Incremental-Infection-Risk-Associa 
ted-with-SARS-CoV-2. 

2.3. Policy level: school policy actions and interventions 

We considered a range of policy options for schools and universities 
and estimated the incremental impact on COVID-19. Each are detailed 
below. 

2.3.1. Class schedule and duration 
Both the duration of exposure and number of times a student enters a 

classroom with at least one other infected student plays a critical role in 
the risk of infection. Most universities use a 16-week schedule per se-
mester, and for 3 credit-hour course, require 2400 min of in-class time. It 
is important to understand the trade-off between class duration and 
number of sessions per week for a fixed number of semester class mi-
nutes. For example, is there greater risk meeting three times per week for 
50 min each class or two times per week for 75 min each class? 

It is also possible to consider different schedules for classes with two 
sessions per week. One possible schedule is two days a week, with 2 days 
and 5 days in between the sessions, respectively (e.g., Tuesdays and 
Thursdays); while another possible schedule splits the week into 3 days 
and 4 days between the sessions, respectively (e.g., Mondays and Fri-
days). The overlap of class schedules and delays could affect the results. 
Therefore, we considered all variations of schedules. 

2.3.2. Social distancing 
Many schools and universities practice social distancing based on 

CDC prevention guidelines (CDC, 2020e) to help reduce the spread of 
coronavirus infections. An important issue is to understand how the 
spread of COVID-19 changes with differing distance requirements in 
closed classroom environments. 

2.3.3. Ventilation and air filtration 
One of the parameters used in calculating infection risk is the in-

fectious virus removal rate (IVRR), which consists of three parts: i) air 

Fig. 3. The classroom scheme and the estimated risk map for a 49-seat classroom. Students sitting in front of infectious agents have higher risk of infection. The risk 
of infection is assumed to be zero for already infected agents and empty cells. 
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exchange rate via ventilation, ii) particle deposition on surfaces (e.g., 
due to gravity or other surface absorptive characteristics), and iii) viral 
inactivation [26]. Air filtration and ventilation helps remove infectious 
particles from the air and mix in fresh air thereby slowing down the 
spread. We focus on the level of quanta removal rate rather than how 
quanta are being removed by different mechanisms. If the filtration rate 
was 100% effective, only fresh air with no quanta would be recirculated. 
Environmental factors such as temperature, relative humidity, particle 
velocity, and other indoor air characteristics can also affect the active 
viral load in the air and the resulting transmission risk [27,43]. 

2.3.4. Surveillance testing and contact tracing 
According to CDC Pandemic Planning Scenarios [37], asymptomatic 

and pre-symptomatic individuals who have not yet developed symptoms 
have the greatest infectivity and therefore identifying them as early as 
possible is important. Although the efficiency and effectiveness of 
available tests are crucial to accurately identify infected individuals, the 
procedure of conducting the test including who to test, how frequently 
to perform testing, and which type of test (viral test or antibody test) to 
carry out, are important decisions. 

A supplementary way to control the spread of coronavirus disease is 
through monitoring and testing a particular sample of the population by 
tracing their close contacts, and testing those in contact with infectious 
sources [44]. However, there can be inaccuracies in this approach since 
it primarily relies on self-reported data [45]. Further, there may be 
insufficient testing and privacy issues [42]. We assumed that the school 
is capable of tracing a certain percentage (specified in as a model 
parameter) of contacts when an infectious agent is severely symptomatic 
(thus automatically confirmed) or is tested positive. Successfully iden-
tified individuals with close contact will be tested afterwards. 

3. Results 

3.1. Comparison between the classic and novel transmission models 

A limitation of traditional models of airborne transmission risk is that 
they do not consider the location of a susceptible agents with respect to a 
contagious one. In order to study this effect, we ran the agent-based 
model for a class of 40 students (with female to male proportion of 
72%) and a teacher in a classroom with seats of 7 rows and 7 columns 
(composed of 49 cells of 6 × 6 × 8 ft3). Each student was randomly 
located in a cell and the teacher could freely move within a set of 7 cells 
at the front of the classroom. We assumed that the teacher is not con-
tagious in the initial state. There were 9 randomly selected empty seats 
in the classroom and at least one initial infectious student present in the 
classroom (either asymptomatic or pre-symptomatic) which initiated 
the spread. We ran the simulation for one session of a 3-h class to 
demonstrate the difference between the traditional and novel calcula-
tion of the transmission risk. 

As demonstrated in Fig. 4, there are several possible cumulative risk 
curves that depend on how the students were seated in the class. The 
orange curve shows the traditional Wells-Riley based transmission risk 
as a function of time, which was equal for all the susceptible agents 
(student or teacher) present in the classroom. The longer the students 
were present in the classroom the higher the risk of transmission 
became. However, considering the importance of location, there were 
several possible cumulative risks for present agents shown by the purple 
curves. For example, if an agent was placed right in front of an infectious 
agent (which means they were located inside a quanta-cone) the prob-
ability of infection was significantly higher than when an agent was 
seated far away from an infectious individual and the only infection risk 
came from recirculated particles. Therefore, the highest transmission 
risk is associated with the time there were one or more individuals in the 

Table 1 
Model parameters summary.   

Parameter Value/Range Reference Description 

Propagation ratios Prevalence rate 0.017 [35] Latest prevalence rate of COVID-19 
Asymptomatic ratio 0.40 [36] Among all the infected population 
Pre symptomatic ratio 0.60 [36] Among all the infected population 
Mildly symptomatic ratio 0.81 [37] Among all the pre-symptomatic population 
Severely symptomatic 
ratio 

0.19 [37] Among all the pre-symptomatic population 

Fertility rate 0.023 [37] – 
Behavioral factors Adherence to rules factor 0.88 (female), 0.83 (male) [38,39] Different among males and females 

Stress level impact 0.6 Assumed, 
[40] 

Stress and increase adherence to rules by 60% 

Resilience impact 0.46 [41] Resilience can reduce stress by 46% 
Disease characteristics Incubation period Normal (μ = 5.75, σ = 5.75/3)* 

(days) 
*99.5% of the distribution is within 
(0, 11.5) 

[37] The period between exposure and the onset of symptoms 

Latent period Normal (μ = 2, σ = 2/3)* 
*68% of the distribution is within 
(1.33, 2.67) 

[37] The period between exposure and the onset of the period of 
communicability 

Recovery period 14 (days) [37] The period between symptoms onset and recovery (end of 
preciousness and isolation) 

Transmission model 
parameters 

D 1.83 (m) Assumed Distance between agents 
ERq 120*0.30 (quanta h− 1) [23,24] 

[34] 
Quanta emission rate with two-layer cotton mask 

IVRR 0.87–2.2 (h− 1) [23,24] Infectious virus removal rate 
IR 0.9 (h− 1) [23,24] Inhalation rate 
Class duration 150, 75, 75*, 50 (mins) Assumed * Two types of schedule 
Number of sessions per 
week 

1, 2, 2*, 3 Assumed * Two types of schedule 

Testing parameters Surveillance testing 
sample size 

0.10 Assumed [2], Sample size varies by University, from 1% to 100% of the 
population 

Test accuracy 90% [42] Test accuracy ranges from 84.0% to 97.6% depending on the 
type of test. 

Test results delay 2 (days) Assumed – 
Contact tracing level 0.00, 0.25, 0.50, 0.75, 1.00 Assumed The percentage of all contacts that can be traced  
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vicinity of an infectious agent, and the lowest (positive) transmission 
risk is related to when only indirectly infecting particles were effective. 
As a result, the traditional transmission risk, and the lowest positive 
novel transmission risk overlap; traditional Wells-Riley based trans-
mission risk is a lower bound for the risk of airborne transmission of 
diseases. 

3.2. Assessing different policy interventions on the estimated risk of 
transmission 

3.2.1. Class schedule and duration, surveillance testing and contact tracing 
In this section we discuss the results of performing agent-based 

simulation over the course of a semester and assess the impact of 
different interventions and policy actions on the transmission risk of 
SARS-CoV-2. As mentioned previously, course schedule and class 
duration, surveillance testing and contact tracing, social distancing and 
ventilation were the primary policies considered. For the sake of 
simplicity, we assumed that students are seated 6 ft apart and the IVRR is 
1.87 (h− 1). Moreover, we considered four different course schedules and 
corresponding class durations (three-times a week Mon/Wed/Fri – 50 
min each, twice a week Tue/Thu – 75 min each, twice a week Mon/Fri – 
75 min each, once a week – 150 min). Other model characteristics 
remained the same (as described in Section 3-1). 

In order to model surveillance testing with contact tracing, we 
assumed that testing was performed on a weekly basis for a random 
sample of ten percent of the students. After one to two days test results 
were released and students who tested positive were quarantined and 
tested every week in order to ensure the safety of other students. 
Quarantined students were not allowed to return to class until they 
tested negative. Whenever an individual tested positive or was severely 
symptomatic (assuming those showing severe symptoms were identified 
and quarantined already), a contact tracing procedure would begin. 
During the contact tracing process, a number of students would be 
chosen and tested immediately based on the contact tracing level that 
indicates the sample size. If a student tested positive in this procedure, 
they were quarantined and tested again every week until they were 

COVID-19 free or received a negative result. Since being in a closed 
environment was one of the fundamental assumptions of the model, we 
only traced individuals in contact with the infected agent within the 
classroom. 

As shown in Fig. 5, class duration was an important factor for 
transmission risk. Longer class times led to higher rate of spread. The 
difference between twice a week schedules was not significant in 
different scenarios (Table 3 in Appendix 1). On the other hand, 150-min 
classes had higher infection risk than 50-min classes in all scenarios, 
although the difference in transmission risk between the two types was 
decreased as the level of contact tracing increased (Table 3 in Appendix 
1) since more infectious students were identified and removed from the 
environment. 

3.2.2. Ventilation and social distancing 
Intuitively, the more distant the agents are located from one another 

and the higher the rate of air filtration, the lower the risk of transmission 
should be. Nonetheless, there are essential limitations such as classroom 
space and air filtration ability that determines how well social distancing 
and ventilation can work. Social distancing requires larger classrooms or 
fewer students, both of which may not necessarily be feasible. On the 
other hand, enhancing the air filtration can be costly and, in most cases, 
difficult to achieve in a timely manner. However, in this section we 
discuss the impact of different distances and ventilation rates on the 
estimated transmission risk, assuming that it was possible to do so. The 
simulation was run for the same settings, with a class schedule of three 
days a week and no testing. 

Fig. 6 demonstrates the impact of distance and ventilation on the 
estimated transmission risk. Although initially there was an increase in 
the mean transmission risk when students were less than 1 m away, as 
students became more distant from one another, the estimated risk of 
infection decreased rapidly until the risk was almost zero. On the other 
hand, assuming a fixed distance between agents (~1.8 m), we saw that 
the infectious virus removal rate (IVRR) had a linear decay effect on the 
estimated transmission risk. 

3.3. Assessing different policy interventions on the size of the epidemic 

We tracked the real time health status associated with each indi-
vidual agent through the simulation. We assumed that when a suscep-
tible agent was in the vicinity of an infectious individual, their health 
status became exposed and after a few days, infected. Depending on the 
severity of the symptoms and demographical characteristics of the 
agent, they would end up either as immune or deceased. Fig. 7 illustrates 
the state of the system at the end of each day, in a 120-day-long simu-
lation (100 replications) for 3 days a week class schedule. There was an 
obvious improvement in the system as testing and then contact tracing 
were added to the model. Since the testing process was assumed to be 
entirely based on a random selection of students, and if a student was not 
severely symptomatic or was not tested at all while infectious, most of 
the students eventually experienced the disease throughout the semes-
ter. Nonetheless, higher levels of contact tracing could clearly reduce the 
mean number of infected students over the course of the semester, with a 
reduction of more than 30% in the mean total number of infected agents 
when contact tracing is conducted at the highest level when an initially 
infected agent is present in the system. 

4. Discussion 

We quantified the impact of a variety of school-based policies for 
reducing COVID-19 infections in classroom settings using a two-stage 
approach. The proposed approach extends traditional transmission 
models in three ways. First, we relaxed the assumption of uniform 
mixing through air recirculation in a closed environment by including 
the local spread of quanta from a contagious source. Second, we 
modeled the behavior of students with respect to guideline compliance 

Fig. 4. Transmission risk among students – traditional and novel risk models: 
the orange curve shows the traditional transmission risk as a function of time. 
The purple curves show different possible transmission risks based on a class 
with randomly seated students. The closer a susceptible agent is to an infectious 
one, the higher the risk of transmission. 
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through an autonomous agent-based simulation. Finally, we performed 
a scenario-based analysis to study the impact of proposed model in the 
long run. The potential significance of risk reduction through the pol-
icies assessed in our work is important for school administrators. Even 
though the focus of this work was for classroom settings in schools and 
universities, the findings can be applied to any closed environment with 
distancing and ventilation facilities such as business conference rooms, 
theaters and concert halls, and places of worship. 

The main contribution of this paper is the novel approach of esti-
mating the incremental risk of infection associated with transmission of 
viral load in closed environments. The results imply that the assumption 
of homogenous transmission proposed by Wells and Riley underestimate 
the risk of infection for individuals in the vicinity of the infectious pa-
tient (for a 90-min period of presence in a closed environment, the 
relative risk of infection can be as higher as 1.3 times). We also found 
that the risk of infection for agents far from the source of infection are 
close to what traditional Wells-Riley model estimates. 

As for the policy analyses, Table 2 summarizes the key findings and 

associated implications. We found that distancing requirements had the 
most dramatic impact, decreasing infection risk by over 65% when 
distancing increased from 1.5 m to 3 m. Several implications arise from 
these results. In order for school administrators to promote social 
distancing, there needs to be plenty of campus facilities, classrooms and 
laboratories as well as human resources, staff and faculty members. 
However, distance learning tools, virtual classes and hybrid teaching 
that are advised to reduce in-person gatherings have been a reasonable 
remedy for practicing social distancing when facing lack of sufficiently 
large classrooms [46,47]. Therefore, we confirm that the easiest to 
implement and most effective method to reduce the risk of transmission 
is practicing social distancing. Alongside this intervention, adjusting 
class schedules is also an effective policy to reduce the infection risk 
among students. We find that when holding in-person classes, shorter 
yet more frequent sessions are preferable since they reduce the risk of 
infection by more than 40%. Compared to longer less frequent sessions A 
combination of social distancing and reducing class duration can be 
considered as an immediate action by school administrators at the time 

Fig. 5. Transmission risks under different number of sessions per week; (2–5) and (3–4) indicate two days a week schedule with 2,5/3,4 days in between sessions.  

Fig. 6. The impact of distance and ventilation on the mean transmission risk in a 3- days a week class with no testing or contact tracing within 100 replications of 
the model. 
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of similar epidemics. 
Another set of interventions that were studied in this work were 

ventilation and air filtration, as well as surveillance testing and contact 
tracing. We found that ventilation changes were effective at reducing 
mean transmission risk by 25%, while higher levels of contact tracing 
were associated with higher reduction in the transmission risk (for the 
highest level of contact tracing, there was 70% reduction of the trans-
mission risk compared to no contact tracing). These policy actions are 
still promising, however, providing resources for implementing them is 
not possible for all schools, or at least not feasible in a timely manner. 
Using digital contact tracing methods such as mobile apps and surveys 
appear to be relatively easy methods to trace contacts among students; 
however, in practice there are security and privacy issues and more 
importantly an inability to identify asymptomatic individuals either by 
surveillance testing or contact tracing [44]. Providing air cleaning 
methods such as air filtration and ultraviolet germicidal irradiation 
(UVGI), ventilation and advanced air distribution methods are expen-
sive and time consuming [43] and at the same time, not as effective as 
the previously described policies as they reduce transmission by roughly 
28%. 

It is important to mention that there are several limitations to this 
study. First and foremost, the data for parameter estimation is still 

somewhat limited. Although it is easy to perform sensitivity analysis 
over a range of values, we decided to rely on current information and 
focused on assessing different policies against the spread of COVID-19 in 
a comparative manner. In addition, we assumed randomized seating in a 
classroom and did not study the impact of entrance/exit/movement of 
the agents. This could be extended by developing a hybrid model using 
network and phase transition analysis. Finally, we did not explicitly 
consider the cost of interventions in our model which can be a topic of 
study using methods such as cost-benefit analysis. 

5. Conclusion 

The information provided in this work could provide school and 
university administrators with information that will allow them to 
tradeoff the benefit of infection risk reduction with the cost of imple-
mentation and hence identify the best portfolio of interventions for their 
specific setting. In addition, the proposed model has applicability in 
other settings including policies to reduce the spread of tuberculosis in 
clinics in resource constrained countries that do not have the resources 
to effectively isolate infected patients, and the spread of other infectious 
disease outbreaks in closed settings such as measles. 

Fig. 7. Epidemic size: the average number of agents experiencing each possible health status per day, for 100 replications. As more controlling policies are put into 
action, the epidemic size reduces. 

Table 2 
Key findings and associated implications regarding policy assessment – only significant changes are reported here.  

Policy Range of Effectiveness (reduction in the 
relative mean transmission risk %) 

Requirements for Implementation Speed of 
Implementation 

Source(s) 

Social Distancing ~ 65% (M = 64.68, SD = 12.65) 
Comparing 1.5 m vs 3 m distance 
between seats 

Campus facilities including larger classrooms and labs - human 
resources and faculty members - virtual tools for distance learning 

Rapid [46] 
[47] 

Class schedule and 
duration 

> 40% (M = 40.30, SD = 8.03) 
Comparing once-a-week vs three-times- 
a-week schedule 

Similar to social distancing Rapid Assumption 

Ventilation and air 
filtration 

> 28% (M = 28.44, SD = 11.27) 
Comparing IVRR = 1 vs 2.2 

Financial resources, safety challenges Slow [43] 

Surveillance testing and 
contact tracing 

> 70% (M = 71.25, SD = 16.58) 
Comparing no contact tracing vs max 
contact tracing level 

Ethical, legal, security and privacy requirements Slow [44]  
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Appendix  

Table 3 
Pairwise statistical significance, mean estimated risk for different testing types and class schedules (E.g. (2–5) indicates twice a week class, with 2 days and 
5 days in between sessions each week.)  

Test type Comparison between Decrease in relative estimated risk (%) P-Value 

No Testing 1 & (2–5) − 22.92859307 7.78E-34 
No Testing 1 & (3–4) − 22.38583209 5.07E-28 
No Testing 1 & 3 − 36.43440135 3.18E-59 
No Testing (2–5) & (3–4) 0.704231305 0.57267465 
No Testing (2–5) & 3 − 17.52375987 3.40E-61 
No Testing (3–4) & 3 − 18.10052164 2.19E-33 
Testing without contact tracing 1 & (2–5) − 26.21191343 4.85E-95 
Testing without contact tracing 1 & (3–4) − 27.60694191 9.15E-69 
Testing without contact tracing 1 & 3 − 40.50588898 4.00E-105 
Testing without contact tracing (2–5) & (3–4) − 1.890587684 0.150827744 
Testing without contact tracing (2–5) & 3 − 19.3716577 1.11E-39 
Testing without contact tracing (3–4) & 3 − 17.81793367 4.85E-23 
Contact tracing level = 25% 1 & (2–5) − 33.04294744 1.36E-35 
Contact tracing level = 25% 1 & (3–4) − 35.47258901 1.69E-35 
Contact tracing level = 25% 1 & 3 − 42.88151741 3.36E-51 
Contact tracing level = 25% (2–5) & (3–4) − 3.628656699 0.232224364 
Contact tracing level = 25% (2–5) & 3 − 14.69385165 6.97E-08 
Contact tracing level = 25% (3–4) & 3 − 11.48183119 1.95E-04 
Contact tracing level = 50% 1 & (2–5) − 36.33525192 1.05E-19 
Contact tracing level = 50% 1 & (3–4) − 29.83105901 1.16E-14 
Contact tracing level = 50% 1 & 3 − 35.21480929 1.79E-21 
Contact tracing level = 50% (2–5) & (3–4) 10.21631767 0.040307504 
Contact tracing level = 50% (2–5) & 3 1.759910564 0.691255565 
Contact tracing level = 50% (3–4) & 3 − 7.672554559 0.055895315 
Contact tracing level = 75% 1 & (2–5) − 30.85989953 2.62914E-07 
Contact tracing level = 75% 1 & (3–4) − 36.36859778 3.7326E-10 
Contact tracing level = 75% 1 & 3 − 32.63912962 3.76965E-09 
Contact tracing level = 75% (2–5) & (3–4) − 7.967443237 0.266966906 
Contact tracing level = 75% (2–5) & 3 − 2.573369264 0.70534712 
Contact tracing level = 75% (3–4) & 3 5.861049787 0.392950847 
Contact tracing level = 100% 1 & (2–5) − 31.9272862 7.30E-05 
Contact tracing level = 100% 1 & (3–4) − 39.96963412 3.62E-08 
Contact tracing level = 100% 1 & 3 − 41.44829553 2.81227E-08 
Contact tracing level = 100% (2–5) & (3–4) − 11.81434892 0.217198567 
Contact tracing level = 100% (2–5) & 3 − 13.98652823 0.157257011 
Contact tracing level = 100% (3–4) & 3 − 2.463189057 0.792342997  
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