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Abstract
Bladder cancer (BC) is one of the most common malignancies worldwide. Several biomarkers related to the prognosis of patients
with BC have previously been identified. However, these prognostic models use only one gene and are thus not reliable or accurate
enough. The purpose of our study was to develop an innovative gene signature that has greater prognostic value in BC. So, in this
study, we performed mRNA expression profiling of glycolysis-related genes in BC (n=407) cohorts by mining data from The Cancer
Genome Atlas (TCGA) database. The glycolysis-related gene sets were confirmed using the Gene Set Enrichment Analysis (GSEA).
Using Cox regression analysis, a risk score staging model was built based on the genes that were determined to be significantly
associated with BC outcome. Eventually, the system of risk score was structured to predict a patient’s survival, and we identified four
genes (CHPF, AK3, GALK1, and NUP188) that were associated with the outcomes of BC patients. According to the above-
mentioned gene signature, patients were divided into two risk subgroups. The analysis showed that our constructed risk model was
independent of clinical features and that the risk score was a highly powerful tool for predicting the overall survival (OS) of BC patients.
Taking together, we identified a gene signature associated with glycolysis that could effectively predict the prognosis of BC patients.
Our findings offer a new perspective for the clinical research and treatment of BC.

Abbreviations: ATP = adenosine triphosphate, BC = bladder cancer, ChSy-1 = chondroitin synthase-1, CSS1 = chondroitin
sulfate synthase-1, CT= computed tomography, GALK = galactokinase, GalNAcT-II=N-acetylgalactosaminyltransferase-II, GlcAT-
II = glucuronyltransferase-II, GSEA = Gene Set Enrichment Analysis, HCC = hepatocellular carcinoma, HR = hazard ratio, K-M =
Kaplan–Meier, MIBC = muscle invasive bladder cancer, MSigDB = Molecular Signatures Database, NES = normalized enrichment
score, NMIBC = non-muscle invasive bladder cancer, NPC = nuclear pore complex, OS = overall survival, siRNAs = small interfering
RNAs, TCGA = The Cancer Genome Atlas, US = ultrasound.
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1. Introduction

Bladder cancer (BC) is the most common malignancy of the
urinary tract and the 10th most common cancer around the
world. It was estimated that 549,000 new cases of cancer and
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200,000 deaths were attributed to BC in 2018. Men are four
timesmore likely to be affected thanwomen and the global cancer
incidence and mortality rate are 9.6 and 3.2 per 100,000 men,
respectively.[1] Nearly 75% of BC patients have non-muscle-
invasive BC (NMIBC), which has a common low-grade, papillary
morphology.[2,3] The remaining 25% of the patients can have
high-grade, muscle-invasive BC (MIBC) of a non-papillary
morphology that disseminates regionally and/or systemically.[3,4]

In clinical practice, the prognosis of BC often depends on BC
histopathology.[5] However, the prognosis is not exact and only
provides a simple stratification of risk. Furthermore, there are
differences between individuals. Patients with the same histopa-
thology might also have variable outcomes.
At present, the detection methods of BC mainly include

cystoscopy, urinary cytology, and imageology. There are still
challenges for the detection of BC in patients without hematuria,
and small lesions in an incompletely filled bladder are difficult to
detect by computerized tomography (CT) and ultrasound (US). In
low-grade BC, the detection sensitivity of urinary cytology is as
low as 16%.[6,7] Nevertheless, to improve the overall survival
(OS) of patients with BC, it is thus virtually to diagnosis of BC at
an early stage. Hence, effective and minimally invasive methods
to identify risk groups of BC are always required.[4] In recent
years, metabolomics involving glycolysis and beta-oxidation is an
emerging field for the investigation of biochemical processes.[8–10]

A popular area of study is the Warburg effect which showed that
the manner in which cancer cells metabolize glucose is distinct
from that of cells in normal tissues. Cancer cells prefer to
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Table 1

Clinical features of bladder cancer patients (n=412) from TCGA
database.

Variables Patients, n (%) Variables Patients, n (%)

Survival status T stage
Dead 159 (38.6) T0 1 (0.2)
Alive 253 (61.4) T1 3 (0.7)

Gender T2 120 (29.2)
Male 108 (26.2) T3 196 (47.6)
Female 304 (73.8) T4 59 (14.3)

Age (years) TX 1 (0.2)
≦65 162 (39.3) Unknown 32 (7.8)
>65 250 (60.7) M stage

Grade M0 196 (47.6)
High 388 (94.2) M1 11 (2.7)
Low 21 (5.1) MX 202 (49.0)

Unknown 3 (0.7) Unknown 3 (0.7)
Stage N stage
I 2 (0.5) N0 239 (58.0)
II 131 (31.8) N1 47 (11.4)
III 141 (34.2) N2 76 (18.5)
IV 136 (33.0) N3 8 (1.9)

Unknown 2 (0.5) NX 36 (8.7)
Unknown 6 (1.5)
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“ferment” glucose to lactate even in the availability of oxygen.
Thus, this metabolism is known as “aerobic glycolysis.”[11,12]

The combination of novel molecular biomarkers linked with
glycolysis and the existing prognostic methods may, therefore, be
a viable strategy to enhance the detection and prognosis of BC.
Currently, several biomarkers associated with BC prognosis

have been explored. PFKFB4 is significantly overexpressed in
patients with late-stage carcinoma and predicts the progression of
multiple tumors.[13] Moreover, FOXJ1 is upregulated in BC cells
and increases cellular proliferation by enhancing glycolysis and is
associated with poorer outcomes.[14] Nevertheless, predicting BC
prognosis with a single gene is not as accurate as when a
combination of biomarkers is used. Multigene glycolysis-related
prognostic signatures can provide fresh insight into the clinical
study and individual treatment of BC. Therefore, the establish-
ment of an expression-based gene signature is vital for
determining the prognosis of BC patients.
The glycolysis-related gene sets were confirmed by using Gene

Set Enrichment Analysis (GSEA) in this study. Using GSEA, we
selected the gene sets that showed statistical significance and
concordant differences in the relevant biological processes. As it
was difficult to analyze and annotate the results, the Molecular
Signatures Database (MSigDB) integrated with GSEA was
designed to allow the annotation of the gene sets. From the
GSEA, we developed the hallmark gene sets associated with
glycolysis. The glycolysis-related genome expressions of 407
samples of BC were extracted for further analysis. A total of 171
significant mRNAs were identified to be significantly related to
glycolysis. Furthermore, we established a glycolysis-related
prognostic signature, comprising four genes, which can effective-
ly predict the survival of BC patients. In addition, the prognostic
advantage of risk score, compared with other clinical features,
was also demonstrated in BC patients by a series of bioinformat-
ics analyses.
2. Materials and methods

2.1. Clinical data and mRNA expression profiles of
patients

The transcriptome profiling of mRNA and clinical data of BC
patients were extracted from the TCGA database (https://
cancergenome.nih.gov/). Approval by the Ethics Committee
was not necessary because all data were collected from publicly
available databases (TCGA). In this study, a total of 412 patients
with clinical features (age, gender, survival status, grade, TNM
stage, T stage, N stage, and M stage) were included. The clinical
features of BC patients are shown in Table 1.
2.2. Gene set enrichment analysis

GSEA was used to determine if the glycolysis-related function
differences between the normal sample and BC samples are
statistically significant.[15] The expression of 56753 mRNAs,
derived from the TCGA dataset, were analyzed. The functions
investigated for further analysis were determined using normal-
ized P-values (P< .05).[16]
2.3. Statistical analysis

The 56753 mRNA expression profiles were presented as initial
data, and glycolysis-related genes were selected by GSEA. Each
2

gene expression data was log2 transformed for the following
analysis. After removing the samples with unknown and missing
values, the clinical samples of 407 BC patients were selected for
further study. The genes significantly associated with OS were
identified by univariate Cox regression analysis (P< .05).
The filtered genes entered into the next multivariate Cox

proportional regression model. The final glycolysis-related genes
and prognostic model were identified by the evaluation of
survival factors effect. With the function coxph of R package, we
constructed a survival risk score model,[17,18] and it is expressed
by the following formula:
Risk score = b1 � expression of gene 1 + b2 � expression of

gene 2 + . . . + bn � expression of gene n.
BC patients were separated into high-risk and low-risk

subgroups using the median risk score. The prognostic signifi-
cance of the risk score was then validated by the log-rank test and
survival curves.We also applied Student’s t test to determine if the
gene expression levels of normal and BC samples were
significantly different. The cBioPortal for Cancer Genomics
(http://www.cbioportal.org/) was used to study the alterations of
genes related to prognosis. All data were analyzed using SPSS
16.0 and GraphPad Prism 7.0 software.
3. Results

3.1. Preliminary screening of glycolysis-related genes sets

The expression levels of 56753 mRNA and the clinical data of 407
patients were extracted from the TCGA database. We downloaded
seven hallmark gene sets that represent glycolysis-related biological
processes from MSigDB—HALLMARK_GLYCOLYSIS, REAC-
TOME_GLYCOLYSIS, BIOCARTA_FEEDER_PATHWAY, BIO-
CARTA_GLYCOLYSIS_PATHWAY, KEGG_GLYCOLYSIS_-
GLUCONEOGENESIS, MODULE_306, and REACTOME_
REGULATION_OF_GLYCOLYSIS_BY_FRUCTOSE_2_6_BI-
SPHOSPHATE_METABOLISM.The abovementioned datawas
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Table 2

Gene sets enriched in BC.

GS follow link to MSigDB SIZE NES NOM
P

FDR
q

HALLMARK_GLYCOLYSIS 199 1.7423 .0016 0.0016
REACTOME_GLYCOLYSIS 71 1.7037 .0138 0.0138
BIOCARTA_FEEDER_PATHWAY 9 �0.9864 .4472 0.4472
BIOCARTA_GLYCOLYSIS_PATHWAY 3 1.0411 .4730 0.4730
KEGG_GLYCOLYSIS_GLUCONEOGENESIS 62 1.0031 .4545 0.4545
MODULE_306 26 1.2720 .2451 0.2451
REACTOME_REGULATION_OF_GLYCOLYSIS_BY_FRUCTOSE_2_6_BISPHOSPHATE_METABOLISM 12 1.2862 .1652 0.1652
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used to explore the statistical differences between the normal and
BC groups by GSEA. Gene sets named HALLMARK_GLY-
COLYSIS and REACTOME_GLYCOLYSIS were found to be
statistically significant (Table 2, Fig. 1A and B). Both gene sets
were used in further studies.

3.2. Identification of glycolysis-related genes associated
with OS and prognostic model construction in BC patients

In this study, we used the Cox regression model method to
identify genes associated with the OS of BC patients. The two
glycolysis-associated gene sets were analyzed using the univariate
Cox regression analysis. The results showed that a total of 7 genes
(ENO1, SLC16A3, CHPF, AK3, PLOD1, GALK1, and
NUP188) had statistical significance (P< .05). Subsequently, a
total of 4 genes (CHPF, AK3, GALK1, and NUP188) (Table 3)
were selected by the multivariate Cox regression analysis to have
prognostic value. The corresponding risk scores were calculated
to determine the prognosis of each BC patient.
The median risk score, computed by the above formula, was

used as a threshold to divide BC patients into high-risk (n=204)
and low-risk groups (n=203) (Fig. 2A). The low-risk group had a
Figure 1. Enrichment plots of two glycolysis-related gene sets in BC fromGSEA. T
(B) differ significantly between normal samples and BC samples.

3

longer survival time than the high-risk group had (Fig. 2B). The
heatmap showed that the three genes (CHPF, GALK1, and
NUP188) were significantly upregulated and had higher risk
scores, whereas the fourth gene (AK3) was downregulated
(Fig. 2C).

3.3. Univariate and multivariate analyses of independent
prognostic factors

The OS-related variables in the univariate and multivariate Cox
proportional hazard models are shown in Table 4, and Figure 3A
and B. In the univariate analysis, age (HR, 1.041; 95% CI,
1.002–1.060; P< .001), TNM stage (HR, 1.954; 95%CI, 1.527–
2.501; P< .001), T stage (HR, 1.712; 95% CI, 1.318–2.223;
P< .001), N stage (HR, 1.603; 95% CI, 1.343–1.914; P< .001),
and risk score (HR, 1.938; 95% CI, 1.528–2.572; P< .001) were
found to be correlated with poor OS. According to the
multivariate analysis, age (HR, 1.041; 95% CI, 1.022–1.061;
P< .001) and risk score (HR, 1.879; 95% CI, 1.415–2.496;
P< .001) could independently impact OS. These results declared
that our risk score could also be regarded as an independent
prognostic factor for BC patients.
he gene sets of HALLMARK_GLYCOLYSIS (A) and REACTOME_GLYCOLYSIS

http://www.md-journal.com


Table 3

Details of the four selected mRNAs.

mRNA Ensemble ID Chromosome location b(Cox) HR P

CHPF ENSG00000123989 chr2:219538947–219543787 0.156689 1.169632 .0179
AK3 ENSG00000147853 chr9:4709559–4742043 �0.40384 0.667749 .0038
GALK1 ENSG00000108479 chr17:75751594–75765711 0.350739 1.420117 .0002
NUP188 ENSG00000095319 chr9:128947699–129007096 0.444476 1.559673 .0084

Figure 2. The four-gene risk signature related to glycolysis predicts the OS of BC patients. (A) Risk score curve of patients’ distribution. (B) The relationship
between survival status and survival time (years). (C) The alteration of genes expression profile is associated with risk score in Heat map.
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Table 4

Univariable and multivariable analyses for each clinical feature.

Clinical feature Univariate analysis Multivariate analysis

HR 95%CI of HR P HR 95%CI of HR P

Age 1.041 1.022–1.060 <.01 1.041 1.022–1.061 <.001
Gender 0.932 0.636–1.363 .715 0.871 0.592–1.283 .485
Stage 1.954 1.527–2.501 <.001 1.307 0.835–2.045 .241
T 1.712 1.318–2.223 <.001 1.353 0.986–1.855 .061
M 1.178 0.989–1.403 .066 1.076 0.897–1.289 .430
N 1.603 1.343–1.914 <.001 1.262 0.924–1.724 .144
Risk score 1.983 1.528–2.572 <.001 1.879 1.145–2.496 <.001
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3.4. Genetic alteration and differential expression analysis
of the prognostic model

The cBioPortal was used to determine the variation of the
screened genes in BC cases. The results showed that the total
frequency of genetic alteration was 14.2%. The genetic
alterations and mutations are shown in Figure 4A and B. The
alterations are noted using different colors. Furthermore, we
investigated the expression levels of the four selected genes in
healthy controls and BC groups (Fig. 4C). The results showed
that the expression levels of CHPF, GALK1, and NUP188 were
significantly increased in BC patients, while those of AK3 was
significantly decreased compared to those in healthy controls.
This result was highly consistent with the expression levels of the
mRNA in the two risk subgroups, which indicates consistency
between the BC prognosis and the mRNA expression of these
four genes.

3.5. Validation of the predictive value of four-mRNA
signature in BC prognosis

The survival curves showed that clinical features, including high-
risk score, age (age >65), T stage (T3 and T4), M stage (M1), N
stage (N1, N2, and N3), and TNM stage (III and IV), were
significantly related to poor OS of patients with BC (Fig. 5A–F).
Furthermore, the results in Figure 6A, B, and E suggest that the

risk score had a superior prognostic capacity for BC patients who
Figure 3. Univariable and multivariable independent prognostic analyses for clinica
significant differences (P< .05) in the univariate analysis, which indicate those facto
score could be selected as the independent prognostic factors with P values <.
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were classified by age (age�65 or>65), gender (male or female),
and N stage (N0 or N1, N2, N3). Regardless, when patients were
stratified into various subgroups based on TNMand T stages, the
risk score played a different role. The predictive value of risk
score varied among BC patients whowere divided into subgroups
based on TNM and T stages (Fig. 6C and D). The survival
probability of the patients with stage I–II (P= .143) and stage T0–
2 (P= .136) were not significantly different between the high-risk
and low-risk groups. In contrast, statistically significant differ-
ences between the prognosis value of risk scores were revealed in
stage III–IV and stage T3–4 subgroups (P< .001). However,
results of the small sample size in patients with M1 stage (n=11)
and low-grade (n=21), the prognostic value of the risk score was
only detected in the patients with M1 stage and high-grade
subgroup. The patients in the high-grade subgroup with high risk
also had significantly shorter OS (P< .001) (Fig. 6G). Similarly,
there was a shorter OS in the M0 stage high-risk subgroup
(P< .001) (Fig. 6F). Our findings indicated that the prognostic
model was effective in the prognosis of different clinical
subgroups and applied especially well for the late stages of the
disease.

4. Discussion

With the development in the studies on energy metabolism,
researchers are beginning to realize that energy metabolism and
malignancies are closely linked. There are also multiple studies
l features in BC. (A) The age, TNM stage, T stage, N stage, and risk score had
rs were related to patients OS. (B) In the multivariate analysis, the age and risk
05.
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Figure 4. Genetic alteration and the identification of genes signature associated with patient’s prognosis. (A) The mutations frequency and type of four glycolysis-
related genes in BC clinical samples. (B) The amount, height and location of the annotation represent different mutations of each gene. (C) The expression of
selected genes was different in normal and tumor groups (

∗
P< .05,

∗∗
P< .01,

∗∗∗
P< .001).

Figure 5. Kaplan–Meier analysis for BC patients. According to risk score, individuals with BC divided into the high-risk and low-risk groups, and Kaplan–Meier OS
curve showed significantly statistical difference in two groups (A). Clinical features that include age (B), TNM stage (C), T stage (D), M stage (E), and N stage (F) were
also significantly associated with patients OS.

Wu et al. Medicine (2021) 100:3 Medicine
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Figure 6. Survival analysis of Kaplan–Meier curves with clinical subgroups for the prognostic value of risk signature. (A) K–M curves for the patient group with age
�65 (n=160) and patient group with age>65 (n=247). (B) K–M curves for the male group (n=300) and female group (n=107). (C) K–M curves for the stage I to II
group (n=132) and stage III to IV group (n=273). (D) K–M curves for the T0–2 group (n=123) and the T3–4 group (n=251). (E) K–M curves for the N0 group (n=
237) and the N1–3 group (n=128). K–M curves for the M0 group (n=196) (F) and the high-grade group (n=383) (G).

Wu et al. Medicine (2021) 100:3 www.md-journal.com
that focus on glycolysis and cancer. According to the findings of
Warburg et al, the metabolism of tumor cells shifts from
oxidative phosphorylation to glycolysis in the presence of
oxygen. This is known as the “Warburg effect” or “aerobic
glycolysis”[11] and is essential for tumor growth and prolifera-
tion. However, the advantages of aerobic glycolysis in cancer are
still in debate. The major argument lies in the following two
points: first, cancer cells tend to produce ATP to maintain energy
supply through a non-economical glycolysis pathway rather than
the oxidative phosphorylation pathway[19]; second, even under
aerobic conditions, persistent glycolysis metabolism is also an
adaptation to intermittent hypoxia in pre-malignant lesions.
With the upregulation of glycolysis, cancer cells develop
phenotypes that can tolerate acid-induced cell toxicity in
microenvironmental acidosis.[20] Moreover, aerobic glycolysis
increases the uptake of nutrients, elevate flux through biosyn-
thetic pathways, and maintain high levels of glycolytic
intermediates to support anabolic reactions in cancer cells.[21]

Currently, there are several studies focusing on cancer progres-
sion and glycolysis. However, research determining the prognos-
tic value of glycolysis-related genes set is still limited. We hence
try to construct a risk score staging model from several glycolysis-
related genes to improve the prediction efficiency of OS in BC
patients.
7

GSEA is a computational method that can identify the
statistical significance of prior defined gene set and concordant
differences between two biological states. In our study, the GSEA
was performed to screen glucose-related gene sets of BC patients.
By analyzing the NES and P-value, HALLMARK_GLYCOLYSIS
and REACTOME_GLYCOLYSIS gene sets were selected for
further analysis. Furthermore, four genes CHPF, AK3, GALK1,
and NUP188 were identified as hub glycolysis-associated genes
which were significantly connected with the overall survival of
BC patients. Among these genes, CHPF was identified to be
engaged in chondroitin polymerization. CHPF exerts dual
GlcAT-II and GalNAcT-II activity. Moreover, CHPF plays a
critical role in the biosynthesis of chondroitin sulfate through co-
operation with CSS3 or ChSy-1.[22,23] These findings indicate
that CHPF is involved in energy metabolism and may be related
to glycolysis. AK3, arginine kinase 3, located on chromosome 9,
functions mainly in the mitochondrial matrix and is involved in
the homeostasis of adenine nucleotide composition in various
organisms. Moreover, AK3 has been demonstrated to have
anticancer effect.[24,25] Qin et al showed that the expression level
of AK3 was downregulated in breast cancer patients and that
decreased AK3 level was significantly associated with poor OS. In
hepatocellular carcinoma, AK3 is also significantly downregu-
lated, and the AK3-encoded protein has been identified as a

http://www.md-journal.com
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specific biomarker to detect hepatocellular carcinoma.[24,26]

Interestingly, the expression of AK3 was also significantly
downregulated in our study. GALK1 encodes galactokinase
(GALK). Mutations in GALK1 can cause GALK deficiency or
galactosemia type2. In addition, individualswithGALKdeficiency
cannot phosphorylate galactose and consequently accumulate
galactose and galactitol.[27,28] These findings indicate that GALK1
also plays a role in metabolism. Furthermore, GALK1 is a novel
therapeutic target for HCC. Tang et al reported that GALK1
siRNAs could effectively inhibit the growth of HepG2 cells.[29]

However, the relationship betweenGALK1 and BC is still unclear.
NUP188 encodes nucleoporin, a component of the nuclear pore
complex (NPC). Nucleoporin regulates chromosome segregation
in mitotic cells by promoting chromosome alignment. The
aneuploidy in some cancer cells could be caused by defects in
the chromosomal segregationprocess.[30]NUP188may thusplaya
role in oncogenesis and the proliferation of cancer cells. The
relationship between NUP188, BC, and glycolysis mechanism is
still unclear and needs further exploration.
Moreover, to identify whether these specific genes could be

used as a prognostic factor in BC, we constructed a novel
prognostic prediction model based on the four hub genes. The
results of univariate and multivariate Cox regression analyses
indicated that we found a novel molecular biomarker—a
glycolysis-related risk signature—that can be used to accurately
predict clinical outcomes of BC patients. We then verified it by
using K–M analysis and observed that patients with high-risk
scores had significantly poorer OS. These results showed that the
four-gene risk score had high prognostic value and can not only
serve as a newmethod for predicting the prognosis of BC patients
but also assist clinicians in formulating personalized therapies.
Nonetheless, this study has some limitations. First, this study

was purely based on computational data and designed as a
retrospective analysis; more prospective research should be
performed to verify our results. Second, our results lack in vitro
or in vivo validation to confirm the reliability of the proposed
mechanisms. Therefore, we need to conduct several experiments
to prove the mechanistic connections between these genes and BC
progression as warranted.

5. Conclusion

In conclusion, we identified four glycolysis-related genes that
were significantly associated with the overall survival of BC
patients. The four-gene signature was independent of other
standard factors that could predict the outcome of BC patients.
Combined with the existing methods, the application of this gene
signature could potentially benefit the treatment and manage-
ment of BC. Moreover, our results also indicated that together,
the four glycolysis-related genes, CHPF, AK3, GALK1, and
NUP188, form a promising prognostic biomarker that could
offer insights for the clinical research and treatment of BC.

Author contributions

Conceptualization: Guihong Ye.
Data curation: Zhengyuan Wu.
Formal analysis: Zhengyuan Wu, Miao Yu.
Methodology: Zhengtian Li.
Project administration: Guihong Ye.
Writing – original draft: Zhengyuan Wu, Zhenpei Wen.
Writing – review & editing: Guihong Ye.
8

References

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics
2018: GLOBOCAN estimates of incidence and mortality worldwide
for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:
394–424.

[2] Babjuk M, Burger M, Compérat EM, et al. European Association of
Urology guidelines on non-muscle-invasive bladder cancer (TaT1 and
carcinoma In Situ)-2019 update. Eur Urol 2019.

[3] MochH, Cubilla AL, Humphrey PA, et al. The 2016WHO classification
of tumours of the urinary system and male genital organs—part A: renal,
penile, and testicular tumours. Eur Urol 2016;70:93–105.

[4] Sanli O, Dobruch J, Knowles MA, et al. Bladder cancer. Nat Rev Dis
Primers 2017;3:1–9.

[5] Babjuk M, Böhle A, Burger M, et al. EAU guidelines on non–muscle-
invasive urothelial carcinoma of the bladder: update 2016. Eur Urol
2017;71:447–61.

[6] Planz B, Jochims E, Deix T, et al. The role of urinary cytology for
detection of bladder cancer. Eur J Surg Oncol 2005;31:304–8.

[7] Yafi FA, Brimo F, Steinberg J, et al. Prospective analysis of sensitivity and
specificity of urinary cytology and other urinary biomarkers for bladder
cancer. Paper presented at: Urologic oncology: seminars and original
investigations; 2015.

[8] Burton C, Ma Y. Current trends in cancer biomarker discovery using
urinary metabolomics: achievements and new challenges. Curr Med
Chem 2019;26:5–28.

[9] Shao C-H, Chen C-L, Lin J-Y, et al. Metabolite marker discovery for the
detection of bladder cancer by comparative metabolomics. Oncotarget
2017;8:38802.

[10] Wittmann BM, Stirdivant SM, Mitchell MW, et al. Bladder cancer
biomarker discovery using global metabolomic profiling of urine. PLoS
One 2014;9: doi: 10.1371/journal.pone.0115870.

[11] Warburg O. On the origin of cancer cells. Science 1956;123:309–14.
[12] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the

Warburg effect: the metabolic requirements of cell proliferation. Science
2009;324:1029–33.

[13] Yun SJ, Jo S-W, Ha Y-S, et al. PFKFB4 as a prognostic marker in non-
muscle-invasive bladder cancer. Paper presented at: Urologic Oncology:
Seminars and Original Investigations; 2012.

[14] Afonso J, Santos LL, Longatto-Filho A, et al. Competitive glucose
metabolism as a target to boost bladder cancer immunotherapy. Nat Rev
Urol 2020;17:77–106.

[15] Thomas MA, Yang L, Carter BJ, et al. Gene set enrichment analysis of
microarray data from Pimephales promelas (Rafinesque), a non-
mammalian model organism. BMC Genomics 2011;12:66.

[16] Liu C, Li Y, Wei M, et al. Identification of a novel glycolysis-related gene
signature that can predict the survival of patients with lung adenocarci-
noma. Cell Cycle 2019;18:568–79.

[17] Therneau TM, Grambsch PM. The CoxModel. Modeling Survival Data:
Extending the Cox Model. New York: Springer; 2000. 39–77.

[18] Therneau TM, Lumley T. Package ‘survival’. Survival Anal 2014;2:3.
[19] Villar VH, Merhi F, Djavaheri-Mergny M, et al. Glutaminolysis and

autophagy in cancer. Autophagy 2015;11:1198–208.
[20] Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis?

Nat Rev Cancer 2004;4:891–9.
[21] Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic

requirements of cell proliferation. Annu Rev Cell Dev Biol 2011;27:
441–64.

[22] Izumikawa T, Uyama T, Okuura Y, et al. Involvement of chondroitin
sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymeriza-
tion through its interaction with chondroitin synthase-1 or chondroitin-
polymerizing factor. Biochem J 2007;403:545–52.

[23] Izumikawa T, Uyama T, Okuura Y, et al. Involvement of chondroitin
sulfate synthase-3 (chondroitin synthase-2) in chondroitin polymeriza-
tion through its interaction with chondroitin synthase-1 or chondroitin-
polymerizing factor. Biochem J 2007;403:545–52.

[24] Melle C, Ernst G, Scheibner O, et al. Identification of specific protein
markers in microdissected hepatocellular carcinoma. J Proteome Res
2007;6:306–15.

[25] Tanabe T, Yamada M, Noma T, et al. Tissue-specific and developmen-
tally regulated expression of the genes encoding adenylate kinase
isozymes. J Biochem 1993;113:200–7.

[26] Qin WY, Feng SC, Sun YQ, et al. MiR-96-5p promotes breast cancer
migration by activating MEK/ERK signaling. J Gene Med 2020;22:
e3188.



Wu et al. Medicine (2021) 100:3 www.md-journal.com
[27] Ebrahimi EA, Ghazala SA, Priya GDC, et al. Structural analysis of
missense mutations in galactokinase 1 (GALK1) leading to galactosemia
type-2. J Cell Biochem 2018;119:7585–98.

[28] Berry GT. Disorders of Galactose Metabolism. Rosenberg’s Molecular
and Genetic Basis of Neurological and Psychiatric Disease. Edinburgh:
Elsevier; 2015. 615–626.
9

[29] TangM, Etokidem E, Lai K. The Leloir pathway of galactose metabolism
—a novel therapeutic target for hepatocellular carcinoma. Anticancer
Res 2016;36:6265–71.

[30] Itoh G, Sugino S, Ikeda M, et al. Nucleoporin Nup188 is
required for chromosome alignment in mitosis. Cancer Sci 2013;
104:871–9.

http://www.md-journal.com

	Identification and prognostic value of a glycolysis-related gene signature in patients with bladder cancer
	1 Introduction
	2 Materials and methods
	2.1 Clinical data and mRNA expression profiles of patients
	2.2 Gene set enrichment analysis
	2.3 Statistical analysis

	3 Results
	3.1 Preliminary screening of glycolysis-related genes sets
	3.2 Identification of glycolysis-related genes associated with OS and prognostic model construction in BC patients
	3.3 Univariate and multivariate analyses of independent prognostic factors
	3.4 Genetic alteration and differential expression analysis of the prognostic model
	3.5 Validation of the predictive value of four-mRNA signature in BC prognosis

	4 Discussion
	5 Conclusion
	Author contributions
	References


