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In case of contamination in the food chain, fast action is required in order to reduce the numbers of affected people. In such
situations, being able to predict the fate of agents in foods would help risk assessors and decision makers in assessing the potential
effects of a specific contamination event and thus enable them to deduce the appropriate mitigationmeasures. One efficient strategy
supporting this is using model based simulations. However, application in crisis situations requires ready-to-use and easy-to-
adapt models to be available from the so-called food safety knowledge bases. Here, we illustrate this concept and its benefits by
applying the modular open source software tools PMM-Lab and FoodProcess-Lab. As a fictitious sample scenario, an intentional
ricin contamination at a beef salami production facility was modelled. Predictive models describing the inactivation of ricin were
reviewed, relevant models were implemented with PMM-Lab, and simulations on residual toxin amounts in the final product were
performed with FoodProcess-Lab. Due to the generic and modular modelling concept implemented in these tools, they can be
applied to simulate virtually any food safety contamination scenario. Apart from the application in crisis situations, the food safety
knowledge base concept will also be useful in food quality and safety investigations.

1. Introduction

In pandemic crisis situations, timely and scientifically based
exposure assessments are of crucial importance for all
involved stakeholders (Regulation (EC) 178/2002) [1]. These
exposure assessments are even more important in crisis
scenarios in which the human population is at high risk.
As could be witnessed in recent years during international
foodborne disease outbreaks, tools and methodologies sup-
porting efficient exposure assessments including the tracing
back and forward of contaminated commodities are essential
[2]. In an outbreak, risk assessors have to respond quickly to
questions that crisis managers raise to support their decision-
making processes. In order to empower risk assessors in
their work predictive modelling software tools can provide
valuable support, for example, by creating situation-specific
models and running simulations for different contamination
scenarios.

As a proof-of-principle scenario, the intentional con-
tamination of a beef salami production facility with ricin
was selected. Ricin is a toxin produced by the plant Ricinus
communis. Its seeds are used for the production of over
1,100,000 tonnes of castor oil annually for various products,
for example, paints, coatings, or polymers machines [3].
Because ricin is water soluble, it could be extracted from the
remnants of the oil production for deliberate contamination
of foods. The ricin content of the seeds makes up 1–5% [4, 5]
or up to 1.5% in the castor cake after oil extraction [3, 6].

The toxin has been investigated in biological weapon
programmes of the USA, Canada, and Iraq [7, 8]. It was pre-
sumably used in the assassination of the Bulgarian dissident
Georgi Markov in 1978 [9] and was also found in a letter
addressed to the White House in 2003 [10]. Ricin is classified
as category B biological weapon [11].

The toxin acts as a protein synthesis inhibitor. In humans,
the lethal oral dose is estimated to be 1–20mg/kg body
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weight with symptoms like abdominal pain, vomiting, and
diarrhoea [12]. Ricin is pH stable over a wide range [13]. For
inactivation, high temperatures are needed. Pasteurization at
72∘C for 15 seconds or at 89∘C for 1 second did not fully
inactivate ricin in infant milk formula [14]. Neither did the
steaming of castor beans at 80∘C for 40minutes inactivate the
toxin [15].

In the case of an intentional contamination of a food
production chain, risk assessors need to estimate the con-
sumers’ exposure to the agent based on the amount of the
contaminant that ends up in the final product. Additionally,
the amount of agent introduced into the production chain
needs to be estimated. Also, to be able to inactivate the agent
in production machineries and intermediate products, it is
necessary to know whether there are effective detergents for
this purpose.

The aim of this research was to verify that a framework
established for efficient and transparent conduction of expo-
sure assessments in the food sector could also be applied
in case of bio- and agroterroristic crisis situations. For this,
data and models on tenacity of highly pathogenic agents
were collected and applied in sample scenarios together with
knowledge on relevant food production processes [16].

2. Material and Methods

2.1. Literature Review. A literature research on publications
describing experimental data or models on the inactivation
of ricin in food matrices was performed using the online
databases PubMed (PM, http://www.ncbi.nlm.nih.gov/
pubmed) and Web of Science (WoS, http://apps.webof-
knowledge.com) with standard settings. Publications were
searched using the search string “ricin ((stability food)
OR (inactivation food) OR beverage OR inactivation OR
(models food) OR (predictive models)).” Database searches
were performed in January and February 2014 according to
the PRISMA statement for systematic reviews [17].

To gather information about the inactivation of ricin in
foods, data andmathematicalmodels were reviewed from the
literature. All was stored in the internal database of the open-
source modelling tool PMM-Lab (see Section 2.2).

Information on foodprocessing chainswas gathered from
publications in scientific journals and from German text
books about industrial andmanual processing of beef ormilk
[18, 19]. Additionally, information on processing chains was
collected via interviews of manufacturers and experts.

2.2. Food Safety Knowledgebase. The food safety knowledge-
base consists of three components:

(1) A collection of data and information on food pro-
duction process parameters (FoodProcess knowledge
base);

(2) A collection of data and predictive models on rele-
vant pathogenic agents (predictive model knowledge
base);

(3) A modular open-source software tool for exposure
assessment calculations.

Technically, these components have been implemented
in two modular software tools, PMM-Lab and FoodProcess-
Lab (FPL). Both can be downloaded freely, installed locally,
and used offline. This enables users to keep unpublished
or confidential data on their desktop. The software also
incorporates knowledge on food production processes and
predictive models as well as the creation of scenarios as
illustrated in Section 3.

PMM-Lab and FPL are both extensions to the scientific
workflow management system KNIME (http://www.knime
.org/) and inherit its modularity. The KNIME framework
allows users to execute any data processing task by combi-
nation of small executable software modules, called nodes,
into executable workflows. Each node’s calculation result can
be inspected visually at the node’s outport. Plenty of nodes
are available in KNIME and they can also be used from
within PMM-Lab and FPL. In this way, it becomes possible
to import data from all sources virtually and even to create
reports automatically from workflows. In relation to food
safety modelling, this modular workflow-based approach is
therefore highly beneficial as the generation of prediction
results becomes reproducible and transparently documented.

2.3. Software for Predictive Modelling (PMM-Lab). PMM-
Lab (http://sourceforge.net/projects/pmmlab) is a commu-
nity resource for generation and application of predictive
models, integrating more than 20 domain specific nodes as
a new node library into KNIME. One of the advantages of
this tool is that now raw data used to generate predictive
models and the model generation workflow can be physically
connected to the final model. This allows the data used
for model generation to be viewed at any time. PMM-Lab
additionally contains a database that stores all information
(experimental data, models, metadata, and workflows) in
relational database tables [20].

Additional information on how to use PMM-Lab can
be found in the PMM-Lab Wiki (http://sourceforge.net/p/
pmmlab/wiki/Home).

2.4. Software for Predicting the Tenacity of Pathogens along
Food ProcessingChains (FoodProcess-Lab). FPL (http://source-
forge.net/projects/foodprocesslab) is like PMM-Lab, an
extension to the KNIME framework providing six domain
specific nodes structured inside the FPL node library. The
“Ingredients” and “FoodProcess” nodes are the graphical
representation of food processing chains and contain infor-
mation on food processing parameters. All this information
can be saved in the integrated database via the “Writer” node.
Additionally, FPL can be used to perform mathematical
calculations on agents spreading within food processing
chains by the application of the “Agents” node. Via the “Filter
Models” Tab of the “FoodProcess” node, the software can
also make use of models on agent tenacity saved in the
PMM-Lab section of the database. Information on food
production process chains and parameters can be retrieved
from the FPL database itself.

Finally, the “View” node can be used to graphically
represent the change of food process conditions and agent



BioMed Research International 3

274 records identified 
through database 

searching

Identification

Screening

207 records were 
screened for data and 

models for the 
inactivation of ricin

67 duplicates

176 records excluded: 
neither title nor abstract 
contained data or models

31 records were assessed 
for eligibility

4 records were chosen for 
implementation in PMM-

Lab

Eligibility

Included

3 records contained data 
and 4 records contained 

models/model parameters

Figure 1: Flow diagram on the literature review performed precluding the implementation of models for the inactivation of ricin in foods
with PMM-Lab.

concentration for the whole food process chain. Information
about installation and sample workflows can be found in
the FoodProcess-Lab Wiki (http://sourceforge.net/p/food-
processlab/wiki/Home).

3. Results

Predictive models are important components of quantitative
risk assessments. Several software tools exist which are
designed to create predictive models based on pathogen
specific experimental data (e.g., GinaFit [26], DMfit [27]).
Additionally, there are tools allowing the application of
models for predicting the tenacity of agents in different
food matrices (e.g., ComBase Predictor [28], PMP [29],
and SSSP [30]). However, in case of bio- and agroterrorist
agents, authorities have to develop their own knowledge
bases covering agent tenacity, considering typical food pro-
duction processes including processing parameters. First
efforts for a systematical collection of information con-
cerning the latter aspect have been made in projects like
FRISBEE (http://frisbee-wp2.chemeng.ntua.gr/coldchaindb)
[31]. Unfortunately, the available solutions are currently only
directed towards time-temperature profiles of postproduc-
tion processing steps. Additionally, models and software
developed and used within the FRISBEE system are not
freely available. In order to empower authorities to estab-
lish their own knowledge base in preparation for bio- or
agroterrorist events free software access is highly beneficial.
This requirement also takes into account the fact that in

case of a real intentional food contamination situation the
information exchange between authorities would be much
easier if open-source software solutions already commonly
used were applied.

3.1. Knowledge Base Generation

3.1.1. Current Knowledge on the Inactivation of Ricin. In the
literature research, a total of 274 entries dealing with the
inactivation of ricin were retrieved from PubMed and Web
of Science (see Figure 1). Of these, 31 publications were
considered as relevant for in-depth analysis. Seven articles
contained models, model parameters, or experimental data
on the inactivation of ricin in food (see Table 1).

These papers describe the influence of temperature [14,
21–23], pH [13, 25], and chemicals [24] on ricin activity.
Different food matrices as well as buffers were used in
these reports: beef, milk, egg [22], infant formula [14, 24],
orange juice, apple juice [21], pancake mix, peanut butter
[24], phosphate buffered saline (PBS) [22, 24], sodium
phosphate/sodium acetate buffer [13, 25], and KCl buffer
[23]. The applied detection methods included fluorescence
measurement, ELISA and cytotoxicity assays (see Table 1).

3.2. Ricin Model Repository

3.2.1. Option 1 (Reimplementation of Models from Literature
References). Model equations, model parameters, and model
metadata from the studies summarized in Table 1 were used
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Table 1: Studies on inactivation of ricin in food matrices.

Matrix Environmental conditions Detection method(s) Rate
constantsa Reference

Apple juice 25∘C;
60–90∘C (𝑛 = 6) ELISA, cytotoxicity assay ✓ [21]

Beef 63∘C; 72∘C Fluorescence [22]
Buffers (HCl, KCl, glycine, acetic
acid, KOH, KH2PH4, K2HPO4,
boric acid, KHCO3, K2CO3)

43.9, 52.9, 65.3, 71.5, 78.2, 86.5∘C
pH 1–12

Visible light (colour
change) ✓ [23]

Egg 63∘C; 72∘C Fluorescence [22]
Infant formula 60–90∘C (𝑛 = 6) ELISA, cytotoxicity assay ✓ [14]
Infant formulac NaClO (1.3, 6.7, 13mM) at RT ELISA, cytotoxicity assay ✓ [24]
Infant formulac PAA (6.6, 13, 26mM) at RT ELISA, cytotoxicity assay ✓ [24]
Milk 63∘C; 72∘C Fluorescence [22]
Na-phosphate/Na-acetate buffer pH 3–10 (𝑛 = 16) at 20∘C Fluorescence [13]

Na-phosphate/Na-acetate buffer

pH 2–7 at 25∘C (𝑛 = 15) and
60∘C (𝑛 = 6);

5–70∘C at pH 7.3 (𝑛 = 16), 4.7
(𝑛 = 15),

4.0 (𝑛 = 10) and 3.0 (𝑛 = 8)

Fluorescenceb [25]

Orange juice 25∘C;
60–90∘C (𝑛 = 6) ELISA, cytotoxicity assay ✓ [21]

Pancake mixc NaClO (6.7, 13, 27mM) at RT ELISA, cytotoxicity assay ✓ [24]
Pancake mixc PAA (6.6, 13mM) at RT ELISA, cytotoxicity assay ✓ [24]

Pancake mixc
PAA-based disinfectant (1.0, 3.0,
5.0% with pH 5.0, 4.4, 3.9, resp.)

at RT
ELISA ✓ [24]

Pancake mixc CAD (3.0, 5.0, 7.0% with pH 10.2,
11.0, 12.1, resp.) at RT ELISA ✓ [24]

PBS 63∘C; 72∘C Fluorescence [22]
PBSc NaClO (67, 130, 270 𝜇M) at RT ELISA, cytotoxicity assay ✓ [24]
PBSc PAA (6.6, 13, 26mM) at RT ELISA, cytotoxicity assay ✓ [24]

PBSc
PAA-based disinfectant (0.1, 0.5,
1.0% with pH 6.2, 5.7, 5.0, resp.)

at RT
ELISA ✓ [24]

PBSc CAD (0.5, 2.0, 5.0% with pH 8.8,
9.7, 11.0, resp.) at RT ELISA ✓ [24]

Peanut butterc NaClO (13, 27, 40mM) at RT ELISA, cytotoxicity assay ✓ [24]
Peanut butterc PAA (39, 66, 130mM) at RT ELISA, cytotoxicity assay ✓ [24]

Peanut butterc
PAA-based disinfectant (1.0, 3.0,
5.0% with pH 5.0, 4.4, 3.9, resp.)

at RT
ELISA ✓ [24]

Peanut butterc CAD (3.0, 5.0, 7.0% with pH 10.2,
11.0, 12.1, resp.) at RT ELISA ✓ [24]

a
✓: published rate constants useful for modelling the inactivation of ricin in foods.

bFluorescence of ricin B-chain.
cIn solution and dried on stainless steel coupons.
NaClO: sodium hypochlorite, CAD: chlorinated alkaline detergent, PAA: peracetic acid, and RT: room temperature.

to reimplement models using PMM-Lab. Model equations
were entered as the so-called primary model formulas into
the PMM-Lab Formula Creator node. Then, metadata and
model parameters from the publications were copied to an
MS Excel table and imported into PMM-Lab via the XLS
Model Reader node. The generated primary models were
saved to the local PMM-Lab model database.

3.2.2. Option 2 (Model Estimation). If not all model parame-
ters necessary for reimplementation were given in a publica-
tion, proprietary models were created based on experimental
data or parameter estimates in the publication.This approach
was also applied, where parameter estimates were missing
in published models. In case of the publication by Jackson
et al. [21], the estimates on parameter “𝐴” were not given
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Figure 2: Estimation of proprietary secondary models and its application for prediction of ricin inactivation in apple juice.

(see (1)). In this case, the available primary models could
be used to create proprietary secondary models allowing
the inactivation of ricin to be predicted over the whole
temperature range covered by the performed laboratory
experiments. The so-called secondary models describe the
relationship of primary model parameters to varying exper-
imental conditions, like, for example, temperature. In this
way, combined primary and secondary models can be used
to interpolate ricin inactivation in the range of measured
experimental conditions.

Jackson et al. [21] published a primary model formula
which was fitted to measurements of residual ricin (1) after
inactivation in different foods

%ricin = 𝐴𝑒−𝑘𝑡, (1)

where 𝐴 is an empirically determined constant, 𝑘 is the first-
order rate constant, and 𝑡 is the thermal treatment duration.
As suggested in the publication, the Arrhenius equation
(2) was then used as secondary model formula to create a
model for the change of the first-order rate constant 𝑘 with
temperature

𝑘 = 𝐵𝑒
−𝐸
𝑎
/(𝑅𝑇)

, (2)

where 𝐵 is an empirically determined constant, 𝐸
𝑎
is the acti-

vation energy, 𝑅 is the gas constant, and 𝑇 is the temperature
in Kelvin.

To simplify the parameter estimation process, the first-
order rate constant was transformed by application of the
natural logarithm transformation. Equations (1) and (2) were
adjusted accordingly (see the following equation):

%ricin = 𝐴𝑒(−exp(ln(𝑘))𝑡),

ln (𝑘) = ln (𝐵) −
𝐸
𝑎

(𝑅𝑇)

.

(3)

Other equations were also tested for secondary model
estimation, of which the second-order polynomial performed
best as in the following equation:

ln (𝑘) = 𝑎0 + 𝑎1 ∗ 𝑇 + 𝑎2 ∗ 𝑇
2
, (4)

where 𝑎
0
, 𝑎
1
, and 𝑎

2
are empirically determined constants and

𝑇 is the temperature in degrees Celsius.
The model generation workflow applied is depicted in

Figure 2. As users can use the Formula Reader node to select
equations from a wide formula collection implemented in
the software, this very same workflow also allows alternative
(better fitting) secondary models to be searched for. The
results of the model fitting step performed with PMM-Lab
are shown in Tables 2 and 3.

Overall, most of the fitted models had an 𝑅2 greater
than 0.94 with a few exceptions (minimum was 0.915).
According to 𝑅2, the polynomial models performed better
than the Arrhenius-basedmodels. In contrast, the AIC values
from the Arrhenius models are lower than those from the
polynomial models, indicating that the Arrhenius models
should be preferred. This can be explained by the fact that
Arrhenius models contain only two free model parameters
instead of three in the polynomial models. As a consequence,
the estimated Arrhenius-type secondary models were used
to create a combined primary/secondary model which was
saved into the PMM-Lab model database.

In comparison with the values for the inactivation ener-
gies published by Jackson et al. [21], half of those estimated
with PMM-Lab match the published values (Table 2). How-
ever, four 𝐸

𝑎
values differ. In order to find higher agreement

of published and estimated data, the original Arrhenius equa-
tion (non-ln-transformed) was used and one out of six out-
lying inactivation rates were omitted, resulting in a very high
agreement with the published data (Table 2, last column; for
full data, see Supplementary Table 3 in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2015/830809).
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Table 2: Secondary model estimation and quality criteria: Arrhenius equation, ln transformed; ln(𝑘) = ln(𝐵) − 𝐸
𝑎

/(8.314∗𝑇).

Matrix Ricin inactivation
measured with

𝐸
𝑎

[kJ/mol]
Jackson et al.

𝐸
𝑎

[kJ/mol]
This paper ln(𝐵) RMSE 𝑅

2 AIC 𝐸
𝑎

[kJ/mol]
This papera

Apple juice clear ELISA 120 ± 10 188 ± 20 62.32 0.4891 0.9551 6.9853 118
Apple juice clear Cytotoxicity assay 110 ± 20 185 ± 14 61.23 0.3448 0.9765 2.7898 119
Apple juice cloudy ELISA 200 ± 11 187 ± 18 61.82 0.4298 0.9646 5.4350 204b

Apple juice cloudy Cytotoxicity assay 240 ± 30 169 ± 18 55.95 0.4230 0.9582 5.2437 262b

Orange juice A ELISA 170 ± 30 203 ± 31 67.47 0.7403 0.9154 11.9581 165
Orange juice A Cytotoxicity assay 140 ± 30 177 ± 19 58.8 0.4579 0.9558 6.1937 139
Orange juice B ELISA 170 ± 20 216 ± 28 72.1 0.6722 0.9370 10.8003 174c

Orange juice B Cytotoxicity assay 161 ± 09 228 ± 26 76.23 0.6206 0.9511 9.8419 158
Values are estimated parameter values ± standard errors; aActivation energies calculated using the original Arrhenius equation 𝑘 = 𝐵∗ exp(−𝐸

𝑎
/(8.314∗𝑇));

for a better fitting, some of the inactivation rates Jackson et al. [21] published were not used in this calculation (see b and c); of the published inactivation rates
at 60, 70, 75, 80, 85 and 90∘C, the rate at 90∘C was omitted in b and the rate at 85∘C was omitted in c. Standard errors could not be calculated. 𝑇: Temperature
[K].

Table 3: Secondary model estimation and quality criteria: Polynomial of second order; ln(𝑘) = 𝑎
0

+ 𝑎
1

∗𝑇 + 𝑎
2

∗(𝑇
2

).

Matrix Ricin inactivation measured with 𝑎
0

𝑎
1

𝑎
2

RMSE 𝑅
2 AIC

Apple juice clear ELISA −37.5238 0.7551 −0.0038 0.3643 0.9813 31.7249
Apple juice clear Cytotoxicity assay −31.8713 0.5990 −0.0028 0.2646 0.9896 27.8857
Apple juice cloudy ELISA −23.2621 0.3635 −0.0012 0.4874 0.9659 35.2165
Apple juice cloudy Cytotoxicity assay −22.9993 0.3852 −0.0015 0.4703 0.9613 34.7882
Orange juice A ELISA 3.0323 −0.3642 0.0038 0.6293 0.9541 38.2830
Orange juice A Cytotoxicity assay −6.3983 −0.0783 0.0017 0.4394 0.9695 33.9735
Orange juice B ELISA −10.0907 −0.0180 0.0016 0.7194 0.9459 39.8892
Orange juice B Cytotoxicity assay −25.3006 0.3829 −0.0010 0.7134 0.9515 39.7884
𝑇: temperature [∘C].

3.3. Food Process Model Repository. FPL can use knowledge
on food processing chains stored in the integrated database.
Furthermore, users can collect new information on process-
ing parameters, for example, the processing steps for salami
production. FPL also allows the user to describe processing
chains with commodity flows that split up and join back
again as in the case of the production of a meat product
fromcarcasses (carcass → [processing to different pieces] →
further processing, e.g., cutting or mincing → [addition of
different parts of processed meat and fat] → meat product
with standardized amount of fat). Values on temperature or
other environmental conditions can either be entered as a
single value, as a time-temperature profile, or as a function.
The software also enables users to import knowledge on food
production processes directly from other tools like CARVER
[32].

As the basic design principle FPL represents each process-
ing step as a food processing node (see Figure 3) which can be
configured according to real world conditions. It is saved in
the knowledge base or simply as a KNIME workflow. A sim-
ilar modular concept was already introduced by Nauta [33,
34]. HisModular Process RiskModel (MPRM) is widely used
in the domain of quantitative microbial risk assessments.
In FPL, every FoodProcess node can both model microbial
tenacity and calculate the effect of product handling changes.
Its modularity refers to the reusability of single FoodProcess

nodes as well as of full food processing chains (workflows).
Together with the predictive models stored in the PMM-Lab
database, the collected process information is then used as
input for the predictions which are performed in each FPL
process node [16].

3.4. Application of the Knowledge Base in Scenario Simulation

3.4.1. UseCase 1 (Scenario Simulation). In the following hypo-
thetical contamination scenario, minisalamis (small salami
sticks, weight: 10 g) are contaminated with ricin during their
production. The food processing chain in brief is as follows
[35]: Large parts of beef, pork, and lard are cut into pieces
and are frozen before the mincing step (Table 4). The frozen
meat is minced and pickling salt with nitrate, spices, sodium
ascorbate, and lactic acid bacteria are added. The prepared
meat is filled into casings and the raw sausages are warmed
to room temperature. A short bath in potassium ascorbate
prevents growth of bacteria on the surface of the casing. The
minisalamis mature for 72 hours at 20–24∘C and are smoked
for 124 hours at 18–20∘C. The hypothetical contamination of
a production batch of the size of 100 kg with 3000 g pure
ricin is set to take place during the process step “packaging,”
meaning that the sausages would be contaminated on the
outside. Finally, the minisalamis are stored and sold. The
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Figure 3: Process steps in the production of minisalamis as represented in FPL. Every yellow symbol (node) represents one processing step
in the production of beef salami, configured in accordance with the data in Table 4.

Table 4: Process steps in the production of beef salami.

Process step Durationa Temperature [∘C] Introduced ingredient Ingredient
mass [kg] Product

Meat preprocessing 3min 2
Raw beef
Raw pork
Lard

35
35
30

Pieces of raw
beef, pork, lard

Freezing 24 h −20

Mincing 10min −20 → 0

Pickling salt with nitrate
Spice blend
Pepper

Lactic acid bacteria
Sodium ascorbate

2.8
1.3
0.3
0.08
0.05

Seasoned
minced meat

Filling 3min 0 Raw sausages
Adapting to maturation 4 h 22
Potassium ascorbate bath 5 s 22
Maturation 72 h 24 → 22 → 20

Smoking 124 h 20 → 18 Smoke Smoked
minisalami

Packaging 4 h 17
Storage and sale 7/15/34 d 17
aDuration, d: day, h: hour, min: minute, and s: second.

representation of the food processing chain in FPL and the
introduction of ricin are both shown in Figure 3.

Ricin is a protein which degrades in the course of time,
depending on temperature and pH. In the described scenario,
the amount of active ricin was calculated with an inactivation
rate published by Jackson et al. [21]. In the software, distinct
predictive models can be assigned to each node/processing
step. The amount and concentration of ricin left at the end of
one node are “handed over” to the following node where it
serves as the initial concentration.

For the given example, the time period for storage and
disposal (until the customer is able to consume the product)
was set to 15 days at 17∘C. Figure 4 shows the simulation
results with respect to inactivation of ricin along the depicted
processing chain. 12% of the introduced amount of ricin
remains active until the day of consumption, resulting in a
concentration of 4.3mg ricin/g sausage. According to [12],
the lethal oral dose for humans may be as low as 1mg/kg of
body weight. Thus, a person weighing 80 kg would already

consume a deadly dose of ricin when eating only two
minisalamis.

3.4.2. Use Case 2 (Exploring Alternative Scenarios). Contam-
ination of a food processing chain can occur accidentally
or intentionally and in various ways. In this example, ricin
might not only be introduced at the packaging step, but also
be mixed into the sausage meat during the mincing step
or the toxin might be attached to the sausages during the
maturation. In each of the three cases, the time until con-
sumption is also an important factor concerning the amount
of active ricin left.Therefore, the consequences of consuming
minisalamis 7, 15, and 30 days after their production were
calculated (Table 5). In most of the scenarios, the amount of
active ricin left is below the lethal dose of 1mg/kg of body
weight. According to the model, this is the case when the
salamis are contaminated during themincing andmaturation
steps and if a minisalami contaminated during the packaging
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Figure 4: Visualisation of the change in processing parameters during the production of the minisalami. The coloured bars at the bottom
of the graph show the different processing steps. The changes in temperature (blue), pH (green), and water activity (brown), as well as the
inactivation curve of ricin (red), are shown as lines. The food processing chain is depicted as actual time series (a), for a clearer view on
process steps, showing all process steps with equally wide bars (b).

Table 5: Contamination scenarios, calculated amount of active ricin
left [mg] in minisalamis.

Process step Day of consumption
7 15 30

Mincing 32.7 10.7 0.7
Maturation 33.5 10.9 0.8
Packaging 131.5 42.9 3.0

process was eaten a month later. In these cases, symptoms
like nausea, vomiting, diarrhoea, and abdominal pain might
occur [12]. On the other hand, if consumed only one week
after production, eachminisalamimight still contain 131.5mg
active ricin which can lead to liver and renal dysfunction
and death [12]. If salamis and packages were contaminated
with ricin powder intoxication via inhalation is also possible.
Depending on the particle size the lethal dose for inhalation
ricin may be 50 times lower as was shown for monkeys [36].

4. Discussion

Models for the inactivation of ricin in foods were reviewed.
Available models were implemented in PMM-Lab and used
in a representation of a minisalami food process chain in FPL
to predict the remaining amount of active ricin in the sausage.

4.1. Knowledge Base Generation

4.1.1. Inactivation of Ricin. Only a minority of the publica-
tions contained information about the inactivation of ricin
in foods. Mainly, the word “inactivation” led to abstracts
about ribosomes inactivated by toxins. As ricin is a model

toxin and representative for a whole group of ribosome
inactivating toxins, many articles published findings about
other toxins like shiga toxin or saporin, in which only the
ricin toxin group was referenced. Finally, a considerable
number of texts dealt with the molecular structure of ricin
and other toxins. Publications were excluded if they did
not contain information about ricin in foods in title or
abstract. As a consequence, the uncertainty associated with
the models applied in this research is quite high as the
amount of independent experimental data that can be used
for model generation is low. This underlines that in case
of real bioterroristic crisis situations there will be a need
for information exchange between governmental authorities
which have more in-depth in-house data. Here, the open-
source software framework can be supportive as well.

In case of new research areas about which no data are
available it might be of help to use data and models about
similar toxins as “proxymodels.”This would not lead to exact
predictions but might show into which direction research
needs to go in order to find more quickly a solution.

4.1.2. Ricin Model Repository. The works of William Tolleson
and colleagues are truly a treasure for modellers when trying
to calculate the inactivation of ricin in different foods. The
published inactivation rates could be used as parameters in
model formulas during the implementation of models in
PMM-Lab. Unfortunately, not all parameters were noted,
perhaps for safety reasons. For example, parameter 𝐵 in
(2) has not been published. This made the estimation of
two unknowns (𝐵 and 𝐸

𝑎
) necessary, leading to a greater

variability. Of course, there was the possibility to use the
published 𝐸

𝑎
values and simply recalculate all 𝐵 values. But
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in this case the estimation of both parameters was chosen in
order to estimate a secondary inactivationmodel with PMM-
Lab.The activation energies (𝐸

𝑎
) shown above can only partly

be called “in line” with those published by Jackson et al. [21].
Differences between 𝐸

𝑎
values might be a result of a

different data basis: Jackson et al. [21] calculated the 𝐸
𝑎

using the original laboratory measurements and were able
to derive the constant 𝐵 empirically. In our case, both
parameters were estimated applying the damped least square
algorithm (also known as Levenberg-Marquardt algorithm)
which is implemented in the PMM-Lab Model Fitting node.
Due to these different parameter estimation approaches, the
activation energies should not be used independent of the
other parameter estimates.

Higher accordance with the published results could be
obtained using the original Arrhenius equation. However,
because of numerical reasons, a calculation of the covariance
matrix was not possible with PMM-Lab.

4.1.3. Food Process Model Repository. One of the advantages
for the user working with the FPL plug-in is that no pro-
gramming is necessary. Nodes can be dragged and dropped
in order to create a new processing step. It is also a modular
system, allowing the user to reuse workflows with new data
or to copy parts of workflows as a basis for a new processing
chain. In this way, different contamination scenarios can be
easily visualized and worst case scenarios can be identified.
Having information onwhole food processing chains saved in
the food safety knowledge base becomes most advantageous
when an estimate on the fate of an agent has to be given
quickly, as, for example, in crisis situations.

4.1.4. Application of the Knowledge Base in Scenario Simula-
tions. Above, several scenarios for the contamination of the
minisalami food chain with ricin are described. Many more
could easily be set up, for example, in order to consider food
distribution in amore detailedway.However, data suitable for
predictive modelling is frequently hard to find. In this case,
a well-documented food processing chain containing slopes
for temperature, pH value, and water activity was available. It
could be directly implemented into FPL.

However, published inactivation rates for ricin in foods
are scarce and mainly describe the thermal inactivation
between 60 and 90∘C [14, 21, 23, 24]. In the minisalami
production chain, temperatures range from −20∘C to 24∘C,
of which the most important process steps (maturation,
smoking, storage, and sale) have temperatures between 17
and 24∘C. Due to the lack of data, a rate for the inactivation
of ricin in PBS at 25∘C and pH 3.8 was used [21]. It was
used in a primary model, meaning that changes in process
temperature, pH, and water activity were not considered.
For a suitable prediction of ricin inactivation, a secondary
model for every interim product in the food chain would be
necessary. As the model temperature is higher (25∘C) than
the food process temperatures (−20–24∘C), this is not a fail-
safe prediction and a higher proportion of ricinmight remain
active in the minisalami compared to the amounts calculated
here.

However, the objective for generating scenarios in this
paperwas to showwhat is possiblewith publicly available data
and published scientific literature. Risk assessors in the crisis
and defence sector perhaps have access to unpublished data.
The combination of PMM-Lab and FoodProcess-Lab is a
powerful tool forwhich an easy-to-explain proof-of-principle
example was provided.

The contamination of a food chain with a toxin is just one
example. The growth of Salmonella during the production
of accidentally contaminated minced chicken meat and the
growth of Listeria monocytogenes in raw milk cheese are
examples of bacterial contamination which can also be
modelled with FPL and PMM-Lab, provided that necessary
data and models are available.

4.1.5. Knowledge Base Consolidation. The creation of food
safety knowledge bases is not only a technical or scien-
tific challenge. Successful building-up and consolidation
require acceptance and support by experimental researchers,
modelling experts, and end users. This implies that sev-
eral related issues have to be addressed in parallel with
the technical implementation of knowledge bases. First,
an internationally harmonized data exchange format for
information related to food safety modelling would be of
enormous value. Such a data exchange format would allow
scientists to report their experimental data or models in
a standardized way independent from the software used.
This would improve transparency and quality control signifi-
cantly, as it then becomes possible to provide unambiguous
information on the data sets used for model generation,
for example. It would also support existing food safety
data collections like ComBase (http://www.combase.cc/)
as software tools could be developed (or extended) that
support information exchange. A first proposal for such
a food safety information exchange format has recently
been published at the OpenML for Predictive Modelling
in Food community portal: http://sourceforge.net/projects/
microbialmodelingexchange/. Second, the idea of sharing
data and models within the scientific community needs to
be promoted. In this sense, it would be beneficial if the
opportunity to provide experimental data and models as
supplementary materials to scientific publications would be
widely advocated. This would also support the establishment
of supervised community knowledge bases. These resources
could in turn assign persistent URIs to data sets or models
which would allow them to be referenced directly. The
third relevant issue for knowledge base consolidation is
related to the presentation and visualization of modelling
results to the end users. The challenge here is that the latter
demand easy-to-interpret answers to questions that usually
require complexmodelling efforts. Additionally, model based
predictions might differ depending on the model used.
Currently available solutions for illustration of model related
uncertainties still impair end users’ understanding. Also, the
heterogeneity of user interfaces in existing and emerging
software tools is challenging for end users. Here, open-source
software projects could help to disseminate solutions with
high usability and functionality as these components could
then be reused by other software developers in their tools.
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5. Conclusions

With this work, a proof-of-principle for a food safety
knowledgebase applicable in bioterroristic crisis scenarios is
delivered. FPL as a free-community resource can be used
to represent, save, and exchange food processing chains. In
combination with PMM-Lab, the inactivation of toxins as
well as the tenacity of bacteria can be modelled along these
food chains, providing means for exposure assessment. Once
a knowledge base is built up, this will be of great help in crisis
situations and beyond.
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