
Frontiers in Immunology | www.frontiersin.

Edited by:
Steven Fiering,

Dartmouth College, United States

Reviewed by:
James Ahodantin,

University of Maryland, United States
Justin King,

Simon Fraser University, Canada

*Correspondence:
Guangwen Cao

gcao@smmu.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 16 September 2021
Accepted: 04 November 2021
Published: 22 November 2021

Citation:
Liu W, Deng Y, Li Z, Chen Y,

Zhu X, Tan X and Cao G (2021)
Cancer Evo–Dev: A Theory of

Inflammation-Induced Oncogenesis.
Front. Immunol. 12:768098.

doi: 10.3389/fimmu.2021.768098

HYPOTHESIS AND THEORY
published: 22 November 2021

doi: 10.3389/fimmu.2021.768098
Cancer Evo–Dev: A Theory of
Inflammation-Induced Oncogenesis
Wenbin Liu1†, Yang Deng2†, Zishuai Li1, Yifan Chen1, Xiaoqiong Zhu3, Xiaojie Tan1

and Guangwen Cao1*

1 Department of Epidemiology, Second Military Medical University, Shanghai, China, 2 School of Public Health, Shandong
First Medical University & Shandong Academy of Medical Sciences, Tai’an, China, 3 Department of Nutrition, School of Public
Health, Anhui Medical University, Hefei, China

Chronic inflammation is a prerequisite for the development of cancers. Here, we present
the framework of a novel theory termed as Cancer Evolution-Development (Cancer Evo-
Dev) based on the current understanding of inflammation-related carcinogenesis,
especially hepatocarcinogenesis induced by chronic infection with hepatitis B virus. The
interaction between genetic predispositions and environmental exposures, such as viral
infection, maintains chronic non-resolving inflammation. Pollution, metabolic syndrome,
physical inactivity, ageing, and adverse psychosocial exposure also increase the risk of
cancer via inducing chronic low-grade smoldering inflammation. Under the
microenvironment of non-resolving inflammation, pro-inflammatory factors facilitate the
generation of somatic mutations and viral mutations by inducing the imbalance between
the mutagenic forces such as cytidine deaminases and mutation-correcting forces
including uracil–DNA glycosylase. Most cells with somatic mutations and mutated
viruses are eliminated in survival competition. Only a small percentage of mutated cells
survive, adapt to the hostile environment, retro-differentiate, and function as cancer-
initiating cells via altering signaling pathways. These cancer-initiating cells acquire stem-
ness, reprogram metabolic patterns, and affect the microenvironment. The carcinogenic
process follows the law of “mutation-selection-adaptation”. Chronic physical activity
reduces the levels of inflammation via upregulating the activity and numbers of NK cells
and lymphocytes and lengthening leukocyte telomere; downregulating proinflammatory
cytokines including interleukin-6 and senescent lymphocytes especially in aged
population. Anti-inflammation medication reduces the occurrence and recurrence of
cancers. Targeting cancer stemness signaling pathways might lead to cancer
eradication. Cancer Evo-Dev not only helps understand the mechanisms by which
inflammation promotes the development of cancers, but also lays the foundation for
effective prophylaxis and targeted therapy of various cancers.
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1 INTRODUCTION

Non-resolving inflammation, which is frequently related to
chronic infection, chronic pollution, metabolic syndrome,
ageing, and physical inactivity, is a prerequisite for the
development of most cancers. Many efforts have been devoted
to revealing the mechanisms by which inflammation promotes
carcinogenesis. For instance, since the association between
hepatitis B virus (HBV) and hepatocellular carcinoma (HCC)
was determined in 1975, hepatitis C virus (HCV), food
contaminants, tobacco smoking, and environmental toxins are
identified to cause HCC via inducing chronic inflammation (1, 2).
Most of these studies provide segmental and fragmental evidence,
while only a few present a theoretical hypothesis that deciphers
the fundamental laws involved in inflammation-induced
carcinogenesis. In past decades, attempts have been made to
consecutively investigate carcinogenesis from an evolutionary
point of view (3). In 1976, Peter Nowell first proposed that
most neoplasms originate from a single cell and Darwinian
natural selection occurs during the clonal expansion (4). In
2006, Lauren Merlo described the selection and accumulation
of mutation during the process of cancer development. However,
only a limited number of gene mutations and related signaling
pathways were discussed (5). Widespread application of new
generation sequencing promotes the understanding of the
landscape of whole cancer genome. Michael Stratton reported
that the occurrence of somatic mutations is semi-random,
whereas the accumulation of somatic mutations is directed
during oncogenesis (6). In 2013, some mutation patterns in the
cancer genome were linked with a group of specific mutagenic
factors, such as age, inflammation, smoke, and ultraviolet
radiation. These mutation patterns were termed as mutation
signatures (7). The inflammation-induced mutation signature is
dominant in most cancers (8). In 2014, the law in the co-evolution
of HBV and cancer cells during chronic inflammation was
elucidated with epidemiological and experimental evidence (9).
In 2019, we identified the correlations among the genetic
polymorphisms, HBV infection-induced inflammation, and
imbalance between the mutagenic forces and mutation-
correcting forces (10). We also identified a “dead-end
evolution” of HBV during chronic infection (11). Here, we
present the theory of Cancer Evolution-Development (Cancer
Evo-Dev) originally via summarizing the evidence from our
studies on HBV-induced carcinogenesis and then other
inflammation-related carcinogenesis. The theory of Cancer Evo-
Dev not only enriches the understanding of the inherent law of
carcinogenesis but also promotes the development of specific
prophylaxis and targeted therapy.
2 THE FRAMEWORK AND RATIONALE OF
CANCER EVO-DEV

By summarizing evidence from a variety of perspectives, we
gradually proposed and modified the theory of Cancer Evo-Dev
(12). The framework of this theory is as follows (Figure 1):
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Aging, environmental exposures, and genetic predisposition
contribute to the activation and maintenance of non-resolving
inflammation that functions as the microenvironment for cancer
evolution. Non-resolving inflammation induces dramatic
metabolic changes and immune imbalance that served as
selection pressure. Activated inflammatory signaling pathways
can trans-activate the expression of mutation-promoting forces
including the human apolipoprotein B mRNA-editing enzyme
catalytic polypeptides (APOBECs) family cytidine deaminases
and trans-inactivate the expression of mutation-correction forces
including uracil–DNA glycosylase (UNG), thus promoting viral
and somatic mutations. Viral mutants facilitate the malignant
transformation of normal cells. Most mutant cells are eliminated
under the selective pressure of the pro-inflammatory
microenvironment, while a small proportion of mutated cells
survive. These survived mutant clones are then retro-
differentiated into tumor-initiating cells via altering the
original cell signal patterns, promoting epithelial-mesenchymal
transition (EMT), and reprogramming the metabolic patterns. In
turn, the mutant cells and viruses also affect the inflammatory
microenvironment. Some established cancer markers, such as a-
fetoprotein (AFP) and carcinoembryonic antigen (CEA), are
usually expressed at the embryonic stage during individual
development, silenced after birth, and re-expressed in cancer
patients. These pieces of evidence imply that the process of
cancer evolution and development can be characterized as
“backward evolution” and “retro-differentiation”.

2.1 Chronic Inflammation Is Indispensable
for Cancer Evo-Dev
As a defense mechanism responding to exogenous infection and
injury, acute inflammation is beneficial to humans. However,
chronic inflammation, also termed non-resolving inflammation is
essential for carcinogenesis. Low-level chronic inflammation is also
a hall marker of aging, the dominant cause of most cancers. Cancer
evolution is based on two conditions: the continuous acquisition of
somatic or viral mutations and natural selection acting on the
resultant phenotypic diversity. Chronic inflammation fulfills these
two conditions by inducing mutagenic factors such as APOBECs
and providing selection pressure.

2.1.1 Chronic Inflammation Facilitates the
Generation of Mutations Through
Up-Regulating APOBECs
The APOBECs are powerful endogenous mutagenic factors that
can catalyze cytidine deamination to create cytosine-to-uracil
(C>U) and guanosine-to-adenosine (G>A) transitions. The
members of APOBECs family, including APOBEC3 and
activation-induced cytidine deaminase (AID), play important
roles in the innate immune system (9). APOBEC3s contribute
to the elimination of viruses through increasing the viral
mutation load to a level that exceeds the threshold of viruses’
replication. APOBEC3s can also induce somatic mutations in host
genome. Three mechanisms prevent the APOBEC3s-induced
somatic mutation from exceeding the ability of DNA repair.
First, APOBEC3s especially APOBEC3A are rarely expressed in
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normal tissues. Short-term activation of APOBEC3s is beneficial
for eliminating pathogens. Second, the cytidine deaminase activity
of APOBEC3s is applied almost exclusively to single-stranded
nucleotides, in which mutagenesis is 200–300 times more efficient
than it is in double-stranded DNA. Third, the uracil-induced
mutagenesis of APOBEC3s is counteracted by UNG that plays an
important role in the base-excision repair (BER) mechanism (9,
13). However, under the microenvironment of chronic
inflammation, signaling pathways including interleukin 6 (IL-6)/
signal transducer and activator of transcription 3 (STAT3)
pathway and tumor necrosis factor a (TNF-a)/nuclear factor
kappa B (NF-kB) pathway are activated, which lead to the long-
term upregulation of APOBEC3s (9). Besides, the DNA repair
function was also inhibited by inflammatory factors. IL-6 can
decrease the expression of UNGwhile increasing the expression of
APOBEC3B. The functional polymorphisms located in the
APOBEC3B promoter (rs2267401-G) and UNG enhancer
(rs3890995-C) predispose the IL-6 induced APOBEC3B-UNG
imbalance and increase the risk of HCC (10). The mitochondrial
(UNG1) and nuclear (UNG2) forms of human uracil-DNA
glycosylase, both of which are encoded by the UNG gene, are
generated by alternative transcription starts, making use of an
exon specific for the N-terminal end of the nuclear form, and
alternative splicing. UNG2 (open reading frame (ORF) 313
Frontiers in Immunology | www.frontiersin.org 3
amino acid residues) differs from UNG1 (ORF 304 amino acid
residues) in the 44 amino acids of the N-terminal sequence,
which is not necessary for catalytic activity. The catalytic domain
is present in both UNG1 and UNG2 (14). The transcription of
UNG1 and UNG2 should be regulated by their enhancer. As
the UNG enhancer activity can be significantly inhibited by IL-6,
the expression of UNG1 is expected to be suppressed in the
presence of IL-6. Thus, the mutagenic force serving as antiviral
immunity is prone to damaging the human genome under the
microenvironment of chronic inflammation. The molecules
contributing to the imbalance between the mutagenic forces
and mutation-correcting forces are varied in different tissue
types. A study of colorectal cancer (CRC) demonstrated that
APOBEC3G facilitates hepatic metastasis of CRC in mouse
models (15). Mutations in genes involved in the mismatch
repair (MMR) pathway led to the development of Lynch
syndrome and increase CRC susceptibility (16). Thus, non-
resolving inflammation may promote carcinogenesis via up-
regulating APOBEC3A, 3B, and 3G and down-regulating UNG
and MMR, leading to the imbalance between the mutation-
promoting forces and the mutation-correcting forces.

The balance between mutagenic activity and the tolerance of
cells to genotoxicity is also important for cancer evolution. A
tolerable increase in somatic mutations can improve the diversity
FIGURE 1 | Theoretical framework of Cancer Evo-Dev, as exampled by HBV-induced hepatocarcinogenesis. ROS, reactive oxygen species; Treg, regulatory T cells;
NK cells, natural killer cells; MDSCs, myeloid-derived suppressor cells; EMT, epithelial-mesenchymal transition.
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of mutant cells. However, if the mutations exceed the tolerable
limit and affect the basic function of cells, mutant cells undergo
apoptosis, instead of developing into cancer-initiating cells
(Figure 2). The mutagenic efficiency of APOBEC3A is much
higher than that of APOBEC3B. The functional polymorphisms
that increased the expression of APOBEC3A significantly
decreased the risk of renal cell carcinoma (RCC). Ectopic
expression of APOBEC3A increases the apoptosis of RCC cells
(17). Another study also demonstrates that the homozygotes
allele promoting APOBEC3A expression improves the prognosis
in bladder cancer, while the heterozygotes genotype is
significantly associated with a poor prognosis (18). Although
the APOBEC3A induced mutations are common in cancers,
APOBEC3A is often expressed with extremely low abundance.
The inflammatory pathways activated by viral infection can only
transiently up-regulate APOBEC3A (19). The above genetic
polymorphisms may decrease the risk of cancers through
breaking the tightly controlled regulation of APOBEC3A.

2.1.2 Maintenance of Chronic Inflammation
The interaction between environmental exposure and genetic
predispositions contributes to the maintenance of chronic
inflammation. This is particularly evident in maintaining
Frontiers in Immunology | www.frontiersin.org 4
chronic infection of HBV. HBV can be classified into eight
genotypes (A to H). The predominant one in mainland China
is genotype C (68.3%), followed by genotype B (25.5%) (20).
Genotype B HBV is prone to causing acute infection, whereas
genotype C HBV is associated with chronic infection and
contributes predominantly to the development of HCC (21).
The single nucleotide polymorphisms (SNPs) in the loci
encoding human leukocyte antigen class II (HLA-II), NF-kB,
and STAT3 are significantly associated with the risk of HBV-
induced HCC (22–26). Interestingly, the allele frequencies of
SNPs affecting the expression of HLA-DP, HLA-DR, and HLA-
DQ differ greatly among human races. The polymorphic
genotypes that significantly increase the risks of chronic
inflammation, HCC, and the generation of high-risk HBV
mutations are more frequent in the Han Chinese than in
European populations (27). These data suggest that the Han
Chinese is inherently more apt to progressing into chronic
infection once exposed to HBV infection than Europeans. This
might be partly responsible for the fact that chronic HBV
infection, HBV-induced liver cirrhosis, and HBV-HCC are
more frequent in Chinese than in European populations.

The frequency of APOBEC3B deletion also differs greatly
among human races. The frequency of APOBEC3B deletion is
FIGURE 2 | The balance between mutagenic activity and tolerance of cells to genotoxicity in the process of cancer evolution. Inflammatory factors increase the
expression of APOBECs and decreased the expression of UNG. The functional polymorphisms enhance the APOBEC-UNG imbalance and promote the generation
of somatic mutation (and viral mutation). A tolerable increase in somatic mutations can improve the diversity of mutant cells. If the mutations exceed the tolerable
limit, affected cells undergo apoptosis, instead of developing into cancer-initiating cells.
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6.49% in European population, 0.9% in African population, and
36.86% in East Asian population (28). APOBEC3B deletion
creates a chimera with the APOBEC3A coding region and
APOBEC3B 3’UTR. The mutagenic effect of APOBEC3A-B
is stronger than APOBEC3B (29, 30). APOBEC3B deletion
has been demonstrated to increase the risks of developing
non-small cell lung cancer (NSCLC), oral squamous cell
carcinoma, and HCC in Chinese population (31–33). The
associations of APOBEC3B deletion with the risk of cancers in
European population are controversial. It has been shown that
APOBEC3B deletion increases the risks of breast cancer and
bladder cancer in European, American, and Japanese population
(18). However, no significant association between cancer risks
and APOBEC3B deletion was observed in European population
(34). More population-based studies are needed to consolidate
the association.

As one of the most important risk factors of cancer, ageing
also plays an important role in the maintenance of low-level
chronic inflammation. In cells with senescence, the widespread
epigenetic alteration dramatically increases the secretion of
proinflammatory cytokines and chemokines (35). The secretome
of aging cells is termed as senescence-associated secretory
phenotype (SASP) including IL-1a, IL-6, IL-8, IL-10, and
granulocyte-macrophage colony-stimulating factor (GM-CSF)
(36). SASP factors activate oncogenic signaling pathways such
as the Wnt pathway and facilitate the proliferation and invasion
of cancer cells (37, 38). The accumulation of SASP cells also
appears to induce a positive feedback loop within their
microenvironment through inducing IL-6 and plasminogen
activator inhibitor-1 (PAI1) (39, 40). Thus, aging can induce
chronic inflammation.

Pollution, metabolic syndrome, physical inactivity, and adverse
psychosocial exposure also promote the development of cancers
via inducing chronic low-grade inflammation (41–49).
Environmental and psychosocial factors and nutrition contribute
mostly, either with a causative or a promotional role to increased
low-grade smoldering chronic inflammation, especially in aged
population (44). The development of metabolic syndrome is
attributed to the chronic low-grade inflammation that occurs in
metabolic tissues including the liver (45). People with glucose
intolerance, sedentary behavior, obesity, and lower physical
activity levels have higher levels of circulating inflammatory
factors that have been associated with increased risks of different
cancer types (liver, endometrial, colorectal, esophageal, renal,
pancreatic, gastric cardia, ovarian, meningioma, postmenopausal
breast, multiple myeloma, gallbladder, thyroid, and lung) (46–48).
Inflammation can be classified as “good” and “bad” inflammation.
A smoldering chronic inflammation, one kind of “bad”
inflammation (49), contributes greatly to cancer evo-dev.

2.1.3 Inflammation Provides Selection Pressure
Both aging- and infection-induced chronic inflammation regulate
the selection pressure of mutated cells via altering immune
orientation in the proinflammatory microenvironment. Aging
primarily affects immunity through a reduction of primary
lymphopoiesis. The quality and the number of lymphoid
Frontiers in Immunology | www.frontiersin.org 5
progenitor cells reduce with age and the cellular immune
compartment becomes skewed toward a myeloid lineage, thus
leading to immunosenescence. Immunosenescence, a hallmark of
aging, is characterized by the dysfunction of effector immune cells
including effector T cells, natural killer (NK) cells, macrophages,
and dendritic cells. Meanwhile, the levels of immunosuppressive
myeloid-derived suppressor cells (MDSCs) and regulatory T
(Treg) cells are upregulated by aging (50, 51). In addition, aging
perturbs the inflammatory state by increasing secretion of pro-
inflammatory cytokines including IL-1, TNFa, IL-6, and C
reactive protein (CRP) (49). Thus, aging proved a weaker
selective pressure for malignant cells. Another hallmark, SASP,
also induces dramatic metabolic changes such as mitochondrial
dysfunction, hydrogen peroxide production, and a switch towards
aerobic glycolysis. These changes lead to increased production and
secretion of lactate and reactive oxygen species (ROS) (52). As
discussed above, the expression of mitochondrial UNG1 should be
suppressed in the inflammatory microenvironment with IL-6.
Inactivation of the UNG1 gene leads to at least a 3-fold
increased frequency of mutations in mitochondrial DNA
(mtDNA) compared with the wild-type in Saccharomyces
cerevisiae (53). Deciphering of the mutational spectra and
mutational signature of redox stress in ssDNA of budding
yeast and the signature of aging in human mitochondrial
DNA indicates that the predominance of C to T substitutions is
a common feature of both signatures (54). APOBEC3s deaminase-
related mtDNA mutations are present in many types of cancers
and often correlated with a more malignant phenotype (55–57).
The mtDNA mutations impair aerobic metabolism and facilitate
aerobic glycolysis. Thus, the metabolic microenvironment of
chronic inflammation and cancer are similar, both of which are
hypoxic and have elevated levels of lactate and low levels of
nutrients. Down-regulation of UNG1 by “bad” inflammation
might increase AID/APOBEC-caused mtDNA mutations,
impact mitochondrial function, thus affecting energy generation
from oxidative phosphorylation to aerobic glycolysis, facilitating
cancer evo-dev. Thus, inflammation can select the mutated cells
with metabolic adaptation.

Innate and adaptive anti-viral responses also select for
malignant cells. During the chronic infection of HBV,
APOBEC3B is stimulated and reduces the occupancy of
H3K27me3 on the promoter of CC-chemokine ligand 2
(CCL2). By this mechanism, APOBEC3B upregulates the CCL2
to enhance the recruitment of tumor-associated macrophages
(TAMs) and MDSCs. TAMs and MDSCs suppress the function
of CD8+T cells and are associated with a poor prognosis of HCC
(58). HBV can be transmitted to NK cells through exosomes,
thereby inducing NK cell dysfunction and promoting HCC
evolution (59, 60). The glucose metabolism of T cells is
reprogramed by HBV, which leads to increased lactate
production and decreased migration of T cells (61). During
chronic infection, HBV promotes the recruitment of Tregs via
activating growth factor-b (TGF-b)/miR-34a/CC-motif
chemokine ligand 22 (CCL22) axis (62). Thus, chronic HBV
infection might promote carcinogenesis via creating a cancer
supportive niche.
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2.2 The Evolutionary Characteristics
of Carcinogenesis
2.2.1 Genomics Evidence for Cancer Evolution
The continuous generation, selection, and accumulation of
somatic mutations and cellular retrodifferentiation are two basic
mechanisms underlying Cancer Evo-Dev. While the spontaneous
rate of somatic mutations is not high enough to trigger the
evolution process, many mutagenesis mechanisms can increase
mutation rate in cancer genomes, such as defective DNA repair
capacity, exogenous or endogenous mutagen exposures, and
intrinsic slight errors of the DNA replication machinery.
Mutation pattern in cancer genomes can be characterized by
mutation signatures that are often linked to specific mutagenic
processes, making it possible to infer which mutagenic processes
have been active in patients (7). Interestingly, the cytidine
deaminase-induced mutation signature is dominant in most
cancers, suggesting the inflammatory immune response is the
common mechanism for generating mutations (8). Among the
members of APOBEC3s, APOBEC3B was identified as the major
subtype responsible for the APOBEC-signature somatic mutations
in multiple cancers (63).

Somatic mutations can be classified according to their effects
on cancer evolution. A small proportion of the mutations can
lead to aggressive phenotypes that are positively selected during
the evolution process and promote cancer development. These
mutations are called “driver” mutations. The driver somatic
mutations affect multiple functions, like signaling pathways,
EMT, and energy metabolism. The remaining mutations are
“passengers” that contribute very little to carcinogenesis (64).
Driver mutations are selected out at certain phases during cancer
evolutionary process but may not be detectable at all stages.
Mutations at advanced stage that promote the fitness of cells may
replace initial driver mutations to become the dominant ones. In
lung cancer patients who keep exposed to cigarettes, signatures of
initial mutations (smoke-related) showed a relative decrease over
time, accompanied by an increase of APOBECs-related
mutations (65). Therefore, tracing the positive selection of
drivers and patterns of cancer genome alteration can help
demonstrate the lineage of malignant clones and the major
mutagenic factors.

2.2.2 Retro-Differentiation and Backward Evolution
Cancer evolution usually accompanies with retro-differentiation,
a process representing reverse development (Figure 3).
Development is referred to the process that a fertilized egg
develops into an individual. This process resembles the process
of long-term organic evolution morphologically, from single cell
creatures to multicellular creatures and from aquatic organisms
to terrestrial organisms. Some evolutionarily conserved
molecules, like Hox, Hedgehog, and Myc, are essential for the
developmental process, suggesting animal evolution and
embryonic development have inherent mechanisms (66–69).
The integration of evolution and developmental biology was
termed Evo-Devo (70, 71). Carcinogenesis is characterized as a
reverse-developmental process, that is, reversely develops from
differentiated cells into undifferentiated cells. The embryonic
Frontiers in Immunology | www.frontiersin.org 6
factors, which are silenced after birth, are re-expressed during the
process of carcinogenesis. APOBECs can promote gene
demethylation and remove epigenetic memory to stabilize the
pluripotent state in embryonic stem cells via deaminating 5-
methylcytosine (5mC) or 5-hydroxymethylcytosine (5hmC) (72,
73). EMT is a landmark event of the reverse-developmental
process, which is driven by transcription factors, like zinc finger
E-box binding homeobox 1 (ZEB1), ZEB2, snail family
transcriptional repressor 1 (SNAI1), and SNAI2. AID, a
member of APOBECs family, is upregulated by inflammatory
signals and induces demethylation of the promoters of ZEB1,
ZEB2, SNAI1, and SNAI2. Silencing AID leads to increased
methylation of CpG islands proximal to the promoters of these
EMT regulators, thus inhibiting EMT and invasion of cells (74).
AID-induced, CpG methylation-dependent mutagenesis is
proven to be a common feature of cancer evolution (75).
Therefore, it is reasonable to postulate that re-expression of
embryonic factors in cancers might result from epigenetic
reprogramming caused by the APOBECs family members that
are usually upregulated by pro-inflammatory factors.

2.2.3 Adaptation to the Inflammatory
Microenvironment
To support the rapid growth of malignant cells, tumor tissues prefer
to use glycolysis for energy production, even in the presence of
oxygen. Glucose is more easily to bemetabolized to lactate in tumor
tissues than in normal tissues. This pattern of energy metabolism
was identified by Otto Warburg in 1920 and was termed as
Warburg effect (76). Warburg effect in TAMs promotes vascular
network formation, augments extravasation of tumor cells, and
induces higher levels of EMT at inflammatory foci within the
tumor (77). In the microenvironment with both hypoxia and
hypoglycemia, stem cell-, angiogenic-, and EMT-biomarkers as
well as glycoprotein-P content and invasiveness of cancer cells
are enhanced (78). The Warburg effect can provide essential
energy for cell survival in the inflammatory microenvironment;
furthermore, glycolysis generates the raw material for DNA
synthesis of progeny cells. Thus, we believe that the Warburg
effect promotes the evolutionary process of cancer under both
hypoxia and hypoglycemia conditions. Infection-induced
inflammation and somatic mutation are both the possible origin
of Warburg phenotype. In HBV-caused HCC, the major pattern of
single nucleotide variants in mtDNA is C>T, the characteristics of
APOBECs-induced mutation. This kind of mutation that mainly
occurs in the D-loop region of mtDNA promotes the proliferation,
invasion, and metastasis of HCC cells (55). Pyruvate kinase M2
(PKM2), an alternatively spliced variant of the pyruvate kinase gene
that is preferentially expressed during embryonic development and
in cancer cells, alters the final rate-limiting step of glycolysis,
resulting in the cancer-specific Warburg effect (79). Besides the
Warburg effect, HCC cells also enhance other patterns of energy
metabolism during evolution. For example, the inactivating
mutation of ribosomal S6 kinase 2 (RSK2) can support
cholesterol metabolism in HCC (80). Mutated cells must adapt
to the inflammatory microenvironment and obtain the growth
advantage in the “struggle for existence”.
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2.2.4 “Dead-End” Evolution
HBV belongs to the Hepadnaviridae family and is evolutionarily
conservative in long-term evolution of the species (81). During
HBV-induced hepatocarcinogenesis, viruses also experience the
process of evolution. Two major mechanisms are responsible for
the generation of HBV mutations. The first pattern is
spontaneous mutations. The second viral mutation pattern is
induced by host cytidine deaminases (9). The mutation rate
caused by cytidine deaminases differs among different regions of
the HBV genome in different host cells. APOBEC3G increases
the mutation rate in the region 1 (nt. 1–1630) of the HBV
genome. Endogenous cytidine deaminases edit 10 to 25% of
relaxed circular double-stranded HBV DNA genomes (82). The
APOBEC family has a dual effect on HBV: reduction of HBV
genome copy number and induction of HBV mutations (83).
The expression levels of APOBEC3s are positively correlated
with the quasispecies complexity of HBV (84). The genetic
polymorphisms predisposing the IL-6 induced APOBEC3B-
UNG imbalance significantly promote the generation of HCC-
related HBV mutations (10). Although most HBV mutations
occur randomly, the direction of HBV evolution is selected under
the selective pressures of chronic inflammation. In the immune
tolerance phase of chronic infection, the immune pressure is
weak, and most of the individual viruses are of the wild-type.
Immune pressure increases with the progression of chronic
Frontiers in Immunology | www.frontiersin.org 7
inflammation, which facilitates the gradual occurrence of viral
mutations, especially after HBeAg seroconversion (85, 86).
HCC-related HBV mutations are selected by the immune
microenvironment before the occurrence of HCC. The
deficiency of CD8+ T cell epitopes is one of the main features
of HBVmutations, which facilitates evading immune eradication
(87, 88). HBV mutations posing a significant HCC risk are
located mainly within the Enhancer II (EnhII)/basal core
promoter (BCP)/precore region and preS regions (89–92).
During the HBV-induced carcinogenic “trilogy” (chronic
hepatitis, liver cirrhosis, and HCC), the species and frequencies
of HBV mutations often accumulate consecutively and can be
applied to predict the occurrence and development of liver
cirrhosis and HCC (89, 93). SNPs of the inflammatory signal
pathway genes including HLA-DP, HLA-DR, HLA-DQ, STAT3,
and NF-kB have been demonstrated to maintain the chronic
HBV infection and to facilitate the selection of these HCC-
promoting HBV mutations (22–26). However, those viral
mutants that affect the pre-cancer hepatocytes are less
infectious to normal liver cells. HBV acquired during infancy
or early childhood, or at the early infection stage in adults, is
usually of wild-type (11, 21, 22). During the chronic infection,
especially after HBeAg seroconversion, mutant HBV subgroups
gradually increase. Although the HCC-related HBV mutants are
present in umbilical cord blood, neonatal HBV infection is
FIGURE 3 | The potential link of carcinogenesis to evolution and development. Embryonic development is the process that a fertilized egg differentiates into various
functional and/or structural cells to form different organs and tissues. Embryonic developmental process resembles the process of long-term animal evolution.
Carcinogenesis presents a process of reverse evolution and retro-differentiation. EMT, epithelial-mesenchymal transition. This figure is created with BioRender.com.
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usually caused by wild-type HBV rather than by mutant
subgroups. At 1–15 years in HBV-infected children, the
frequencies of HCC-related mutations increase with increasing
age. However, compared to their mothers who have been exposed
to chronic infection for at least 25 years, the children have fewer
HCC-related HBV mutations. The HCC-promoting HBV
mutations increase in their frequencies with increasing age,
promote the development of HCC, and are finally eradicated
after its hosts died of HCC. These HBV mutants have much less
opportunity to continue their evolutionary process in different
individuals. Thus, HCC-promoting HBV evolution belongs to
“dead-end” evolution (11, 27). In individuals with chronic HBV
infection, HBV is synthesized in hepatocytes and released into the
circulation at a pace of up to 1011 viral particles daily (94). The
immune microenvironment of circulation, tumor tissue, and
tumor-adjacent liver tissue determined the pace of HBV
evolution. Interestingly, HBV evolves more advanced in the
sera than in the tumors of HCC patients. The evolutionary
similarity between the sera-derived HBV strains and adjacent
tissue-derived ones is significantly stronger than that between
sera-derived HBV strains and tumor-derived ones (84). Although
tumor-adjacent tissues are pathologically categorized as
“normal,” they are typical precancerous lesions and have
already entered the middle stage of the cancer evolutionary
process. The HCCs that relapse more than 2 years after
resection are considered to be recurrent HCC and not a result
of the initial HCC cell diffusion into the liver remnants (95, 96).
The species and frequencies of certain HBVmutations in adjacent
tissues are distinct in the different populations. Together with
immune markers and expression levels of inflammatory genes,
they can be applied to predict the prognosis of HCC patients
receiving curative surgery. For example, HBV mutations in the
EnhII/BCP/PreC region, such as A1762T/G1764A, can serve as
predictive markers for survival and recurrence (84), indicating
that HBV continues to evolve in the liver remnants until
the patient dies. Antiviral therapy can block HBV evolution
in adjacent tissues by easing inflammation and notably
prolongs survival in HCC patients (95). Taken together, the
Hepadnaviridae family members are highly conservative across
species. Wild-type HBV has the advantage of infecting
hepatocytes, facilitating viral spread from one individual to
another, and contributing to the maintenance of its viral
species. The HCC-related mutants can cause malignant
transformation but have lost the advantage of person-to-person
infection. Those mutants are therefore usually eliminated when
their carriers pass away, which is termed “dead-end” evolution.
3 DISCUSSION

3.1 The Role of Cancer Evo-Dev on
Guiding Molecular Typing
Cancer is a complex disease characterized by significant
heterogenicity. The accurate subtype classification is the basis for
the selection of a specific therapeutic strategy (97). Significant
differences exist in the outcomes of cancer patients with the same
Frontiers in Immunology | www.frontiersin.org 8
histological classification, which highlights the heterogeneity of
molecular types among the same histological cancers. From the
view ofCancer Evo-Dev, the malignant phenotypes are the outcome
of the accumulation and alteration of driver mutations. As HCC
has many etiological causes and experience a long evolutionary
process, the somatic mutation spectrum is heterogeneous (8, 98).
For example, the mutation in the gene of telomerase reverse
transcriptase (TERT) is universal in HCC patients, but its
mutation site and patterns are significantly different between
HCC patients caused by chronic HBV infection and those caused
by alcohol or HCV (99–101). The high-frequent single-gene
mutations in HCV- or alcohol-induced HCC are rarely detected
in HBV-induced HCC, suggesting the different mechanisms of
cancer evolution. The spectrums and frequencies of altered genes
vary greatly among individuals, which limits the clinical application
of single-gene mutations. The mutated genes repeatedly detected in
different studies are usually clustered to pathways closely related to
stem-ness and embryonic characteristics. In HBV-induced HCC,
the somatic mutation in HCC evolutionmainly alters seven cancer-
related pathways: signaling pathway related with telomere
maintenance, Wnt/b-catenin pathway, P53 and cell cycle
pathway, oxidative stress pathway, epigenome modifiers,
RAS/RAF/mitogen-activated protein kinase pathway, and
phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathways
(102). The frequencies of mutation in a single gene range from
5% to 20%. Mutation rates of the all genes in Wnt/b-catenin, p53/
cell cycle control, and PI3K/mTOR pathways range from 12% to
72%. Therefore, it is promising to use combo somatic mutations as
predictive and prognostic biomarkers just like gene signatures
(103). Similarly, the expression signature of the signaling
pathway related to stemness, gene signature, and lncRNA-
miRNA-mRNA network are also applied for promoting the
classification of cancer patients (104–106). Thus, driver
mutations usually alter the biological behaviors of mutated cells
via affecting functional signaling pathways and networks, while the
cells with these pathways and networks are usually selected in the
pro-inflammatory microenvironments.

3.2 The Role of Cancer Evo-Dev on
Cancer Prophylaxis
The theory of cancer evo-dev can be applied in specific
prophylaxis of cancer occurrence via reducing systemic and
local chronic low-grade smoldering inflammation via medical
and public health measures including antiviral infection, regular
physical activity, pollution abatement, and psychosocial
environment improvement (107, 108). Chronic physical
exercise, a safe mode of intervention to prevent immunosenescence
and chronic low-grade inflammation, can upregulate CD16+

NK and CD56+ NK cell activity and response, CD4+ T cells,
CD8+ T cells, CD3+ T cells, CD19+ B cells, lymphocyte
proliferation, neutrophils, proportion of naïve CD8+ T cells,
and leukocyte telomere length. Chronic physical exercise also
downregulates CRP, IL-6, TNF-a, proportions of senescent/
exhausted killer cell lectin like receptor G1 (KLRG1)+/CD57+

and KLRG1+/CD28- T cells, percentage of senescent naïve,
central memory and effector memory CD8+ T cells, and
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senescent naïve and effector memory CD4+ T cells, indicating
that regular physical activity and frequent exercise enhance
immune competency and regulation (107, 109). Thus, regular
physical activity and frequent exercise may limit or delay aging of
the immune system, reduce the risk of cancer occurrence and
cancer death via decreasing chronic low-grade inflammation.
Cellular senescence and telomere length shortening are two key
hallmarks of the aging process. Hyperbaric oxygen therapy can
significantly increase telomere length and clearance of senescent
cells and induce cognitive enhancements including attention,
information processing speed, and executive functions in healthy
aging adults (110, 111). The possible mechanisms involve
regional changes in cerebral blood flow and possible mitigation
of hypoxia-related inflammation.

3.3 The Role of Cancer Evo-Dev on
Identification of New Therapeutic
Targets for Cancers
As AID/APOBEC3s drive cancer evo-dev via causing cancer-
promoting somatic mutations and viral mutations, targeting AID/
APOBEC3s should be an important strategy to treat cancers. The
cytidine nucleoside analogue 2’-deoxyzebularine incorporated
into short ssDNAs is capable of inhibiting the catalytic activity
of selected APOBEC variants derived from APOBEC3A,
APOBEC3B, and APOBEC3G (112). Protein kinase A (PKA)
can bind to APOBEC3B physically and phosphorylates Thr214,
which is completely deprived of its deaminase activity. PKA-
mediated phosphorylation inhibits A3B mutagenic activity
without destructing its innate immune functions (113).
Cytidine deaminase also catabolizes decitabine, the pyrimidine
nucleoside analog targeting DNA methyltransferase 1, within
minutes. High expression of cytidine deaminase in chemo-
resistant, metastatic pancreatic ductal adenocarcinoma, and
chemoresistant lymphoid malignancies is one reason for
decitabine treatment failure. The cytidine deaminase inhibitor
tetrahydrouridine has been added to increase therapeutic
efficiency of decitabine for the treatment of advanced,
chemorefractory malignant diseases in clinical trials (114, 115).
These pioneering studies provide clues for developing techniques
to target AID/APOBEC3s for specific treatment of cancers.

Inflammation-induced mutation, stemness, and changes in
metabolism are common events in the evolutionary process of
different cancer types caused by factors including chronic infection
and metabolic syndrome (47, 116, 117). These common issues,
including somatic mutation, epigenetic modification, activation of
inflammation, and signaling pathway of stemness, could be the key
events at the early stage of cancer evolution. Research on these
common molecular events can reveal more efficient therapeutic
targets. For example, octamer-binding transcription factor-4
(OCT4), an embryonic stem cell transcription factor, is
abnormally expressed in HCC, CRC, breast cancer, and
glioblastoma cell lines. Epigenetic modification of OCT4 is a
common event in the evolution of cancers. Tryptophan-induced
OCT4 transcription inhibitor 2-(1’H-indole-3’-carbonyl)-thiazole-
4-carboxylic acid methyl ester (ITE) can significantly suppress
tumor formation and tumor growth in the mouse subcutaneous
tumor model and in vivo ectopic implantation model (118–120).
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TERT mutation is also a common event in different cancers.
Antisense oligonucleotide technology is applied to synthesize
complementary base sequences at the end of telomeres, which can
block the template to inhibit the synthesis of telomerase. Telomerase
inhibitor GRN163L has been proven to be effective in lung cancer,
breast cancer, chronic lymphoma, HCC, and other cancers (121).
Blocking the key pathways that lead to immune imbalance can
relieve the microenvironment of cancer evolution. Metformin, a
prescribed drug for type 2 diabetes, has been reported to protect
CD8+ tumor-infiltrating lymphocytes from apoptosis and
exhaustion characterized by decreased production of IL-2, TNF-a,
and interferon-g (IFN-g) via AMP-activated protein kinase
(AMPK) activation. Furthermore, metformin can relieve the
abnormal energy metabolism of immune cells, increase the
enrichment of CD8+ T cells, and correct the immune imbalance,
thus achieving an anti-cancer effect (122). Inflammation promotes
the generation of somatic mutation and provides the metabolic and
immune microenvironment for the evolution of many cancers.
From the perspective of Cancer Evo-Dev, inhibiting inflammation
should be a basic strategy for cancer prevention and treatment. Our
studies proved that anti-HBV treatment can attenuate
inflammation, decreased the risk of HCC occurrence, and prevent
postoperative recurrence of HCC (93, 95). Long-term use of non-
steroidal anti-inflammatory drugs can also reduce the occurrence
and recurrence of cancers (123–126). Targeting cancer stemness-
and/or EMT-related signaling pathways might contribute to the
eradication of malignant diseases (127–129).

Conclusively, the process of oncogenesis follows the rule of
“mutation-selection-adaptation”. Aging and exogenous factors
such as viral infection can induce chronic smoldering
inflammation. Genetic predisposition contributes to chronic
HBV infection and the generation of inflammation-induced
HBV mutation. The elimination of chronic infection can
attenuate inflammation, reducing the incidence of cancer and
subsequently extending effective survival. Tumor-initiating cells
obtain survival advantage during the “mutation-selection–
adaptation” evolutionary process by activating a “stemness”
pathway and simultaneously causing evolutionary heterogeneity.
Critical molecules in a functional subnetwork that maintains and
promotes the cancer evolution and development process can be
demonstrated using systems biology approaches. The
development of high-efficiency inhibitors that will target these
critical molecules and block corresponding signal pathways could
be a powerful treatment strategy in advanced cancers. Cancer Evo-
Dev provides a new insight to integrate a large number of
segmental evidence of single molecular events. This theory may
help investigators to identify the common fundamental issues
among the process of different cancers and to further improve the
accuracy of classification and efficiency of specific treatment.
PERSPECTIVES

In past decades, many efforts have been devoted to revealing the
mechanisms by which inflammation promotes carcinogenesis. Most
of these studies provide segmental and fragmental evidence, while
only a few try to present a theoretical hypothesis and to promote the
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understanding of the fundamental laws in inflammation-induced
carcinogenesis. We present the theory of Cancer Evo-Dev originally
via summarizing the evidence from our studies on HBV-induced
hepatocarcinogenesis and then other inflammation-related
carcinogenesis. Cancer Evo-Dev not only helps understand the
mechanisms by which inflammation promotes the development
of cancers, but also lays the foundation for specific prophylaxis and
targeted therapy of various cancers.
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