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Obesity, hypertension, and type 2 diabetes are rapidly growing public health problems. Heightened sympathetic nerve activity is a
well-established observation in obesity, hypertension, and type 2 diabetes. Human obesity, hypertension, and diabetes have strong
genetic as well as environmental determinants. Reduced energy expenditure and resting metabolic rate are predictive of weight
gain, and the sympathetic nervous system participates in regulating energy balance through thermogenesis. The thermogenic
effects of catecholamines in obesity are mainly mediated via the β2, and β3-adrenergic receptors in humans. Further, β2-
adrenoceptors importantly influence vascular reactivity and may regulate blood pressure. β-adrenoceptor polymorphisms have
also been associated with adrenoceptor desensitization, increased adiposity, insulin resistance, and enhanced sympathetic nervous
activity. Many epidemiological studies have shown strong relationships between adrenoceptor polymorphisms and obesity, but the
observations have been discordant. This paper will discuss the current topics involving the influence of the sympathetic nervous
system and β2- and β3-adrenoceptor polymorphisms in obesity.

1. Introduction

Obesity is a major and growing health problem. Impor-
tantly, the presence of increased adiposity is associated with
elevated risk of development of cardiovascular and renal
complications [1–4]. Obesity is frequently associated with
hypertension, diabetes, and metabolic syndrome [5–7], and
sympathetic nervous activation is frequently observed in
those conditions [8]. Thus, sympathetic nerve activation
may play a major role in the onset and development of
obesity, hypertension, and the development of the metabolic
syndrome as well as controlling to the cardiovascular compli-
cations evident in patients with hypertension, diabetes, and
obesity [2, 4, 9].

The sympathetic nervous system plays an important role
in the regulation of energy expenditure. Reduced energy
expenditure and resting metabolic rate are predictive of
weight gain (obesity). Furthermore, blunted sympathetic
nervous responses to energy intake have been observed in
obese subjects with the metabolic syndrome and insulin
resistance [10, 11]. The sympathetic nervous system par-
ticipates in regulating energy balance through thermogen-

esis [12]. Recently, the important relationships of brown
adipose tissue for energy expenditure [13–15] were argued,
however a large part of the sympathetic nervous system-
mediated energy expenditure takes place in skeletal muscle,
via the coupling of catecholamines with β2-adrenoceptors.
Catecholamines are also powerful regulators of lipolysis
and act via β1-, β2-, β3-(stimulatory), and α2-(inhibitory)
adrenoceptor subtypes in adipose tissue, where their role
becomes especially important during both exercise and
energy restriction, when increased need for fat as a fuel
exists. Thus, β-adrenoceptors play important roles in energy
expenditure and control body weight [16–20].

Recent evidence indicates that human obesity indeed has
a genetic component with [21–23] several epidemiological
and clinical studies indicating a strong linkage between β-
adrenoceptor polymorphisms and obesity or weight gain
[24, 25]. Furthermore, heightened sympathetic nervous
system activity associated with β2- and β3-adrenoceptor
polymorphisms predicts subsequent weight gain and blood
pressure elevation in originally nonobese subjects [11, 24],
and rebound weight gain after significant weight loss in obese
subjects [26]. β2-adrenoceptor polymorphisms are related to
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the onset of insulin resistance [27] and blunted responses of
sympathetic nerve activity to acute hyperinsulinemia [10, 11,
27–29]. These findings show that the genetic background,
especially β2- and β3-adrenoceptor polymorphisms, are
associated with sympathetic nervous system activation, and
are important in the pathogenesis of obesity-related hyper-
tension and insulin resistance. Many investigations regarding
the relationships between β-adrenoceptor polymorphisms
and obesity have been analysed; however, the results are
discordant [30–32].

2. Role of the Sympathetic Nervous
System in Obesity

Many epidemiological and clinical studies have demon-
strated a close relationship between sympathetic nervous
activation and insulin levels in obesity [33–37]. Several
longitudinal studies have examined the effect of body weight
changes (weight loss or weight gain) on sympathetic nervous
system activity and insulin sensitivity (fasting plasma insulin
levels and HOMA-IR). Elevated activity of the sympathetic
nervous system and increased insulin levels during weight
gain [16, 24, 26, 38, 39] and reductions of sympathetic
nerve activity and insulin levels during weight loss [40–
45] have been observed. In obese normotensive subjects, a
reduction in body weight induced exerts a marked reduction
in sympathetic activity owing to central sympathoinhibition
due to the consequences of an increased insulin sensitivity
and a restoration of the baroreflex [45]. These studies have
clearly shown heightened sympathetic nerve activity and
insulin resistance are closely linked to weight gain and the
onset and maintenance of obesity.

Landsberg et al. [46–48] and Julius et al. [49] have
proposed hypotheses to explain the mechanism linking the
sympathetic nervous system and insulin resistance in obesity.
The former proposes that hyperinsulinemia and insulin
resistance in obese subjects are all part of a response to limit
further weight gain via stimulating sympathetic nervous
activity and thermogenesis [50], and the latter indicates that
sympathoexcitation in the skeletal muscle vascular bed cause
neurogenic vasoconstriction and reduction in blood flow to
muscle and consequently induces a state of insulin resistance
by lowering glucose delivery and uptake in hypertension
and obesity. Masuo et al. in a series of longitudinal studies
observed that heightened sympathetic activity was the prime
mover for future weight gain in originally nonobese, nor-
motensive subjects, and that insulin resistance was more an
ancillary factor [24, 51, 52]. In investigations examining the
effect of weight loss, reductions in plasma norepinephrine
followed by reductions in HOMA-IR as a marker of insulin
resistance were significantly greater in subjects experiencing
significant weight loss compared to those without significant
weight loss [26, 40, 43]. These observations provide some
support for the hypothesis of Julius and colleagues.

Valentini et al. [53] reported attenuation of hemody-
namic and energy expenditure responses to isoproterenol
infusion in hypertensive patients. Their findings that a gen-
eralized decrease of β-adrenergic responsiveness in hyper-

tension supports the hypothesis that heightened sympathetic
nerve activity, through downregulation of β-adrenoceptor-
mediated thermogenesis, may facilitate the development of
obesity in hypertension. Their results suggested that sympa-
thetic nerve activity-induced hypertension may subsequently
lead to the development of obesity.

3. Role of β-Adrenoceptor
Polymorphisms in Obesity

The sympathetic nervous system plays an important role in
the regulation of energy expenditure. A large part of the
sympathetic nervous system-mediated energy expenditure
takes place in skeletal muscle, via the coupling of cate-
cholamines with β2-adrenoceptors [54]. Catecholamines are
also powerful regulators of lipolysis and act via β1-, β2-, β3-
(stimulatory) and α2-(inhibitory) adrenoceptor subtypes in
adipose tissue, where their role becomes especially important
during both exercise and energy restriction, when increased
need for fat as a fuel exists. Stimulation of β-adrenergic
receptors by the sympathetic nervous system is a significant
physiological modulator of pre- and postprandial energy
expenditure [18–20] and total daily energy expenditure
[16, 17, 50]. The subtypes of adrenoceptors on lipid
and glucose metabolisms are summarized as following;
α1-adrenoceptors, glycogenolysis and gluconeogenesis in
adipose tissue and liver; α2-adrenoceptors, induction of
glucagon release from pancreas; β1-adrenoceptors, lipolysis
in adipose tissue; β2-adrenoceptors, glycogenolysis and glu-
coneogenesis in adipose tissue and liver; β3-adrenoceptors,
lipolysis on adipose tissue.

Recent studies show that β-adrenoceptors are poly-
morphic with single nucleotide polymorphisms exerting
functional consequences in terms of receptor activity and
regulation and hence perhaps may contributing to the
pathophysiology of obesity and hypertension [24, 25, 55–59].
On the other hand, there are few studies on the relationships
between α-adrenoceptor polymorphisms and obesity.

3.1. β1-Adrenoceptor Polymorphisms (Table 1). The β1-
adrenoceptor is predominantly expressed in cardiac
myocytes and adipose tissue, where its activation leads to
increased heart rate and contractility and stimulation of
lipolysis, respectively. The β1-adrenoceptor is a candidate
gene for obesity because of its role in catecholamine-
mediated energy homeostasis. In obese individuals, the
degree of weight loss during a very low calorie diet has
been shown to correlate with changes in β1-adrenoceptor
protein concentration in adipose tissue [65]. The two most
common β1-adrenoceptor polymorphisms are Ser49Gly
and Arg389Gly, with relative allele frequencies of 0.85/0.15
and 0.70/0.30 in Caucasian population, respectively. An
investigation involving a population cohort of 761 women
indicated that women carrying the Gly49 genotype had
greater elevation in BMI over 15 years compared to those
with the Ser49 genotype [62]. Again, in Caucasian women
(n = 931), Dionne et al. [60] observed that the Gly389Arg,
β1-adrenoceptor variant exhibited a strong relationships
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Table 1: Summary of studies showing associations between on β1-adrenoceptor polymorphisms and obesity.

Authors
(reference)

Year Population Subjects Findings

Dionne et al. [60] 2002 Caucasian 931 women
Arg allele of Argt389Gly was associated with obesity (greater body weight
and BMI due to greater fat mass).

Tafel et al. [61] 2004 German
Children and
adolescents

The distributions of Ser49Gly and Arg389Gly were not different between
lean and obese adolescents.

Linné et al. [62] 2005 Scandinavian 761 women
The combination of Gly49-Gly389 (Ser49Gly + Arg389Gly) was associated
with long term of 15 years weight gain and the incidence of adult-onset
overweight in women, but no effect of Arg389Gly alone on obesity.

Gjesing et al. [63] 2007
Danish-
Caucasians

7,677
Arg389Gly polymorphism was not related with obesity, but minor influence
on BP.

Nonen et al. [64] 2008 Japanese
188 type 2
diabetic
patients

Ser49Gly, but not Arg389Gly, was associated with obesity.

BP: blood pressure.

with obesity. Conversely, Gjesing and colleagues found
that the distribution of the Arg389Gly polymorphism was
similar in lean and obese subjects, suggesting that it has no
important influence on human obesity [63, 66]. Although
earlier small case-control studies demonstrated an increase
in the risk of hypertension in Arg389 homozygotes [67, 68], a
recently published study comprising 3981 normotensive and
2,518 hypertensive patients failed to replicate this association
[63] (summarised in Table 1). Arner [67] reviewed that
Arg389Gly polymorphism in the β1-adrenoceptor, which
alters receptor function in transfected cell lines, and
concluded that the SNP has no effect on lipolysis in human
fat cells and is not associated with obesity.

3.2. β2-Adrenoceptor Polymorphisms (Table 2). The β2-
adrenoceptor is the dominant lipolytic receptor in white
human adipose tissue [20, 55, 56] and in skeletal muscle
[19, 57]. Gln16Glu and an Arg164Ile variation in the
β2-adrenoceptor cause marked variations in the lipoly-
tic sensitivity of this receptor in human adipocytes.
Multiple β2-adrenoceptor polymorphisms including hap-
lotypes, markedly influence β2-receptor function- and
catecholamine-induced lipolysis in fat cells [76]. These hap-
lotypes may be important genetic factors behind impaired
lipolysis in obesity [25].

The β2-adrenoceptor also plays an important regulatory
role in the peripheral vasculature. Genetic polymorphisms
of the β2-adrenoceptor have been associated with obesity,
hypertension, and diabetes mellitus. The most common
polymorphisms are Arg16Gly, with an allele frequency of
0.40/0.60 and Gln27Glu, with an allele frequency of 0.55/0.45
in the Caucasian population. The Thr164Ile polymorphism
is rare, occurring in only 3 to 5% of the general (Caucasian)
population.

Studies of agonist stimulation in cultured cells demon-
strate that Gly16 receptors have a greater reduction in
numbers or enhanced downregulation when compared with

Arg16, whereas the Glu27 receptor is resistant to down
regulation when compared with the Gln27 variant [77]. A
number of clinical studies have investigated the impact of
these polymorphisms on vascular responsiveness [55, 78].
Gratze et al. [79] found that young normotensive white men
homozygous for the Gly16 allele had higher blood pressure
and lower peripheral vasodilation after infusion of the β2-
agonist salbutamol. Similar results were obtained by Hoit et
al. [80] using the agonist terbutaline. On the other hand, vol-
unteers homozygous for Gly16 exhibited larger vasodilatory
responses than did volunteers homozygous for Arg16 [81].
Conflicting results have also been published with regards to
the effects of genetic variants on the sympathetic nervous
system modulation of energy expenditure. Bell et al. [82]
reported that the response of resting energy expenditure to
nonspecific β-adrenoceptor stimulation (with isoproterenol
infusion) was not different between the 3 genotypes of
Arg16Gly. Stob et al. [70] showed that individuals carrying
the Arg16Arg variant of the β2-adrenoceptor gene have a
reduced thermogenic response to selective β2-adrenoceptor
activation.

Associations of β2-adrenoceptor polymorphisms with
obesity have been reported in many epidemiological studies
but results are also discordant (summarised in Table 2).

3.3. β3-Adrenoceptor Polymorphisms (Table 3). The β3-
adrenoceptor, which is mainly expressed in adipose tissue,
differs from the β2-adrenoceptor in two ways: it has a lower
affinity for catecholamines, and it resists desensitisation (i.e.,
downregulation). These characteristic differences might lead
to the different effects of catecholamine on β2-adrenoceptors
and β3-adrenoceptors. β3-adrenoceptors stimulates the
mobilization of lipids from the white adipose tissue and
increases thermogenesis in brown adipose tissue. Cypess
et al. and other investigators demonstrated that potential
roles of β3-adrenoceptor polymorphism (Trp64Arg) asso-
ciated with potential role of uncoupling protein (UCP)
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Table 2: Summary of studies showing associations between β2-adrenoceptor polymorphisms and obesity.

Authors [reference] Year Population Subjects Findings

Large et al. [55] 1997 Swedish
Caucasian women with
wide range of obesity

Gln27Glu polymorphism was associated with obesity.

Echwald et al. [58] 1998 Danes
Caucasian juvenile-onset
obese men

No association between Gln27Glu and obesity.

Hellström et al. [59] 1999 Swedish
Swedish-Caucasian men
and women

Gln27Glu polymorphism was associated with obesity only in
women, but not in men.

Kortner et al. [69] 1999 German
Caucasian with morbid
obesity

Gln27Glu polymorphism was not associated with obesity.

The Quebec Family
Study [70]

2000 Canadian
Caucasian men and
women

Gln27Glu polymorphism was associated with obesity and
hyperlipidemia.

Ukkola et al. [56] 2001 USA
12 pairs of twins,
Caucasians

Gln27Glu polymorphism was associated with weight gain
(obesity).

Meirhaeghe et al.
[71]

2000 French 1,195 subjects

Subjects carrying Gln27 homozygous had an increased risk of
obesity in men, but not in women. Further, men with Gln27
homozygous carried in addition the Arg16 allele, had more
significant increase in body weight, BMI and waist-to-hip ratio
(central obesity).

The HERITAGE
family study [72]

2003 Canada
Sedentary black and
white men

Gln27Glu polymorphism was associated with lower fat in obese
white men.

Pereira et al. [25] 2003 Brazilian
1,576 individuals
randomly selected

Subjects carrying Gln27 homozygous had higher risk of obesity,
whereas those with Gly27 homozygous had increased risk of
hypertension.

Jiao et al. [73] 2005 Scandinavian
1,354 women and 421
men

Common haplotypes of ADRB2 polymorphisms had recessive
effects against excess body fat only in women, but not in men.

Masuo et al. [26] 2005 Japanese
154 overweight/obese
men

Gly16 allele was related to obesity and rebound weight gain in
weight-loss study.

Masuo et al. [24, 27] 2005 Japanese
160 nonobese,
normotensive men

Gly16 allele was related to future weight gain, BP elevation and
insulin resistance in originally nonobese, normotensive men.

Masuo et al. [28] 2006 Japanese
329 normotensive men
with a wide range of
BMI

Gly16 and Glu27 alleles were related to obesity through
blunted-leptin-mediated sympathetic activity.

Kawaguchi et al.
[29]

2006 Japanese
55 overweight/obese
men

Gly16 allele was related to further weight gain in obese subjects.

Petrone et al. [74] 2006 European
642 overweight/obese
subjects

The haplotype of 5′LC-Cys(19)Arg(16)Gln(27) was related to
additional weight gain with increases of triglycerides and
LDL-cholesterol.

Gjesing et al. [75] 2009 Danes 6,514 adults
No consistent effect of ADRB2 haplotypes on obesity and
quantitative traits of body fatness.

ADRB2: β2-adrenoceptors; BP: blood pressure.

polymorphisms and brown adipose tissue in thermogenesis
and resultant body weight in humans [13–15]. Decreased
function of β3-adrenoceptor in white adipose tissue could
slow lipolysis and thereby cause the retention of lipids
in adipocytes. Slow lipolysis may contribute strongly to
visceral obesity in human, and treatment of obese animal
models with selective β3-adrenergic agonists reduces fat

stores effectively [88–90]. Hoffstedt et al. [91] compared
adrenergic regulation of lipolysis between omental and
subcutaneous adipocytes from 15 obese and 14 nonobese
men. In their study, catecholamine-induced lipolysis was
markedly increased in omental adipocytes as compared to
subcutaneous adipocytes in obese male subjects mainly due
to an increase in β3-adrenoceptor function of visceral fat,
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Table 3: Summary of studies showing associations between β3-adrenoceptor polymorphisms and obesity.

Authors [reference] Year Population Subjects Findings

Clement et al. [83] 1995 French
Patients with morbid
obesity

Subjects carrying β3-ADR polymorphisms has an increased
capacity to gain weight.

Sakane et al. [84] 1997 Japanese
61 obese women with
type 2 diabetes

The Arg64 allele of Trp64Arg may predict difficulty in losing body
weight, lowering waist-to-hip ratio, and improving glycemic
control and insulin resistance in obese patients with type 2
diabetes.

Umekawa et al. [85] 1999 Japanese
18 omental fat samples
obtained during total
hysterectomy

Trp64Arg polymorphism was associated with lower lipolytic
activities.

Endo et al. [86] 2000 Japanese
553 Japanese
schoolchildren (291 boys
and 262 girls)

Trp64Arg polymorphism might be a genetic risk factor for obesity
in Japanese children.

Oizumi et al. [87] 2001 Japanese
1,685 (935 women and
750 men)

Arg64/Arg64, but not Trp64/Arg64, of the β-adrenergic receptor
polymorphism was associated with both obesity and type 2
diabetes in a large Japanese cohort.

Masuo et al. [24] 2005 Japanese
160 nonobese,
normotensive men

Trp64Arg polymorphism was related to BP elevations, but not to
weight gain in originally nonobese subjects.

Kawaguchi et al.
[29]

2006 Japanese
55 overweight/obese
men

Trp64Arg polymorphism was related to further weight gain in
originally obese subjects.

Gjesing et al. [63] 2007
Danish-
Caucasians

7,605
Trp64Arg polymorphism did not confer an increased risk of
obesity among Danes, although the variant is associated with type
2 diabetes and quantitative traits related to type 2 diabetes.

Table 4: Confounding variables considered to cause the discrepancy of the relationships between β-adrenoceptor polymorphisms and
phenotypes of obesity, hypertension, and diabetes.

Variables [reference number] Findings in the studies

Severity of obesity [23, 28, 29]

In lean subjects, β2-AR polymorphisms linked to obesity and obesity-related hypertension, but in
obese subjects β2- and β3-AR Polymorphisms related to obesity and obesity-related hypertension.
Morbid obesity was linked with β3-AR polymorphisms, but Overweight or mild obesity was not
associated with those.

Gender differences [71, 73]
Interaction between β1- and β2-AR polymorphisms with changes in BMI was observed in men
only, while in women an interaction between β1- and β3-AR polymorphisms was observed in a
longitudinal over a 24-year period large cohort study.

Ethnic difference [30] Distributions of β-AR polymorphisms are different in 8 different ethnic population.

Haplotype [25, 73, 74, 76, 86, 93–97] Functions expressed of β-AR polymorphisms are different due to the other β-AR polymorphisms.

AR: adrenoceptor; BMI: body mass index.

in combination with a smaller increase in β1-adrenoceptor
function [91]. Recently, Eriksson et al. [76] observed that
Trp64Arg polymorphism in the β3-receptor, which associates
with obesity, is accompanied by changes in lipolytic sensitiv-
ity of the receptor in human adipocytes. Many epidemiolog-
ical studies have shown the strong relationships between β3-
adrenoceptor polymorphisms (mainly Trp54Arg), obesity,
metabolic syndrome, and hypertension [87–92] (Table 3).

3.4. Confounding Variables Affecting the Relationships of β-
Adrenoceptor Polymorphisms with Obesity, Hypertension and
Diabetes (Table 4). Tables 1–3 show the discordant contribu-
tions of β-adrenoceptor polymorphisms to obesity. Table 4
summarizes factors which might explain the discrepancy of
published data. Importantly, haplotypes of polymorphisms
have strong influence on β-adrenoceptor function in each
polymorphism [25, 73, 86, 93–97].
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4. Sympathetic Nervous System
Activity and β2- and β3-Adrenoceptor
Polymorphisms in Obesity

Many studies have examined the associations of the β2-
or β3-adrenoceptor polymorphisms with obesity and blood
pressure as mentioned above. A series of studies conducted
by Masuo et al. have included measurements of sympathetic
nervous system activity [24, 26]. In a longitudinal study
over 5 years, originally nonobese, normotensive subjects
carrying the Gly16 allele of Arg16Gly, the combination of
β2-adrenoceptor polymorphisms and high plasma nore-
pinephrine levels on entry were linked to weight gain
and blood pressure elevations in addition to weight gain-
induced blood pressure elevations [24]. In a weight loss
study over a 24-month period, the β2-adrenoceptor the
Gly16 allele of Arg16Gly was associated with resistance
to long term significant weight loss, and the Glu27 allele
was linked to resistance to short-term weight loss [26].
Nonobese normotensive men carrying the Gly16 allele of
Arg16Gly had a higher frequency of insulin resistance, as
indicated by elevation in the homeostasis model assessment
for insulin resistance (HOMA) index. This deterioration
in insulin resistance is generally observed in obesity and
hypertension [27, 36, 44, 98]. These studies provide strong
evidence for the linkage between β2-adrenoceptor poly-
morphisms, heightened sympathetic nervous system activ-
ity, obesity, hypertension, and the development of insulin
resistance.

5. Elevated Sympathetic Nervous Activity
in Obesity Is a Risk Factor for Cardiovascular
Complications and Renal Complications

The increased risk of cardiovascular complications in obesity,
especially associated with hypertension or type 2 diabetes,
has been attributed to a variety of mechanisms, including
dyslipidemia, coagulation abnormalities, endothelial dys-
function, chronic sympathetic nerve activation, and repeated
occurrence of excessive hyperinsulinemia [99–102]. Sympa-
thetic nerve hyperactivity leads to arterial blood pressure
elevation [103–105], triggers arterial damage, and results in
cardiovascular events. Recent studies and reviews reported
that sympathetic nerve stimulation contributes to the pro-
gression of renal disease [106, 107]. Norepinephrine infusion
into the renal artery in dogs produced a reversible ischemic
model of acute renal failure [108]. Another study demon-
strated renal protection by β-adrenergic receptor blockade
in a nephrectomized rat without any BP changes [109].
Plasma norepinephrine and heightened sympathetic nerve
activity may predict mortality and incident cardiovascular
events including renal injury in large cohort longitudinal
studies [110] and clinical studies [111, 112]. Renal injury
also predicts the development of cardiovascular disease
[105, 106, 110, 111]. There is consistent evidence that
elevated sympathetic nervous activity predicts mortality
in cardiovascular disease such as in patients with heart
failure [111] and end-stage renal disease [112, 113]. Given

these observations and the recent demonstration of the
effectiveness of catheter based sympathetic renal denervation
for the treatment of refractory hypertension [114, 115], it
may be of importance to aim antihypertensive treatments or
anti-diabetic treatment not only at the reduction of raised
blood pressure or blood glucose but also at the excessive
sympathetic activation that may underpin these effects.

6. Conclusions

Established and emerging data emphasises the impor-
tance of the sympathetic nervous system in obesity and
obesity-related illness. Sympathetic nervous system activity
and β-adrenoceptor polymorphisms (mainly β2- and β3-
adrenoceptor polymorphisms) may contribute to the onset
and maintenance of obesity; however, the findings have
been discordant. A better understanding of the pathogenesis
of obesity, including an understanding of adrenoceptor
polymorphisms and their impact on sympathetic nervous
activity might help in the prevention of obesity and the
pharmacological treatment of obesity-related illness includ-
ing hypertension and insulin resistance.
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