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Entanglement concentration for 
arbitrary four-particle linear cluster 
states
Ting-Ting Song1,2, Xiaoqing Tan2 & Tianyin Wang3

Cluster states, whose model are a remarkably rich structure in measurement-based quantum 
computation, hold high degree of entanglement, while entanglement is very fragile during the 
process of transmission because of the inevitable interaction with the environment. We propose two 
entanglement concentration protocols for four-particle linear cluster states which and are susceptible 
to the decoherence and the imperfect communication setups. In the first protocol, POVM operators 
are introduced to maximize the success probability, and the second protocol is based on cross-Kerr 
nonlinearity which is utilized to check the parity between the original particle and the ancillary particle. 
Both of the protocols have their own advantages. The first one can be easily realized in experiment by 
linear optics, while the one with cross-Kerr nonlinearity reach more than 90% success probability by 
iteration. Since the wide application of cluster states, the two protocols are efficient and valuable to 
different fields of quantum communication.

Entanglement, the genuine quantum phenomenon in quantum world, is not equivalent to the analog of clas-
sical physical theory. It is therefore of importance to explore quantum states with entanglement. Cluster 
states1, 2, one special kind of entangled states, develop one of two kinds of quantum computation, the so-called 
measurement-based quantum computation3, 4, while the other one is quantum circuit model of quantum compu-
tation. The one-dimension N-particle cluster states are also called linear cluster states (LCSs)1. When N = 2, the 
two-particle LCSs are local unitary equivalent to Bell states. The three-particle LCSs are local unitary equivalent 
to GHZ states, but four-particle LCSs are not local unitary equivalent to four-particle GHZ states. Compared with 
GHZ class and W class, the four-particle LCSs hold high degree of entanglement. Besides the theoretical research, 
Cluster states have already been realized experimentally1, 5, 6, like in optical lattices of cold atoms with Ising type 
interactions1. In 2004, Nielsen7 proposed an approach to prepare cluster states with non-deterministic quantum 
gates. Then, Browne and Rudolph8 introduced two-dimensional array of qubits into the preparation of cluster 
states. A four-particle LCS9 and a six-atom ‘Schrodinger cat’ state10 were already achieved in experiment.

Besides the measurement-based quantum computation, many quantum communication protocols are also 
based on the entanglement principle in cluster states, such as quantum error-correction codes11, quantum dense 
coding12, 13, quantum information splitting14, quantum teleportation12, 13, quantum key distribution15, 16, quan-
tum secret sharing13, 17, 18, quantum secure direct communication19, 20. However, the entanglement is very frag-
ile during the process of transmission because of the inevitable interaction with the environment. Affected by 
the decoherence in transmission channels21, the fidelity of the entangled cluster states degrades. Two quantum 
techniques, entanglement purification22–26 and entanglement concentration27–34, are introduced to improve the 
fidelity of the entangled particle system. In detailed, entanglement purification distills mixed states into a perfect 
entangled state, while entanglement concentration protocols (ECPs) are used to obtain a perfect pure state from 
some partially entangled pure states. In 1996, Bennett et al.27 introduced an ECP based on Schimidt projection 
method. Later, Bose et al.28 proposed an ECP with the entanglement swapping. Then other two entanglement 
concentration protocols were proposed29, 30. These schemes distilled the perfect entangled states from some par-
tial entangled states with linear optics. If the entanglement concentration operations are nonlinear, refs 31 and 
32 are concerned on the topic. In 2012, Sheng et al.33 presented two ECPs for arbitrary three-particle W states 
that exploit linear optics and cross-Kerr nonlinearity separately, and showed that the latter ECP can reach higher 
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success probability by iterating some steps many times. Later, they34 did the same project using quantum-dot and 
optical microcavities under the single-particle assistance.

Owing the high degree of entanglement, four-particle LCSs have wide applications in quantum communica-
tion protocols12, 14, 19, 20. Because of the high degree of entanglement, it is more difficult to concentrate the entan-
glement of four-particle LCSs via traditional methods. The weak nonlinearity concepts35, 36 have been introduced 
to the area of quantum computation37, 38, the distribution of entanglement39, 40, and the generation of cluster 
states41, 42 where successful probabilities for the generation of three-qubit states are much efficient. Based on the 
new concept, ref. 43 proposed a way to concentrate the entanglement of four-particle LCSs. However, it is hard 
to applied in practices because of the three times parity-checking and Toffoli gate. The present paper proposes 
two ways of entanglement concentration for four-particle LCSs, one with linear optics, the other one based on the 
weak cross-Kerr nonlinearity. Different from the ECPs for GHZ class and W class via linear optics and cross-Kerr 
nonlinearity, the ways of present ECPs are much novel. In the first protocol, POVM operators are introduced to 
maximize the success probability, and the second protocol is based on cross-Kerr nonlinearity which is utilized 
to check the parity between the original particle and the ancillary particle. Both of the protocols have their own 
advantages. The first one can be easily realized in experiment by linear optics, while the one with cross-Kerr non-
linearity can reach more than 90% successful probability by iteration.

Results
Alice wants to share a four-particle LCS, defined as

ψ = + + −HHHH HHVV VVHH VVVV1
2

( ) (1)1234 1234

through quantum channels with Bob, Charlie and Daniel. Affected by the decoherence of entanglement arising 
from the storage process or the imperfect entanglement source, the entanglement of four-particle LCS decreases. 
Now we consider the case that if the state after transmitted is

λ λ λ λΨ = + + + .HHHH HHVV VVHH VVVV (2)1234 0 1234 1 1234 2 1234 3 1234

Here the subscripts 1, 2, 3, 4 means the four particles kept by Alice, Bob, Charlie and Daniel respectively (The 
concentration of entanglement on other pure states is beyond the reach of the following two ways, and that will 
be the future work). Four real parameters λi ≠ 0(i = 0, 1, 2, 3) known to four parties satisfy the normalization 
condition |λ0|2 + |λ1|2 + |λ2|2 + |λ3|2 = 1. Without loss of generality, suppose |λ0| ≤ |λ1| and |λ0| ≤ |λ2|. If |λ0| is 
bigger than |λ1| or |λ2|, by performing local unitary operations, four parties can always make the absolute value 
of the coefficient of |HHHH〉1234 smaller than |λ1| and |λ2|. The two ways of entanglement concentration for 
four-particle LCSs are as follows.

ECP with linear optics.  In order to distill perfect cluster state by linear optics from the state in Eq. (2), local 
operations are needed. Any local POVM operations performed on particle i is as

= + + + =L a H H b H V c V H d V V i, 1, 2, 3, 4, (3)i i i i i

where ai, bi, ci and di are all real number and satisfy |ai| + |ci| ≤ 1 and |bi| + |di| ≤ 1. If Alice, Bob, Charlie and 
Daniel are only permitted to perform local operations on the particles hold by themselves, the state |Ψ〉1234 will 
be changed into L1 ⊗ L2 ⊗ L3 ⊗ L4|Ψ〉1234. After four local POVM operations, the ECP for four-particle LCS with 
linear optics is finished, which means that the whole system hold by four parties is hoped to be the cluster state in 
Eq. (1). Thus the coefficients of terms in the final state should satisfy the following basic conditions,

= = = − ≠ = ∈f f f f f i0, 0, [1, 16] \{1, 4, 13, 16}, (4)i Z1 4 13 16

where the coefficient of ith term is denoted as fi. According to the conditions, four parties can find the relationship 
between ai, bi, ci, di(i = 1, 2, 3, 4) and λi(i = 1, 2, 3, 4), then they would know the detailed operations performed by 
themselves to concentrate the imperfect cluster state.

In order to describe the process of ECP with linear optics clearly, we consider a special case, when there is no 
operation on particle 4, i.e. L4 = I = |H〉〈H| + |V〉〈V| which means a4 = d4 = 1 and b4 = c4 = 0. We show how to find 
the unknown parameters in the other three POVMs those can concentrate the entanglement in |Ψ〉1234 of Eq. (2) 
with the maximum success probability. The final system without normalized is changed into |Ψ′〉1234 = L1 ⊗ L2 ⊗ 
L3 ⊗ I|Ψ〉1234, which also has the form of cluster state in Eq. (1) after normalized. If the coefficients are denoted as 
f′(i), i ∈ [1, 16]Z, they satisfy the conditions

′ = ′ = ′ = − ′ ≠ ′ = ∈ .f f f f f i0, 0, [1, 16] \{1, 4, 13, 16} (5)i Z1 4 13 16

The success probability that four parties transform |Ψ〉1234 of Eq. (2) into |ψ〉1234 of Eq. (1) is P = |f′1|2 + |f′4|2 + 
|f′13|2 + |f′16|2 = 4|f′1|2. Now our aim to concentrate the arbitrary four-particle cluster states can be divided into 
two steps. The first step is to solve the parameters ai, bi, ci, di (i = 1, 2, 3) with respect to λi(0 ≤ i ≤ 3) according to 
the conditions in Eq. (5). The second step is to maximize the success probability P. We solve them one by one as 
follows.

There are three kinds of relationship satisfying the conditions in Eq. (5), and the detailed process is shown in 
Supplementary Material. The first solution is λ1λ2 − λ0λ3 = 0. The second kind is
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and the third solution is
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Secondly, following the three solutions of the relationship between λi and the coefficients of Li, we maximize 
the success probability of each solution to obtain the detailed POVMs operators. The maximization of the local 
probabilities








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− =

− =

− =

†

†

†
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det( ) 0,

det( ) 0,

det( ) 0, (8)
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2 2

3 3

implies that the constraints
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1
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2
2

3
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3
2

should be satisfied and that the state is transformed into the cluster state with the maximized success probability. 
The first solution with less constraints is hard to obtain the particular POVMs, so we take the second solution as 
an example to show how to maximize the success probability (Actually, the maximization of the success proba-
bility with the third solution is similar with that with the second solution.). Under the conditions in Eqs (6) and 
(9), the parameters with

λ
λ

λ
λ

= = = = = =
−b c c a b c c

b
d a1, ,1 1 2 3 2

0 1 2

2 1
3

0 3

1

or

λ
λ

λ
λ

= = = = = =
−b c c a b c c

b
d a1, ,2 2 1 3 1

0 1 2

2 2
3

0 3

1

make the success probability maximum as 4|λ0|2. One solution for the local POVM operations on three particles is

λ
λ

λ
λ

= + = + = − =L H V V H L H V V H L H H V V L I, , , ,
(10)1 2

0

2
3

0

1
4

with the success probability P = 4|λ0|2, if there exists λ0λ3 = −λ1λ2. That means if Daniel doesn’t perform any 
operations, Alice, Bob and Charlie can concentrate the entanglement of |Ψ〉1234 into |ψ〉1234 with the success prob-
ability P = 4|λ0|2 by performing the local operations L1, L2 and L3 in Eq. (10) respectively.

Furthermore, in the cluster state, particle 1 is symmetric with particle 2, so the solutions for maximizing 
success probability can be interchanged over particle 1 and particle 2. At the same time, particle 3 is symmetric 
with particle 4, thus the POVM operations over particle 3 and particle 4 can also be interchanged. Considering 
the symmetry over particle 1 and particle 2 (particle 3 and particle 4), only two parties from four perform local 
POVMs and distill the cluster state in Eq. (2) into |ψ〉1234. As the process that obtaining the parameters in three 
local POVMs, we can get one of solutions in the case is

λ
λ

λ
λ

= = − = + =L I L H H V V L H H V V L I, , , ,
(11)1 2

1

3
3

0

1
4

with the success probability P = 4|λ0|2, if λ0λ3 = −λ1λ2 exists. Thus, by performing the operations in Eq. (11), 
Alice, Bob, Charlie and Daniel also can distill perfect cluster state from |Ψ〉1234 with the success probability 
P = 4|λ0|2.
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All the solutions of the ECP can be implemented by linear optics, polarization beam splitter and rotated 
operations, which is practical and economical. We take the solution in Eq. (11) as an example to show how to 
implement an ECP by linear optics. The schematic drawing is as Fig. 1.

According to the principle of our last entanglement concentration protocol with λ1λ2 = −λ0λ3, only particle 2 
and particle 3 are operated by some local POVM operations. After through PBS1 (PBS4), the vertical component 
in particle 2 (3) is rotated by R2 (R1). The wave plate Ri is used to rotate |V〉 with an angle θi = arccos (λ0/λi), that 
is λ λ λ λ→ − +V H V/i i i

2
0

2 . After the vertical component of particle 2 and that of particle 3 pass 
through wave plates R2 and R1, respectively, the state in Eq. (2) is changed into

λ λ λ λ

λ λ λ

λ
λ λ λ

λ λ λ

Φ = + − +

+ ⊗ − +

+ − +

⊗ − + .

HHHH HHV H V

VHH H V

VV H V

H V

( )

( )
1 ( )

( ) (12)

1234 0 1234 124 1
2

0
2

3 0 3

134 2
2

0
2

2 0 2

0
14 2

2
0

2
2 0 2

1
2

0
2

3 0 3

Then the vertical component of particle 2 and that of particle 3 in |Φ〉1234 are reflected by PBS2 and PBS5, respec-
tively, while both of the horizontal components arrive the detectors. In theory, Alice can judge the protocol suc-
ceeds or not, according to the response of detectors. If particle 2 or particle 3 reaches detector D2 or D1, the ECP 
protocol fails. When particle 2 and particle 3 pass through PBS2, PBS3, PBS5 and PBS6, the whole state is trans-
formed into |ψ〉1234 in Eq. (1) with the success probability 4|λ0|2.

ECP with cross-Kerr nonlinearity.  The section introduces the other way to concentrate the entan-
glement of the four-particle state in Eq. (2) with cross-Kerr nonlinearity35, 36, which is based on the quantum 

Figure 1.  Schematic drawing of ECP for a four-particle cluster state with linear optics. PBS represents a 
polarizing beam splitter, which transmits the particle in the horizontal polarization |H〉 and reflects the particle 
in the vertical polarization |V〉. Ri represents a wave plate which can rotate the vertical polarization |V〉 with an 
angle θi = arccos (λ0/λi). Symbol D1 and D2 are the single-photon detectors.

Figure 2.  Schematic drawing of ECP for a four-particle cluster state with ancillary particles. PCD means the 
“parity checking device” which distinguishes the parity between particle i and ancillary particle i′ using cross-
Kerr nonlinearity. PBSi represents a polarizing beam splitter, which transmits the particle in the horizontal 
polarization |H〉 and reflects the particle in the vertical polarization |V〉. Ri represents a wave plate which 
represents a Hadamard operation on the ancillary single particle.
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non-demolition detection. The ECP for four-particle cluster state with cross-Kerr nonlinearity improves the suc-
cess probability by iteration. The principle is shown in Fig. 2.

Suppose Alice, Bob, Charlie and Daniel hold the particles 1, 2, 3 and 4 respectively. Firstly, Alice prepares an 
ancillary particle 1′ in φ λ λ

′
= −

λ λ+
H V( )1

1
3 1

1
2

3
2

, so the whole system is
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where λ0λ3 = −λ1λ2 is applied in the second equation.
Based on the setups in Fig. 335, Alice checks the parity on particle 1 and particle 1′, and measures the particle 

1′ in the diagonal basis ± = ±H V( )1
2

. If the measurement result is |+〉 (|−〉), Alice operates I (σZ = |H〉
〈H| − |V〉〈V|) on particle 1. Then according to the output of PCD (parity checking device), the system is divided 
into two classes. After Alice’s operations, the normalized system with even parity is
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Compared the coefficients of φ A
1234

1e  with those of φ A o
1234

1 , the first two coefficients in φ A
1234

1e  are same (so are the 
last two coefficients), while all the coefficients in φ A o

1234
1  are different, similar with the property of the initial state 

|Ψ〉1234. If the state is in φ A
1234

1e , Alice’s step is successful, then Alice tells Charlie to continue to perform the follow-
ing steps of the protocol. When the system is in state φ A o

1234
1 , Alice fails and needs to do the above operations again.

If Alice fails, according to Eq. (15) she prepares another ancillary particle with the form
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Alice makes particle 1′′ and particle 1 go through the PCD, measures particle 1′′ with the basis {|+〉, |−〉} and 
operates I or σZ according to the measurement results of particle 1′′. If the output of PCD is even, the step is suc-
cessful, otherwise the step fails, and Alice has to prepare the third ancillary particle and iterates above steps until 
the parity checking result is even. After two rounds, the probability of failure (i.e., the probability that the parity 
checking result is odd) is
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Figure 3.  Schematic drawing of PCD operated on the original particle 1 and the ancillary particle 1′35. ±θ 
represents that cross-Kerr nonlinearity makes |α〉 into |αe±iθ〉 when there is a particle passing. The even-parity 
states |HH〉 and |VV〉 will introduce phase shift ±θ to |α〉, while the odd-parity states |HV〉 and |VH〉 result in 
no phase shift. |χ〉〈χ| is the homodyne measurement that can distinguish different phase shifts.
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1e . After iterating the entanglement concentration process 
m rounds, the total success probability of Alice’s step is
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. If the parity checking result is even, the system is in a perfect four-particle 
cluster state |ψ〉1234. If the parity checking result is odd, Charlie has to do another round to obtain the perfect 
four-particle cluster state. The success probability in the second round is
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Therefore, by iterating the entanglement concentration process n rounds, the total success probability in Charlie’s 
steps is
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After Alice’s m rounds operations and Charlie’s n rounds operations, the probability that the final state is in perfect 
cluster state is
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which depends on the coefficients of the initial state |Ψ〉1234 and the numbers of iterations performed by Alice and 
Charlie.

Discussion
We introduce two ways to concentrate the entanglement from an arbitrary four-particle LCS |Ψ〉1234 = λ0|H-
HHH〉1234 + λ1|HHVV〉1234 + λ2|VVHH〉1234 + λ3|VVVV〉1234. The first ECP is realized by a series of PBSs and two 
rotate operations, and the success probability is 4|λ0|2 if the coefficients of |Ψ〉1234 satisfy λ0λ3 = −λ1λ2. The visible 
relationship between the success probability and the parameter |λ0|2 is shown in Fig. 4(a). Apparently, the success 
probability is 4 times the parameter |λ0|2. Furthermore, the wave plates are imperfect in experiment, so we dis-
cuss the affection of accuracy of the wave plates on the concentration. Ignored the global phases, we consider the 
number of possible initial cluster states that can be concentrated by the ECP with linear optics, and simulate the 
probability distributions of the number with the parameter |λ0|2 in Fig. 4(b) if the accuracies of the wave plate in 
Fig. 1 are 1/103 and 1/104. In Fig. 4(b), the number of initial states that can be concentrated by the ECP with linear 
optics decreases with |λ0|2 increasing. The higher the accuracy of the wave plates, the smoother the distribution 
of the number of the possible states.

Besides only using linear optics, another advantage of the ECP is that the scheme doesn’t need any ancillary 
particles. The only compromise is that the results need postselection. In Fig. 1, Bob and Charlie should observe 
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linear optics vs the parameter |λ0|2 under different accuracies of the wave plate 1/103 and 1/104.
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that whether the detectors D1 and D2 click or not. Any detector clicks, the ECP with linear optics fails, else it 
succeeds. Thus the detection efficiency of the detectors in practice also affects that whether the ECP is successful 
or not. In Section II, we suppose the detection efficiency of both detectors D1 and D2 are 100%. However, the 
single-photon detectors are imperfect. The detection efficiency cannot reach 100%, and there exists dark counts 
in experiment. Therefore, more practical concentration of the entanglement for four-particle cluster states should 
be studied in the future.

The second ECP for four-particle LCSs is realized via cross-Kerr nonlinearity which can check the parity 
between the original particle and the ancillary particle. Compared with the first ECP protocol, two particles of 
the original state in the second ECP with cross-Kerr nonlinearity is reentered the devices again and again until 
the whole system is in a perfect cluster state. The iteration increases the final success probability, which is related 
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with four parameters, the number of Alice’s iterations m, the number of Charlie’s iterations n, and the coefficients 
|λ0|2 and |λ2|2 of |Ψ〉1234. No matter how many iterations Alice does, the whole systems before Charlie operates are 
in the same states. Thus the number of Charlie’s iterations is independent with the number of Alice’s iterations.

When the number of Charlie’s iterations is fixed as n = 1, the success probabilities as a function of the coef-
ficients |λ0|2 and |λ2|2 are shown in Fig. 5. Figure 6(a–c) give the results when that of Alice’s iterations is fixed as 
m = 1, and Fig. 6(d) shows the success probabilities when both of m and n are equal to 4. According to the simula-
tion, we obtain the following conclusions: (i) With the parameters |λ0|2 and |λ2|2 increasing, the success probabili-
ties increase. (ii) Both of Alice’s iterations and Charlie’s iterations can efficiently increase the success probabilities. 
(iii) The influence degree of Alice’s iterations on the success probabilities is similar as that of Charlie’s iterations. 
(iv) After 4 Alice’s iterations and 4 Charlie’s iterations, the success probabilities would reach more than 90%.

Compared with the first ECP with linear optics in Fig. 4(a), the second ECP with cross-Kerr nonlinearity in 
Fig. 6(d), though it is more difficult to be realized, would reach higher success probabilities for the same parame-
ter |λ0|2. Besides the iteration increasing the success probabilities, the reason is that the success probability of the 
first ECP with linear optics is P = 4|λ0|2 which should satisfy the hypotheses |λ0| ≤ |λ1| and |λ0| ≤ |λ2|. To sum up, 
we introduce two ECPs for four-particle LCSs, one with linear optics, the other with cross-Kerr nonlinearity. The 
first ECP is easily realized in experiment, while the success probability in the second one can reach more than 
90% after 4 Alice’s iterations and 4 Charlie’s iterations. The wide application of cluster states makes our two ECPs 
play different important roles on quantum communication.
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