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Abstract

Background: Automatic tumor segmentation based on Convolutional Neural Networks (CNNs) has shown to be a
valuable tool in treatment planning and clinical decision making. We investigate the influence of 7 MRI input
channels of a CNN with respect to the segmentation performance of head&neck cancer.

Methods: Head&neck cancer patients underwent multi-parametric MRI including T2w, pre- and post-contrast T1w,
T2*, perfusion (kyans Ve) and diffusion (ADC) measurements at 3 time points before and during radiochemotherapy.
The 7 different MRI contrasts (input channels) and manually defined gross tumor volumes (primary tumor and
lymph node metastases) were used to train CNNs for lesion segmentation. A reference CNN with all input channels
was compared to individually trained CNNs where one of the input channels was left out to identify which MRI
contrast contributes the most to the tumor segmentation task. A statistical analysis was employed to account for
random fluctuations in the segmentation performance.

Results: The CNN segmentation performance scored up to a Dice similarity coefficient (DSC) of 0.65. The network
trained without T2* data generally yielded the worst results, with ADSCgpy.1=5.7% for primary tumor and
ADSCgryn = 5.8% for lymph node metastases compared to the network containing all input channels. Overall, the
ADC input channel showed the least impact on segmentation performance, with ADSCepy.t = 2.4% for primary
tumor and ADSCgryn = 2.2% respectively.

Conclusions: We developed a method to reduce overall scan times in MRI protocols by prioritizing those
sequences that add most unique information for the task of automatic tumor segmentation. The optimized CNNs
could be used to aid in the definition of the GTVs in radiotherapy planning, and the faster imaging protocols will
reduce patient scan times which can increase patient compliance.
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Trial registration: The trial was registered retrospectively at the German Register for Clinical Studies (DRKS) under

register number DRKS00003830 on August 20th, 2015.
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Introduction

Head&neck squamous cell carcinomas (HNSCC) are
currently treated with surgery, chemotherapy, radiation
therapy or a combination thereof [1, 2] such as primary
radio-chemotherapy. In HNSCC radiation therapy, the
definition of the gross tumor volume (GTV) on radio-
logical images is an essential step to ensure that the pre-
scribed treatment dose is effectively delivered to the
tumor during therapy with only minimal dose spillover
into the surrounding healthy tissue [3, 4]. MRI is often
used for the GTV target volume, as it provides superior
soft tissue contrast compared to CT among other bene-
fits [5, 6]. MRI is often supplemented by positron emis-
sion tomography (PET) using novel hypoxia-sensitive
tracers such as F-MISO or FAZA to delineate hypoxic
subvolumes in the tumor, which require significant dose
escalation for an effective tumor treatment.

Manual GTV definition is a tedious and time-consuming
procedure which can require up to 2h per patient, and
which is strongly dependent on the training of the execut-
ing radio-therapist [7, 8]. To overcome this bias and to ac-
celerate the radiation planning procedure, in recent years
automatic tumor segmentation methods have been intro-
duced. These segmentation methods are based on deep
learning techniques such as convolutional neural networks
(CNN) that have been shown to be highly accurate in the
segmentation of various tumor types [9-12], and thus
promise to be a valuable tool in assisting experts in clinical
decision making.

To reach clinically acceptable and comparable segmen-
tation results, CNNs are usually trained on large tumor
image databases which are publicly available [9, 13]. The
CNN training with these large amounts of data is very
time-consuming as thousands of images must be proc-
essed - even on modern graphical processing units (GPU)
CNN training can take several days. Once trained, how-
ever, the CNNs can make automatic GTV predictions on
a single patient data set within seconds thus decreasing
the segmentation time by 1-2 orders of magnitude even if
small manual corrections must be applied to the auto-
matic segmentation.

In general, deep learning algorithms such as CNNs
have shown their potential for modelling complex sys-
tems when large amounts of data are available for train-
ing [14]. In this context, the volume of data can be
twofold: the number of different patients, and the num-
ber of different image data sets per patient. The total

number of patients is a measure of the data variation
that the CNN has seen during training, i.e. the training
size. Increasing the training size should make the CNN
more robust against variations in the appearance and the
localization of the tumor, so that the CNN can better
generalize to new patient data. The second factor that
determines the available data volume is the number of
different image data sets per patient (sometimes called
input features or channels) — it encodes the amount of
information per patient. For CNNs trained for HNSCC
tumor segmentation, the MRI input channels are given
by the different contrasts acquired before, during and
after therapy. The contrasts in multi-parametric MRI
include anatomical and functional contrasts which are
acquired in a single imaging session and are, thus, intrin-
sically co-registered. Unfortunately, the acquisition of
multi-parametric MRI data can require imaging times of
up to 40 minutes per exam, which can be challenging for
HNSCC patients because the images are acquired using
a thermoplastic fixation mask covering the complete
head-and-neck region that is later used during radiation
therapy. During these long exam times patients start to
move, and the intrinsic co-registration of the data is
compromised, or they even interrupt the exam leading
to incomplete data sets. Thus, there is an urgent need to
shorten the total exam time by acquiring only those
image contrasts that are required for GTV segmentation.

In this study we trained a 3D CNN to for HNSCC
tumor segmentation with 7 different MRI contrasts.
Based on this, we investigated the relevance of the differ-
ent MRI input channels with respect to the segmenta-
tion performance of the CNN. Therefore, 7 additional
CNNs were trained in which one contrast was left out
(leave-one-out CNN or LOO-CNN). The outcome of
the LOO-CNNs was then compared to the CNN trained
on the complete input channels (reference CNN) and
the ground truth given by the manually delineated
tumor GTV (GTV-T) and lymph node metastases
(GTV-Ln) to determine which MRI contrast contributed
the least to the segmentation performance.

Materials and methods

Clinical data

MRI data from the prospective F-MISO clinical trial was
used. In the F-MISO trial correlations between tumor
response under radiotherapy and hypoxia in tumor sub-
volumes are studied in HNSCC patients. In the time
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span from 08/2014 to 11/2019, 33 patients have been in-
cluded, 24 of which underwent 3T MRI with the
complete imaging protocol. Radiation treatment was car-
ried out over the course of 7 weeks in daily 2 Gy frac-
tions to a total dose of 70Gy. Patients received
concomitant chemotherapy with cisplatin (100 mg/m>
body surface area) in weeks 1, 4 and 7. The trial was ap-
proved in advance by the local Independent Ethics Com-
mittee (reference no. 479/12) and was carried out in
accordance with the Declaration of Helsinki (revised ver-
sion of 2015). The trial was registered with the German
Clinical Trial Register (DRKS00003830). All 24 patients
received multiparametric MRI before treatment (week
0), and at week 2 and 5 during radiation therapy. MRI
was performed on a clinical 3T whole body MR system
(Siemens Tim Trio, Erlangen, Germany). During im-
aging the patients were fixated on the MR patient table
with the same mask system that was later used for radi-
ation therapy. As the mask did not allow for the usage
of the MR system’s head coil, image data were acquired
with a flexible anterior 4-channel array coil and a 2-
channel flexible coil in combination with the integrated
spine array. The details of the F-MISO MR protocol are
listed in Table 1. In general, the protocol consisted of
Fast Spin Echo with T1 and T2 weighting, echo planar
imaging (EPI) with diffusion weighting, a multiecho gra-
dient echo sequence for T2* calculation, a dynamic 3D
gradient echo sequence for dynamic contrast enhanced
(DCE) imaging, and a final T1-weighted gradient echo
with fat-water separation (Dixon technique). From this
data, quantitative apparent diffusion coefficient (ADC)
and T2* maps were calculated by voxel-vise exponential
fitting, and maps of the perfusion parameters K.,,s and
v were determined using the Tofts model [15].

For the segmentation of primary tumor and lymph
node metastases, a CNN was trained with the MRI data
from 7 input channels: Tlw (pre-contrast), T2w, T1
(post contrast), ADC map, T2* map, and Kg.ns and ve
maps (Fig. 1). For the 24 patients measured at the three
time points during treatment, a total of 72 datasets were
available. About 50% of these data sets had to be ex-
cluded because of patient compliance, excessive motion
or By inhomogeneity artifacts (especially in the diffusion
sequences due to the anatomy [16]). Therefore, the

Table 1 Sequence parameters of the MRI protocol
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CNN calculation is based on 36 complete datasets from
18 different patients, of which 13 were acquired at week
0, 9 at week 2, and 14 at week 5.

Data pre-processing

The GTVs were exclusively contoured on the MRI data
using the radiation therapy planning software iPlan
(Brainlab AG, Miinchen, Germany). Contouring was
done in consensus by an expert radiation oncologist and
a radiologist mainly based on T1- and T2-weighted im-
aging sequences, with all other contrasts available for
cross reference. If necessary, the data were co-registered
in the same software based on a mutual information al-
gorithm for affine transformations. To prepare the data
for the CNN calculation, all MR images and GTVs were
interpolated to a common base resolution of 0.45 x
0.45 x 2mm> based on the highest resolution of the
available sequences present. Weighted contrasts (T1w,
T2w, Tlw post contrast) were normalized to a standard
deviation and mean of 0.25 each. Parameter maps ADC,
T2*, Kirans and v, were normalized based on a histogram
normalization approach to retain the physical and
physiological meaning of the pixel values. Therefore,
normalization was chosen such that across all available
patients the 10 and 90 percentile of all data was scaled
to the range [0, 0.5], following a similar procedure as the
decile normalization in [17]. Additionally, region masks
were created that excluded all regions where any one of
the 7 input data channels did not contain information,
e.g. due to limited field of view or extreme signal loss
due to artifacts as well as air regions outside the head&-
neck area.

Convolutional neural network

A CNN was set up in MATLAB (v. 2019b, MathWorks,
Inc., MI, USA) based on the DeepMedic architecture
[18]. We chose to use two pathways, one with original
resolution and one with a factor of 3 x3x 1 decreased
resolution in x x y x z direction. The number of convolu-
tion layers in each pathway was set to 10 with 104 fea-
ture maps each, and residual connections in layers 4, 6,
8 and 10. Kernel sizes were set to 3 x 3 x 3 for all layers
except layer 1, 5 and 9 which had kernel sizes of 3 x 3 x
1 to achieve a similar size of receptive field in each

Sequence TE [ms] TR [ms] Resolution [mm?] Comments / Other

T1 fast Spin Echo 11 504 0.7x0.7 x4

T2 fast Spin Echo 100 5000 0.7x0.7x4

Multi-Echo GRE 5-33 600 1.1x1.1%x3 NEchoes = 12, reconstructed map: T2*

DWI 51 2510 2x2x%3 b ={50,400,800} s/mm?, reconstructed map: ADC
Dynamic T1w Perfusion Measurement 1.56 465 14x14%3 Nimepoints = 36, reconstructed maps: Kyang Ve

T1 VIBE Dixon 245 8.67 045%x045x 2 Post contrast. Water image used.
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Fig. 1 Individual co-registered slices from the 7 datasets of a head&neck tumor patient. The 7 different MRI contrasts and the ground truth GTV
labels were used to train CNNs for tumor and lymph node metastasis segmentation.

physical dimension. Upsampling of the low-resolution
pathway was done using a transposed convolution layer
with kernel size 3x3x1 corresponding to the down
sampling factor. The paths were connected by another 3
convolutional layers with 150 feature maps each and
kernels sizes of 3 x3 x 1 and two 1 x 1 x 1 fully convolu-
tional layers. Each convolution layer was followed by a
leaky ReLu activation with scale 0.01 and a dropout layer
with 20% dropout. Training was employed using the
Dice loss function. The input dimension of each patch
was 38x38x8 and 78x78x8 (before subsampling)
pixels for each path respectively.

Analogous to [18, 19], the resulting segmentation
probability maps were then passed to a conditional ran-
dom field for further refinement.

Information quantification

In order to discriminate between inputs that carry a
large amount of unique information for the task of auto-
matic tumor segmentation and those that carry mostly
noise we trained several CNNs based on different inputs.
Therefore, we trained one network configuration with all
7 input channels (reference CNN) and 7 more in which
one of the input channels was left out (leave-one-out
CNN or LOO-CNN). Each network was then compared
against the reference CNN in terms of segmentation
performance on a separate test set. Due to the small
amount of available data the size of the test cohort was
reduced to a single patient and a complete leave-one-out
cross validation was employed. Consequently, we trained
36 separate CNNs from scratch for each of the 8 sets of
input configurations, resulting in 288 completely trained
networks. In each cross validation step the training and

validation cohort was kept the same across trainings on
different input configurations to ensure comparability.
The networks were trained in parallel on up to six AWS
gddn.xlarge instances (Amazon Web Services, Inc)
equipped with a Tesla T4 GPU, launched using the
MATLAB on AWS Reference Architecture.

To measure the final segmentation performance the
Dice Similarity Coefficient (DSC) is used, which mea-
sures the volumetric overlap of two target volumes com-

pared to their total volume: DSC = 2 mgl. The DSC is

scaled between 0 and 1, where a value of 0 describes no
overlap at all and 1 a perfect match.

Results

An overall segmentation performance of up to 65% DSC
in GTV-T and 58% DSC in GTV-Ln could be achieved.
Figure 2 shows the complete results for the reference
CNN in a box plot. Half of the test patients however
showed a segmentation performance of less than 30% in
GTV-T and less than 20% in GTV-LN. Comparing the
segmentation performance to the lesion size shows a
clear correlation as seen in Fig. 3, as with larger target
volumes the segmentation generally becomes more
accurate.

In Fig. 4 all test results are shown and plotted against
the corresponding results of the configuration with all
input channels. Paired Students-t-Tests between the seg-
mentation results of each LOO-CNN against the results
of the reference CNN showed significant differences
(p<0.05) for the segmentation of GTV-T without the
contrast enhanced T1w, v, and T2* inputs and for GTV-
Ln for segmentation without T2* input. The corresponding
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Fig. 2 Box plot of all segmentation results on separate test sets for
the reference CNN with all 7 input channels. The best segmentation
performance has a DSC of 65%, GTV-T averages at 30% DSC and
GTV-Ln averages at 24% DSC. The points mark all measurements and
the whiskers already include all data (no outliers are drawn)

Page 5 of 9

plots are marked with an asterisk. Figure 5 shows the mean
differences of the segmentation results compared to the
configuration including all input channels. This comparison
shows that the configuration including all inputs generally
performed the best. Both significance analysis and mean
difference show that the T2* contrast has the largest impact
on the segmentation performance when left out. Figure 6
shows a segmentation result of a network including all in-
put channels against one without T2* input. A distinct
oversegmentation can be observed in both cases, with lesser
extent in the configuration with all inputs present.

Discussion

In this study the influence of various MRI contrasts on
the segmentation performance of HNSCC with a CNN
was analyzed. In particular, 8 CNNs were trained: one
reference CNN with all 7 existing MRI input channels,
and another 7 with each one of the channels left out
(LOO-CNNE). Segmentation performance of the HNSC
C GTV was then compared with the reference network
to detect the image contrasts that contribute the least to
the segmentation performance.

With the reference CNN a good segmentation per-
formance was achieved with a DSC of up to 65%. A
relevance analysis of the input channels was employed
by comparing the LOO-CNNs to the reference CNN'’s
performance. For statistical robustness, mean DSC
and the mean difference in DSCs (ADSC) were used
to quantify the CNN performance. In this DSC com-
parison it was found that the T2* contrast was the
single most important input channel, both for seg-
mentation of the tumor (ADSC(GTV-T)=5.7%) and
for the lymph nodes (ADSC(GTV-Ln)=5.8%). The
second most important contrasts were for lymph
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Fig. 3 Segmentation performance plotted against the target volume. The plot shows a clear correlation between volume and segmentation
performance - smaller target volumes have a lower DSC and are thus more likely to be missed, especially if the target volume is located in areas
where patient movement in between imaging sequences can take place
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Fig. 4 Segmentation results of the reference CNN against each LOO-CNN. The solid black line marks the line of identity. Points in the lower right
mark a decreased segmentation performance compared to the reference CNN. Results that show a significant (p < 0.05) deviation from the line of

nodes the anatomical Tlw (ADSC(GTV-Ln)=4.9%)
and for the tumor Tlw CE (ADSC(GTV-T)=5.0%).
Perfusion parameters were the least important ones
for the segmentation of GTV-Ln (0.8% Kans, 1.8% V)
but were strongly affecting GTV-T segmentation
(3.9% Kiransy 4.9% v.). ADC showed the least total im-
pact on segmentation performance (2.4% on GTV-T,
2.2% on GTV-Ln). This result is surprising, as ADC
has proven to be a good predictive marker in other
tumor entities, e.g. for prostate or breast cancer [20-
22]. However, ADC maps are often geometrically dis-
torted due to local field inhomogeneities which can
be very prominent in the neck region. As the seg-
mentation performance measured with the DSC,
which is defined by the geometrical overlap between

the manually defined GTV and the segmentation, this
quality measure is very sensitive to distortion.

To the best of our knowledge, this study shows for the
first time the influence of 7 different input channels
from MRI alone with a complete statistical evaluation on
a separate test set. Through this broad spectrum of dif-
ferent contrasts general insight to MRI protocol
optimization could be obtained. Although promising
segmentation results are shown, one limitation of using
7 CNN input channels is given by the inherent non-
affine deformations that cannot be avoided in the
head&neck area for scanning time around 40 min. Swal-
lowing motion and tongue movement can lead to blur-
ring and smearing of image features in and around the
tumor region so that accurate image registration be-
tween different contrasts may not always be feasible.
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LOO-CNN without T2* has a DSC of 56% / 39%

Fig. 6 Segmentation result for the reference CNN and the LOO-CNN without T2* input. A distinct oversegmentation is observed in both cases,
which is much less pronounced in the reference CNN. In this image the reference CNN has a DSC of 72% / 45% for GTV-T / GTV-Ln, while the

However, previous studies could show deformable regis-
tration of distortion artifacts did not lead to an increased
segmentation performance [23]. Therefore, no deform-
able co-registration was employed and consequently,
tumor borders were not perfectly matched in every case.
However, this residual motion is also present during
radiotherapy and will be an unavoidable limiting factor
in the precision of dose application, even though adap-
tive radiation therapy is able to resolve systematic and
random setup errors [24].

In this study the ground truth GTVs were not always
defined on the same image contrast but may have been
outlined by the radiation oncologist on either the T1lw
post contrast or the T2w contrast — however, during
planning always all images were considered for decision
making. This implies that the network could not use
learned borders from a single sequence in general, which
is expected to decrease segmentation performance to at
least the degree of the previously discussed misregistra-
tion. On the other hand, this definition of the GTVs on
different contrasts can increase the robustness of the
CNNs toward patient motion, as the variability of GTV
definition acts as a data augmentation technique and
therefore reduces the risk of overfitting [25, 26].

In other body regions segmentation performances of
more than 90% have been reported [10, 18, 27, 28]. In
brain tumors image coregistration is a true rigid body
problem which is expected to yield better overall seg-
mentation performance as compared to deformable reg-
istrations in the more variable head&neck region.
Automatic segmentation of HNSCC on MRI data is not
widely adapted yet due to missing open data access and
higher degree of complexity. Automatic segmentation
techniques in the head&neck area have mainly been fo-
cused on the delineation of organs at risk (OAR) and are
based on CT images [10, 29, 30]. Moe et al. [31]

obtained a segmentation performance of DSC =75% for
primary tumor segmentation based on PET/CT data of
197 patients. Results from a previous study on MRI im-
ages with 5 input channels [23] yielded similar DSC of
40 + 18%, though that study was lacking a complete
cross validation. The overall lower segmentation per-
formance in this study compared to other published re-
sults can mostly be attributed to the small dataset of 36
cases. Additionally, the 36 cases do not represent the
same stage of the cancer, as they are taken from 3 time
points before and during primary radiochemotherapy.
We assume that during treatment the tumor does not
change its appearance so dramatically that learned fea-
tures of the CNN would fail to classify it correctly.
Therefore, to increase the number of training patients,
all tumors from different time points were treated as
separate and unique cases. Still, some structural changes
in the tumor composition during treatment can be
shown, most notably the decrease of hypoxic subvo-
lumes during radiation therapy [32]. This is also ex-
pected to influence T2* measurements, as these are
currently under consideration as a substitute marker for
FMISO-PET [32-34].

Since the analysis of the relative importance of the in-
put channels is based on the difference of the measured
segmentation performances, large fluctuations (noise)
and low to moderate overall performance is counterba-
lanced by the complete leave-one-out cross validation.
The results show significant differences for T2* in the
segmentation of GTV-T and GTV-Ln and significant
differences for the segmentation of GTV-T for T1w post
contrast and perfusion v.. Interestingly, a decrease in
segmentation performance was seen for all networks
compared to the reference network, and, therefore, each
input channel contributed some unique valuable infor-
mation to the segmentation network. It is expected that
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with a larger patient cohort the overall performance will
increase and a statistically more precise assessment of
the unique information contents for each input channel
becomes feasible.

In future studies we will also investigate the effects of
different combinations, e.g. a configuration without any
anatomical or without any functional input channels.
We expect that the anatomical T1lw, T2w and T1w post
contrast sequences include a large amount of overlap-
ping information that can be compensated if one of
those inputs is omitted. This would explain the low im-
pact on segmentation performance if only one of these
channels is left out and could be proven if all of them
were omitted at the same time.

Similarly, this method can be applied to tumor seg-
mentation in other organ regions such as prostate, breast
or brain, where multi-parametric MRI data are acquired.
With the rising demand of Al support systems in clinical
decision making, the question of optimized imaging pro-
tocols becomes increasingly relevant. This study shows
how MRI protocols can be made more time efficient,
which increases patient compliance and thus, indirectly,
improves image quality.

Conclusion

In this study we demonstrated a method to quantify the
information content of multiple MRI input channels in a
CNN with respect to the segmentation performance of
head&neck cancer. A CNN was trained on head&neck
tumor and lymph node metastasis segmentation with
segmentation performances up to 65% DSC. The ana-
lysis could be performed on a small dataset of 36 cases
due to a statistical analysis including a thorough leave-
one-out cross validation, which yielded 288 fully trained
neural networks in total. Retraining the network with
single input channels left out identified T2* as the single
most important input channel out of 7 contrasts, and
ADC as the least important to the segmentation of
GTV-T and GTV-Ln combined.
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