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Infections that reach the placenta via maternal blood can target the fetal-placental

barrier and are associated with reduced birth weight, increased stillbirth, miscarriage and

perinatal mortality. Malaria during pregnancy can lead to infection of the placental tissue

and to adverse effects on the unborn child even if the parasite is successfully cleared,

indicating that placental sufficiency is significantly compromised. Human samples and

animal models of placental malaria have been used to unravel mechanisms contributing

to this insufficiency and have implicated molecular pathways related to inflammation,

innate immunity and nutrient transport. Remarkably, fetal TLR4 was found to take part

in placental responses that protect the fetus, in contrast to maternal TLR4 responses

that presumably preserve the mother‘s health but result in reduced fetal viability. We

propose that this conflict of fetal and maternal responses is a determinant of the clinical

outcomes of placental malaria and that fetally derived trophoblasts are on the front lines

of this conflict.
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1. INTRODUCTION

Pregnant women are at a higher risk of malaria infection (Espinosa et al., 2000; Lindsay et al.,
2000). Infection by Plasmodium falciparum contributes to adverse outcomes including premature
delivery, intra-uterine growth restriction, stillbirth and perinatal death alongside worsened
maternal anemia and increased maternal parasite loads (Menendez et al., 2000; Crocker et al.,
2004). These outcomes have been found to occur in pregnancies several months after clearance of
the parasite, illustrating that treatment of the infection alone may be of little benefit (Schmiegelow
et al., 2017).

Placental infection is a key determinant of these outcomes and the molecular basis of placental
malaria pathology has been intensively studied (recently reviewed by Fried and Duffy, 2017).
Parasite sequestration in the placenta is the primary pathological event, and, in the case of
Plasmodium falciparum, is primarily mediated by infected erythrocytes binding to chondroitin
sulfate A on the surface of syncytiotrophoblasts (Fried and Duffy, 1996; Abrams et al., 2003; Miller
et al., 2013; Moya-Alvarez et al., 2014). Interactions between infected erythrocytes and placental
tissue trigger significant infiltration of maternal inflammatory cells (Fried and Duffy, 2017) and
alterations in the profile of cytokines secreted in the placenta, namely increases in TNFα and IFN-γ
which are linked to adverse pregnancy outcomes (Moormann et al., 1999; Muehlenbachs et al.,
2007).

Placentas from infected women show functional alterations including reduction in the activity
of system A, a group of sodium dependent amino acid transporters which actively uptake small
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amino acids into the trophoblast layer (Boeuf et al., 2013).
Placental glucose transporter activity is reduced when infection is
accompanied by intervillositis (Chandrasiri et al., 2013). Malaria
also reduces placental megalin, a transporter for a vast array of
proteins (Lybbert et al., 2016). These nutrient transport pathways
depend on an adequate placental blood supply to function
effectively and placentas from women infected with malaria
exhibit reduced placental perfusion (Dorman et al., 2002; Brabin
and Johnson, 2005), impaired trophoblast invasion (Umbers
et al., 2013), and alterations in various angiogenic factors within
the placenta (Ataíde et al., 2015) which corroborates suboptimal
placental perfusion.

More recently, a prospective study revealed that blood levels
of L-arginine, a precursor to the potent vasodilator nitric oxide,
were reduced in women with placental malaria while levels
of dimethylarginine, an inhibitor of nitric oxide biosynthesis,
were increased. These changes were strongly correlated with
worse birth outcomes (McDonald et al., 2018). Earlier studies
have highlighted a potential role for vascular endothelial growth
factor (VEGF) and its receptors in the response to placental
malaria in primigravid mothers, with soluble receptors for VEGF
being more abundantly expressed in the placenta. This further
implicates circulatory impairments in the disease pathology and
provides the first evidence that placental responses to infection
may not be in harmony with maternal responses, as maternal
cells in the placenta showed elevated VEGF levels whereas fetal
syncytiotrophoblasts produced more sVEGFR1, reducing VEGF
bioavailability (Muehlenbachs et al., 2006).

These findings suggest that the intertwining of inflammatory
signals, vasoregulatory systems, and nutrient transport pathways
in the placenta are critical components of human placental
malaria pathophysiology. However, experimental demonstration
of the pathogenic mechanisms operating in the placenta relies
on available mouse models of disease. In this perspective article
we explore evidence generated from a mouse model of acute
placental malaria that highlights the role of toll-like receptor 4
(TLR4) in controlling the outcomes of pregnancy ergo providing
an interesting example of infection provoking conflict between
the mother and the unborn child.

2. PATHOGENESIS OF MURINE ACUTE
PLACENTAL MALARIA

Several murine experimental systems have been used to model
specific aspects of malaria in pregnancy, but extrapolations to
human disease should be considered with caution (Hviid et al.,
2010). These experimental systems model different aspects of
malaria in pregnancy, including: use of recrudescent Plasmodium
berghei ANKA to study maternal susceptibility to infection
(Marinho et al., 2009); a system using P. berghei K173 strains
to infect mice both prior to and during gestation as would
occur in high transmission settings (Van Zon and Eling, 1980);
and a system making use of Plasmodium chabaudi which
allows for the study of infections in early stages of pregnancy
(Poovassery et al., 2009). Here, we will focus on a model which
makes use of Plasmodium berghei infection during gestation

and which models acute malaria during pregnancy in women.
Briefly, infecting naïve, primigravid BALB/c females with 106

P. berghei ANKA infected erythrocytes intra-venously on the
13th day of gestation results in severe disease outcomes, such as
intra-uterine growth restriction, decreased fetal viability, post-
natal growth impairment and increased maternal parasitemia
and anemia (Neres et al., 2008). Similar results are obtained
with the use of the NK65, K173 and ANKApm4 lines of
P. berghei in primigravid C57BL/6 mice, following the same
mating and dosage protocols (Rodrigues-Duarte et al., 2012).
Examination of the placentas with acute infection revealed an
accumulation of infected erythrocytes and hemozoin in the blood
sinusoids (Sharma et al., 2012b), thickening of the labyrinthine
zone, deposits of hemozoin, fibrinoid necrosis, hyperplasia of
the syncytiotrophoblasts, reduced blood sinusoid area, and a
significant infiltration of maternal macrophages and monocytes
(Neres et al., 2008).

This model has allowed investigation of the underpinnings
of placental dysfunction, particularly by linking inflammatory
responses to alterations in angiogenic and vasoregulatory
pathways. This is illustrated by descriptions of increases in the
amounts of angiopoietin 1 and in the ratio of angiopoietin
1 to angiopoietin 2 in infected placentas belonging to viable,
low birth weight offspring (Silver et al., 2010) as well as by
the reduced expression of bradykinin receptor B2 and NOS3
genes, both known to be involved in vasodilatory responses
(de Moraes et al., 2018). Human studies have also revealed
that infection with P. falciparum during pregnancy increases
levels of these angiopoietins and complement C5a while reducing
nitric oxide bioavailability (Conroy et al., 2013; McDonald et al.,
2018). Genetically ablating C5a receptor in mice infected with P.
berghei during pregnancy increased placental vascular branching
and ameliorated the increase in resistance to flow caused by
infection (Conroy et al., 2013). Similar results were obtained by
dietary supplementation with L-arginine, a nitric oxide precursor
(McDonald et al., 2018). Furthermore, intra-vital imaging (Lima
et al., 2014) has revealed how infected erythrocytes accumulate
in areas of slower flow in the placental labyrinth, possibly
adhering to, or being phagocytosed by, the syncytiotrophoblasts
and suggesting that infection impairs local circulatory regulation
(de Moraes et al., 2013). Additionally, oxidative stress has been
implicated in malaria during pregnancy, with a combination of
increased lipid perodixation (Sharma et al., 2012a), decreased
catalase activity and increases in apoptosis markers being
observed in the placentas of infected mice while the absence
of alterations in Fas expression and Caspase 8 indicate that
the damage caused is primarily via the mitochondrial pathway
of apoptosis (Sharma et al., 2012b). Treating the infected mice
with chloroquine or with sulfadoxine pyrimethamine abrogated
oxidative stress, apoptosis, and placental damage, consequently
improving birth weight. Interestingly, anti-malarial treatment
of mice with placental malaria did not improve fetal survival,
indicating that placental insufficiency is not recoverable by
parasite clearance alone (Sharma and Shukla, 2014). This raises
the possibility that innate immune stimulation during pregnancy
results in enduring placental dysfunction. Here, we argue that
responses mediated by Toll-like receptors (TLRs), particularly
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TLR4, have a decisive impact on the development of placental
pathologies during infection.

3. TLR4, MALARIA, AND PREGNANCY

TLRs are a class of pattern recognition receptors involved
in the detection of, and in the response to, pathogen and
damage associated molecular patterns (PAMPs and DAMPs)
by activation of downstream signaling pathways which induce
immunity mediators including pro-inflammatory cytokines and
interferons. TLR signaling makes use of either of two adaptor
proteins, MyD88 or TRIF, with TLR4 being unique in its ability to
use both of these pathways (Figure 1D) (Lu et al., 2008; Kawasaki
and Kawai, 2014).

TLRs play a significant role in the response to
malaria infection, participating in the recognition of
glycosylphosphatidylinositol anchors, peroxiredoxin and
fibrinogen/hemozoin complexes as well as host derived
microvesicles and heme (Eriksson et al., 2014; Gazzinelli
et al., 2014) (Figure 1C). TLR4 polymorphisms have also been
associated with disease severity, particularly the hyporesponsive
polymorphisms Tlr4 Asp299Gly and Tlr4 Thr399Ile which
predispose children to severe malaria (Schmitt et al., 2002;
Mockenhaupt et al., 2006a). However, contrasting results
suggested that these polymorphisms may be beneficial in adults
(Esposito et al., 2012; Basu et al., 2014) and a recent meta-analysis
found no association between Tlr4 Asp299Gly and the outcomes
of malaria (Dhangadamajhi et al., 2017). In mice, TLR4 has
been implicated in dendritic and mast cell activation during
malaria (Furuta et al., 2008; Seixas et al., 2009), potentially
contributing to the resistance of DBA/2 mice to infection with
P. yoelii, although TLR4 has not been linked to the pathology of
experimental cerebral malaria (Togbe et al., 2007).

3.1. TLR4 in Pregnancy
Several TLRs are expressed in fetally derived placental tissues
and surrounding maternal tissue Koga and Mor (2010) but
cumulative evidence suggests a specific role for TLR4 in the
outcomes of pregnancy. It has been observed that fetoplacental
TLR4 expression is decreased in miscarriages (Kolben et al.,
2019) and in preeclampsia patients (Kulikova et al., 2016), while
the Tlr4 Asp299Gly polymorphism in the fetus is associated
with severe prematurity (Rey et al., 2008). In contrast, increases
in TLR4 expression on maternal monocytes, which may be
responding to fibrinogen, are correlated with spontaneous
preterm labor (Pawelczyk et al., 2010; Al-ofi et al., 2014), and
increased expression in maternal decidua has been linked to
recurrent miscarriages (Li et al., 2016). These data suggest that
the role of maternal and fetal TLR4 in pregnancy may be in
opposition, with reductions in fetal activity and/or increases
in maternal activity being detrimental to the outcomes of the
pregnancy.

Various mouse models have illustrated the role of TLR4 in
pregnancy associated infections and disorders, including malaria
(Barboza et al., 2017; Rodrigues-Duarte et al., 2018), bacterial
infections (Liu et al., 2007; Arce et al., 2012; Chin et al., 2016),
lipopolysaccharide exposure (Breen et al., 2012; Wahid et al.,

2015) and uterine ischemia (Thaete et al., 2013). It should
be noted that these studies (barring that by Rodrigues-Duarte
et al., 2018) have focused on completely eliminating TLR4
signaling and, consequently, do not differentiate between fetal
andmaternal TLR4 responses. Furthermore, increased fetal TLR4
activity has been found in models of maternal ethanol-induced
inflammation (Zheng et al., 2014) as well as in maternal cigarette
smoke exposure (Chan et al., 2016). These studies support that
maternal factors may be contributing to alterations in fetal
innate immune responses as well as having direct impacts on the
outcomes of pregnancy. Still, in all of these cases, the downstream
actions of TLR4 are yet to be fully understood.

3.2. TLR4 in Placental Malaria
The role of TLR4 in malaria during pregnancy has also been
examined in genetic association studies. The Tlr4 Asp299Gly
and Tlr4 Thr399Ile maternal polymorphisms appeared more
frequently in women who had a higher parasitemia and severe
anemia, and translated to a significantly increased risk of low
birth weight. They had no impact on prematurity, viability or
the incidence of placental malaria (Mockenhaupt et al., 2006b),
suggesting that maternal TLR4 takes part in responding to
infection, but may not be linked to severe placental dysfunction
during malaria. In mice, examination of TLR4 was preceded
by work on MyD88, which was shown to contribute to
reductions in placental vascular space and fetal weight (Barboza
et al., 2014). Genetic ablation of several TLRs which use this
adaptor protein demonstrated that alterations in vascular space,
TNFα production and detrimental outcomes are directly linked
to TLR4 (Barboza et al., 2017).

Genetic ablation of TLR4 confers striking protection from
fetal death induced in murine placental malaria. The roles played
by fetally derived placental cells in protecting fetal viability were
discerned by comparing pregnancy outcomes when the fetal
placenta either expressed TLR4 or did not. As expected, we
observed improvements in fetal viability in TLR4KO females
which were carrying TLR4KO offspring, suggesting that the
TLR4 response to infection was deleterious to the fetuses,
as observed in the other mouse models of disease during
pregnancy mentioned above. Unexpectedly, TLR4KO females
carrying placentas expressing fetally derived TLR4 showed
further improvements in the outcomes of pregnancy with
stillbirth rates similar to those of uninfected mothers (Rodrigues-
Duarte et al., 2018). This showed that TLR4 in the fetal
compartment was protective for the litter, whereas having it in
the maternal compartment was harmful, a conflict which is yet
to be investigated in other infections. Although the mechanism
behind this protection has not been fully elucidated, alterations
in glucose (Chandrasiri et al., 2013) and amino acid (Boeuf et al.,
2013) transport, observed using human samples from malaria
infected individuals, suggest that a conflict may arise over the
allocation of metabolic resources. On the other hand, altered
nitric oxide bioavailability (McDonald et al., 2018) and VEGF
levels further point toward a role for fetal TLR4 responses in
regulating placental perfusion.

While other models of infection during pregnancy have
not yet been interrogated in a manner which allows for the
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FIGURE 1 | (A) Cross section of a human placental terminal chorionic villus, which is part of highly branched tree of fetally derived tissue anchored in the chorionic

plate and surrounded by maternal blood. At the terminal chorionic villi, the placental barrier is composed by the endothelial cells enclosed in mesenchyme followed by

a layer of cytotrophoblasts and an outermost layer of syncytiotrophoblasts in contact with maternal blood. (B) Cross section of the analogous murine tissue, the

placental labyrinth where the maternal fetal barrier is made up of a layer of fetal capillary endothelial cells, two layers of syncytiotrophoblasts and a discontinuous layer

of mononuclear trophoblasts that is in direct contact with maternal blood. (C) In both the human and murine placentas, fetally derived syncytiotrophoblasts come into

direct contact with maternal blood, an important similarity, as during a malaria infection, these are the fetal cells exposed to maternal inflammatory mediators and to

components of parasite origin such as infected erythrocytes and microvesicles. (D) TLR4 detects and responds to several of these stimuli via either MyD88 or TRIF,

activating several transcriptional factors including p38 and IRF3. (E) Transcriptional changes in the syncytiotrophoblast contribute to alterations in local production of

vasoactivators such as nitric oxide, bradykinin and endothelin as well as altering nutrient transport pathways in a manner which result in fetal protection. In contrast,

maternal responses impair these pathways and worsen the outcomes of pregnancy.

disentanglement of fetal and maternal responses, there are strong
similarities between the impact of malaria infection on placental
TLR4 and the impact of a variety of other pathogens. In wild
type mice infected with P. berghei, the amount of TLR4 protein
detected in the placenta is significantly increased (Barboza

et al., 2017), a pattern which is replicated with Campylobacter
rectus, Porphyromonas gingivalis (Arce et al., 2009) and murine
cytomegalovirus infections (Liao et al., 2018). It would be
particularly important to determine if the maternal component
is responsible for the outcomes of these infections and assess the
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impact of maintaining the fetal response. Bearing in mind that
the first point of contact for fetally derived TLR4 with infectious
agents in the maternal blood is at the placental barrier, examining
fetally derived placental cells may be key to better understand the
conflict with maternal responses.

4. PRIMARY TROPHOBLAST RESPONSES
TO INFECTION

The fetal cell type directly in contact with maternal blood
in both humans and mice are the syncytiotrophoblasts. They
are responsible for the exchange of nutrients and waste,
as well as forming the barrier between maternal and fetal
circulation (Zeldovich et al., 2013; Blackburn, 2015; Maltepe
and Fisher, 2015) (Figures 1A,B). While TLRs are found in
fetally derived cells in the placenta (Koga and Mor, 2010), their
expression and activity is greatly altered in placental cell lines,
showing a lack of suitability for examining certain aspects of
trophoblast behavior (Amirchaghmaghi et al., 2013; Gierman
et al., 2015), and highlighting a requirement for the employment
of primary cultures.

Although they are rarely used for studies with malaria
(Lucchi et al., 2006, 2008), primary human trophoblasts have
been successfully isolated and used to examine responses to a
variety of infectious agents such as Brucella spp., zika virus and
Toxoplasma gondii (Salcedo et al., 2013; Aagaard et al., 2017;
Ander et al., 2018), the latter being further examined in villous
explants (Ander et al., 2018). This experimental system has also
been used to study Trypanosoma cruzi infection (Díaz-Luján
et al., 2016; Medina et al., 2018; Triquell et al., 2018), which
is known to provoke changes in several immune related genes
during pregnancy (Juiz et al., 2018). Trophoblasts are reported
to show changes in amino acid and glucose uptake in response
to lipopolysaccharide (a TLR4 ligand) (Liong and Lappas, 2017),
pathways which are also altered in human placental malaria
samples (Boeuf et al., 2013; Chandrasiri et al., 2013). Therefore,
the use of primary human trophoblasts to study responses to
malaria infection may provide insights into the pathology of
placental malaria.

As an alternative, murine trophoblasts, isolated from term
placentas or of stem cell origin, represent a powerful tool
for studying infection during pregnancy. TLR4 responses have
been examined in cell culture studies using P. berghei. These
studies have revealed a reduction in the amount of trophoblast-
associated parasite in absence of TLR4 as well as marked
reduction in the expression of Ifnar1 in these cells (Rodrigues-
Duarte et al., 2018). Along the same lines, Listeria monocytogenes
has been shown to be taken up by trophoblast giant cells in a
MAPK dependent manner, using innate sensing systems heavily
influenced by TLR2, subsequently downregulating HO-1 and
resulting in cell death (Hashino et al., 2015). In a study not
linked to TLRs, trophoblasts exposed to Toxoplasma gondii
have been demonstrated to undergo apoptosis as well as alter
production of various cytokines, with increased oxidative stress
and subsequent mitochondrial damage (Liu et al., 2013; Xu et al.,
2015). Thus, it is clear that trophoblasts respond to pathogens

infecting maternal blood, raising the interesting possibility that
they are the initiators of fetal protective responses in placental
infections, particularly when the pathogens do not cross the
placental barrier.

5. CONCLUDING REMARKS

It is expected that a variety of pathways are impacted upon during
placental infection, affecting inflammatory responses, nutrient
transport and vasoregulatory responses, and contributing to
placental insufficiency that leads to poor pregnancy outcomes.
A key finding from the acute murine placental malaria model
has been the importance of TLR4 in the determination of the
outcomes of pregnancy. Interestingly, this trait is shared with
several other models of disease in pregnancy that also show signs
of placental dysfunction. The strong pathological similarities
between these models supports the proposal that innate immune
recognition by the placental tissue may improve fetal survival in
other infections.

Taken together, the work highlighted here leads us to propose
that maternally driven TLR4 responses to malaria infections,
and other illnesses during pregnancy, are deleterious for the
fetus, impairing nutrient/waste exchange, hampering placental
perfusion and worsening the outcomes of pregnancy. In contrast,
feto-placental TLR4 responses are protective, as demonstrated
by Rodrigues-Duarte et al. (2018) and may compensate for
the maternal actions by activating mechanisms to increase
nutrient uptake and placental perfusion (Figure 1E). This re-
inforces the notion that malaria infection induces maternal-
fetal conflict, as proposed by Muehlenbachs et al. (2006),
in their examination of soluble VEGF receptor 1 in human
placental malaria, but further hints that fetal responses which
preserve placental function are initiated by innate immune
recognition and downstream signaling to effector mediators
in trophoblasts.

The syncytiotrophoblasts are at the front line of this conflict
between mother and fetus and their examination, using in
vitro and in vivo experimental systems, as well as in human
tissue samples, will be required for the identification of critical
components of the fetal protective responses. Making use of
the vast range of existing genetic mouse models in conjunction
with the gamut of infection systems which have been developed
for the study of pathological pregnancies, will provide a clearer
understanding of the mechanisms that protect from adverse
outcomes of pregnancy.
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