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Noninvasive Characterization of
Locally Advanced Breast Cancer
Using Textural Analysis of

Quantitative Ultrasound
Parametric Images

Abstract

PURPOSE. The identification of tumor pathologic characteristics is an important part of breast cancer diagnosis,
prognosis, and treatment planning but currently requires biopsy as its standard. Here, we investigated a noninvasive
guantitative ultrasound method for the characterization of breast tumors in terms of their histologic grade, which can
be used with clinical diagnostic ultrasound data. METHODS. Tumors of 57 locally advanced breast cancer patients
were analyzed as part of this study. Seven quantitative ultrasound parameters were determined from each tumor
region from the radiofrequency data, including mid-band fit, spectral slope, 0-MHz intercept, scatterer spacing,
attenuation coefficient estimate, average scatterer diameter, and average acoustic concentration. Parametric maps
were generated corresponding to the region of interest, from which four textural features, including contrast, energy,
homogeneity, and correlation, were determined as further tumor characterization parameters. Data were examined on
the basis of tumor subtypes based on histologic grade (grade | versus grade Il to lll). RESULTS: Linear discriminant
analysis of the means of the parametric maps resulted in classification accuracy of 79%. On the other hand, the linear
combination of the texture features of the parametric maps resulted in classification accuracy of 82%. Finally, when
both the means and textures of the parametric maps were combined, the best classification accuracy was obtained
(86%). CONCLUSIONS. Textural characteristics of quantitative ultrasound spectral parametric maps provided
discriminant information about different types of breast tumors. The use of texture features significantly improved
the results of ultrasonic tumor characterization compared to conventional mean values. Thus, this study suggests
that texture-based quantitative ultrasound analysis of in vivo breast tumors can provide complementary diagnostic
information about tumor histologic characteristics.
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Introduction infraclavicular, skin, or lymph node involvement. Despite treatment

Breast cancer is the most frequently diagnosed cancer in women,
excluding skin cancer, and the second most common cause of cancer
related death in women [1]. In the United States, breast cancer affects
one in eight women over the course of their lifetime [2]. Breast
cancers range from small early-stage tumors to larger locally advanced
cancers. Early stage breast tumors tend to be less than 2 ¢m in size and
low in histologic grade. Locally advanced breast cancer (LABC),
on the other hand, is an aggressive subtype of breast cancer (mainly
stage III) that is clinically characterized as being larger than 5 cm,
often unresectable, and with chest wall, ipsilateral supraclavicular,

efforts using systemic chemotherapy, surgery, and radiation therapy,
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estimated 3- and 5-year survival rates of 70% and 55% were reported,
respectively, in the United States in 2004 for women with stage I1I
breast cancer [3]. LABC outcomes are typically worse, with 5-year
survival rates less than 50% [4].

An accurate diagnosis of breast tumors plays an important role in
prognosis and therapy planning, and can improve overall survival. X-
ray mammography is currently the primary imaging modality for
breast examinations. However, mammographic sensitivity declines
significantly with increasing breast density particularly in young
women [5]. Clinical ultrasound, when performed in conjunction
with mammography, has been reported to increase diagnostic
accuracy (area under the receiver-operator characteristic [ROC]
curve) from 0.78 t0 0.91 [6]. However, due to the many instrument
parameters that can be chosen during an ultrasound imaging session,
a comparative interpretation of conventional B-mode images
becomes difficult when different imaging settings are applied or
when different ultrasound machines are used. In addition, B-mode
images, which are used by radiologists for breast examination, lack
readily accessible information about microstructural properties of
soft tissues. This information is lost when raw ultrasound data, or
radiofrequency (RF) data, are converted to gray-scale pixels.
Quantitative ultrasound (QUS) techniques, which examine the
frequency dependence of backscatter from tissues (from analyzed RF
data), have been developed to overcome these limitations. Such
techniques have been applied i vivo in a variety of applications to
reveal information about tissue microstructure, enabling the
differentiation of disease from nondisease and the characterization
of disease into its subtypes. Applications include the characterization
of tissue abnormalities, such as those in the eye, prostate, and
myocardium, and to detect and classify cancer in the lymph nodes
[7-10]. Specifically, QUS parameters including average scatterer
diameter (ASD) and average acoustic concentration (AAC; related to
effective scatterer number density and relative acoustic impedance) have
demonstrated the potential to be used to distinguish between mouse
models of mammary carcinoma and rat models of fibroadenoma. These
parameters can be obtained by fitting a form factor model, such as the
Gaussian form factor, to the measured backscatter coefficient [11-13].
To avoid complex model fitting, basic spectral parameters extracted viaa
linear regression analysis of the RF power spectrum, including mid-
band fit (MBF), spectral slope (SS), and spectral 0-MHz intercept (SI),
have also been used for tissue characterization previously [7-10]. By
modeling the ultrasonic power spectrum as an acoustic impedance
autocorrelation function, Lizzi et al. demonstrated that parameters,
extracted from a linear fit to the power spectrum within the usable
frequency bandwidth, are related to the scattering properties of the
tissue of interest. In particular, they found that SS is related to effective
scatterer size and attenuation, SI is related to effective scatterer size and
acoustic concentration, and MBF is related to effective scatterer size,
acoustic concentration, and attenuation [14,15]. As frequency-
dependent backscatter measurements are affected by the inherent
frequency-dependent attenuation of intervening tissues, it is standard to
compensate the tissue power spectrum for frequency-dependent
attenuation before computing spectral parameters, as done in many
studies [8—10].

Frequency-dependent attenuation has also been shown to be a
useful parameter in characterizing tissues, especially tumors and
normal tissues of the breast [16]. Furthermore, a previous clinical
study found large variations in the attenuation coefficient estimates
(ACEs) among breast carcinoma tumors (1.16+0.8 dB/cm per MHz),
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which included invasive ductal carcinoma, invasive lobular
carcinoma, intracystic papillary carcinoma, and adenocarcinoma
[17]. Another parameter, scatterer spacing, also known as spacing
among scatterers (SAS), has been investigated as a tissue characterization
parameter when the tissue of interest contains detectable periodicity in
its structural organization. Previous studies have investigated the
potential of SAS mainly for characterizing diffuse diseases of the liver
[18,19]. For instance, in [20], the interscatterer distribution and the
mean scatterer spacing (MSS) were examined in focal diseases of the
liver using wavelet transform—based methods, whereas in [21], the MSS
was considered for characterization of pathologic human liver using
Fourier transform—based methods. The terms SAS and MSS are used
interchangeably in the literature to refer to the mean scatterer spacing
in a scattering volume. More recently, SAS was used to characterize
human breast tumors in terms of normal breast tissue, fibroadenoma,
simple carcinoma, and infiltrating papillary carcinoma [22]. SAS was
determined to be 1.25 + 0.21 pm for normal breast tissue, 0.82 + 0.10
pum for simple carcinoma, 0.92 + 0.09 um for infiltrating apillary
carcinoma, and 1.09 + 0.07 um for breast adenoma; however, no
statistical significance tests comparing these tissue abnormalities
were reported.

Whereas the conventional quantitative ultrasound spectral param-
eters discussed above describe the frequency-dependent properties
of tissue microstructure, an analysis of textural characteristics of QUS-
based parametric maps can potentially provide second-order statistics
by quantifying the patterns of gray-level transitions. In 1983, Wagner
et al. demonstrated that the second-order statistical properties (based
on the Rayleigh distribution) of B-mode images carry subresolution
information about the medium's microstructure [23]. Following this
work, various statistical models were developed to further characterize
the textural properties of B-mode images [24,25]. Alternatively,
second-order textural properties of images, including but not limited
to ultrasound, can be quantified using the gray-level co-occurrence
matrix (GLCM). Initially developed as an image classification tool for
landmark aerial photographs and sandstone photomicrographs [26],
the application of the GLCM was later extended to ultrasound tissue
characterization, such as discriminating between benign and
malignant breast tumors [27,28]. The principle behind this tissue
classification technique is that malignant tumors tend to present as
heterogeneous internal echoes, whereas benign masses often
demonstrate homogeneous internal echoes. Textural analysis tech-
niques aim at extracting the tissue internal echo properties or
"texture," based on the ultrasonic gray-level transitions, and hence can
define differentiable characteristics in this application. However,
previous studies [27,28] have used conventional B-mode images for
textural analysis, which may present undesirable variations in textural
estimates due to variations in instruments settings, ultrasound beam
diffraction, and attenuation effects. Such limitations can be addressed
by performing texture analysis on quantitative ultrasound parametric
images for which these artifacts have been compensated. In a study by
Sadeghi-Naini et al. [29], texture analysis based on a GLCM was
applied to ultrasonic parametric maps (i.e., MBF, SS, and SI) to
characterize tumor cell death responses to chemotherapy in vivo.
Extracted GLCM features were contrast, energy, and homogeneity. In a
study by Tadayyon et al. [30], a similar texture analysis was applied to
ASD, AAC, and SAS images of LABC tumors in addition to MBF, SS,
and SI images for purposes of tumor grade discrimination. Here, we
examined the means and four GLCM features (contrast, correlation,
energy, and homogeneity) of six QUS parameters, as done in [30], for
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characterization of LABC tumors. However, new in this study, all QUS
parametric maps were obtained after spectral attenuation correction
using the ACE values obtained via the spectral difference method, and
the ACE parameter was also included in the discriminant analysis.
Furthermore, leave-one-patient-out training and testing were per-
formed for tumor grade classification, which were not done in previous
studies. Results here suggest that large tumors can be graded with 82%
accuracy using textural features of spectral parametric maps, and a
further classification accuracy of 88% can be obtained using the
combination of means of the parametric maps and textural features.

Materials and Methods

The breast tissue characterization technique used here was a two-stage
process involving QUS parameter estimation followed by classification.
Given a tumor region of interest (ROI) in a breast ultrasound image,
QUS parameters including MBF, SS, SI, SAS, ASD, AAC, and ACE
were computed from its RF data. In addition to the mean, textural
features including contrast, correlation, energy, and homogeneity were
determined from the parametric map based on a GLCM [26].

A total of 31 features were considered for characterization: means
from six parametric maps (MBF, SS, SI, SAS, ASD, AAC), a single-
value parameter (ACE), and four texture features per parametric map
(4 x 6 = 24 texture features in total). The Fisher linear discriminant
was used to classify tissues using different QUS feature combinations
[31]. The goal of Fisher linear discriminant is to project the data onto
a feature space which maximizes the ratio of the between-class
variance to within-class variance. The threshold was chosen as the
hyperplane between the means of the projected data. Finally, a leave-
one-out analysis was performed on the classification of grade I versus
grade II to III tumors and metrics such as grade I prediction rate,
grade II to III prediction rate, accuracy, and area under the ROC
curve were used to evaluate the classification results. The rationale for
separating grade I tumors from grade II and III tumors was that
patients with grade I tumors are low-risk patients compared to
patients with grade II and IIT tumors in terms of their management.

Ultrasound data acquisition and processing

LABC patients (N = 57, N G1 = 7, N GII to IIl = 50) were
recruited in this study for noninvasive tumor grading (Table 1). The
study followed a protocol approved by the institution's research ethics
board from Sunnybrook Health Sciences Centre, Toronto, ON,
Canada. Signed consent was obtained from all patients before the
scans. Patients with large tumors (3 cm or larger) were selected in this
study to avoid uncertainties in tumor identification. All information
regarding histopathologic characteristics of the tumors, including type
and grade, were determined from clinical biopsy pathology reports
before the imaging session. In a clinical context, this QUS assessment
of the breast can be performed during an ultrasound-guided biopsy
session or after a biopsy session to cross-verify the tumor grade found
from the biopsy sample examination. Tumor size was defined as the
sum of the long axis lengths of the tumor foci and was determined
from diagnostic magnetic resonance imaging reports. For performing
supervised learning using linear discriminant analysis, tumors were
histologically divided into two classes: grade I and grade II to III. This
used the maximum number of available tumors in the study because
roughly 30% of the tumors were identified by institutional
pathologists as intermediate-to-high grade rather than a definitive
grade II or grade III. RF and B-mode ultrasound data were collected
from the affected breast using a Sonix RP ultrasound scanner
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Table 1. Summary of Patient Demographics and Clinical Tumor Characteristics
Characteristic Total (N =57)
No. %
Age (y) 49 (29-67)
Tumor size (cm) 6.5 (1.9-15)
Tumor subtype
IDC 53 93
ILC 1 1.8
IDC (mucinous features) 1 1.8
IDC (basal-like) 1 1.8
Metaplastic carcinoma 1 1.8
GI 7 12
GII to III 50 88

Abbreviations: IDC = invasive ductal carcinoma, ILC = invasive lobular carcinoma.

operating a 6-MHz—stimulated broadband array transducer (L14-5/38,
Ultrasonix, Vancouver, Canada). RF data were sampled at 40 MHz ata
512-line density, resulting typically in images with 6-cm width and 4- to
6-cm depth. Four to seven image planes of the tumor were selected at
1-cm intervals across the affected breast for analysis.

An oncologist was present at the baseline (pretreatment) imaging
session to locate the tumor and its extent in the ultrasound
navigation. ROIs enclosing the central mass of the tumor
(approximately 90% of tumor volume) were selected across four to
seven tumor cross-sections under the guidance of an oncologist. The
ROIs were selected manually from B-mode images using an in-house
MATLAB image segmentation program by one user (H.T.) and
verified by the oncologist. The margins of the tumor were excluded to
avoid any ambiguities in the boundary definitions. Each ROI was
then segmented using a sliding window approach with 80% overlap
between adjacent windows. Each window had dimensions of 2 mm
by 2 mm. The size of the window was selected to cover approximately
17 ultrasound wavelengths, larger than the minimum size (10
wavelengths) typically required to obtain reliable spectral slope
estimates which are independent of window length [32].

To make the analysis method system independent, processed
ultrasound data were normalized on a sliding-window basis using
reference data obtained from a tissue-mimicking phantom or a planar
reflector. For linear regression analysis of the power spectrum, an in-
house—constructed tissue-mimicking phantom was used, comprising
of agar gel embedded with glass microspheres (modified from [33]).
For SAS analysis, a Plexiglas planar reflector was used as reference, as
SAS estimation is sensitive to the spatial distribution of the scatterers
in the reference medium, and a planar reflector has relatively simpler
scattering properties compared to those of the phantom used in this
study. Echo data from the polished Plexiglas surface were obtained at
12 equally spaced depths from 1 to 6 cm, which covered all possible
breast tumor depths. For a given tumor window, the corresponding
reference window was selected by nearest neighbor interpolation. The
data normalization process is discussed in more detail below.

Quantitative Ultrasound Spectral Analysis

All spectral analyses were carried out using the -6-dB system
transducer bandwidth, which was 3 to 8 MHz. The first step in the
QUS analysis was computation of the ACE of the tumor, which was
required for attenuation correction of the tumor power spectrum.
The ACE was computed using the spectral difference method by
estimating the rate of change in the spectral magnitude with depth
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and frequency relative to a reference medium with a known
attenuation coefficient [34]. The reference medium was a well-
characterized tissue-mimicking phantom with known attenuation
coefficient (0.15 dB/cm per MHz) and speed of sound (1539 m/s).
Plots of relative spectral amplitude versus depth were obtained by
averaging the normalized window power spectra across laterally
adjacent windows and then plotting the average amplitude at each
frequency against the depth of the windows in the ROI. The ACE of
the tumor was estimated by averaging the slopes of the linear fits to
the amplitude versus depth data at all frequency points in the
bandwidth. An attenuation coefficient of 1 dB/cm per MHz was
assumed for intervening breast tissue based on ultrasound tomogra-
phy measurements of the breast [35]. A two-layer (intervening tissue
and tumor) attenuation correction was performed using total
attenuation estimation (Equation (2), Ref. [34]) and point
attenuation compensation method [36]. Afterwards, spectral param-
eters, including MBF, SI, and SS, were extracted from linear
regression of the attenuation-corrected power spectrum within the -
6-dB bandwidth using established spectral analysis methods [14].
MBF was defined as the value of the spectral linear fit at the center of
the analysis bandwidth (i.e., 5.5 MHz).

Using the same attenuation-corrected power spectrum, the
backscatter coefficient (BSC) of the tumor was estimated using the
reference phantom technique [37]. Then, by least squares fitting of
the Gaussian form factor to the BSC, parameters of the Gaussian form
factor, ASD and AAC, corresponding to the maximum coefficient of
determination, 2, were determined. Details about scatterer size
estimation can be found elsewhere [38].

Whereas spectral linear regression and BSC models are based on
incoherent scattering, cepstral analysis techniques allow coherent
scattering properties of tissues to be derived [39]. In this light, the
power spectrum of the tumor was determined by modeling the tumor
echo signal as an autoregressive signal and using Burg's algorithm to
estimate its power spectrum. The power spectrum was then normalized
to that of a planar reflector. By computing the autocorrelation of the
normalized power spectrum, the SAS parameter was determined from
the frequency at which the peak occurred in the autocorrelation [19].
SAS estimation requires one to know the speed of sound in the ROI. For
tumor ROIs in this study, a sound speed of 1540 m/s was assumed.
These values are consistent with ultrasound tomography—derived
measurements of speed of sound in the breast [40].

Statistical Textural Analysis of Quantitative Ultrasound Maps

In this study, a statistical texture analysis technique was applied that s
based on the concept of GLCM. The GLCM represents, statistically,
the angular relationship between neighboring pixels as well as the
distance between them [26]. Based on the statistical information
provided by GLCM analysis, several textural features were determined
including contrast (CON), correlation (COR), homogeneity (HOM),
and energy (ENE), as defined in Equations (1-4).

Parametric maps of MBEF, SS, SI, SAS, ASD, and AAC each
underwent a GLCM-based texture analysis process to extract four
textural features. Texture properties could not be extracted from ACE
because a single value was computed from each ROI rather than
computing a parametric map, as a large number of points (depths)
were required to obtain accurate estimates of attenuation slope. In
texture analysis, the contrast feature represents a measure of difference
between the lowest and highest intensities in a set of pixels. The
energy feature measures the frequency of occurrence of pixel pairs and
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quantifies its power (square of the frequency of gray-level transitions).
The homogeneity feature measures the incidence of pixel pairs of
different intensities. As the frequency of pixel pairs with close
intensities increases, homogeneity increases. The correlation feature
measures the correlation between pixel pairs. Given p(i,), an element
in a Ng x Ng GLCM, where Ng = 8 is the number of gray levels, the
textural features were defined as follows [26,28]:

(1)

Ny Ny

now =33

=1 j=1

ZfiﬁZjVi] (i-p;) (4-15) (4, )

Gi0;

COR =

(4)

where pi, 0i are the mean and standard deviation of the ith row of the
GLCM and pj, oj are the mean and standard deviation of the jth
column of the GLCM. Sixteen symmetric GLCMs were constructed
for each parametric map, corresponding to four pixel-to-pixel
distances (1 pixel, 2 pixels, 3 pixels, and 4 pixels) and four directions
(0°, 45°, 90°, and 135°). The texture feature for each of the 16
symmetric GLCMs was computed and averaged to obtain a mean
texture value. This resulted in 24 mean textural features (four features
for each of the six parametric maps) that were subsequently applied
for characterizing tumors in terms of their grade.

Tumor Grade Classification

Sequential feature selection [41, Table 5] was performed for 3
cases: 7 QUS means (MBF, SS, SI, SAS, ACE, ASD, AAC), 24
texture features, and 31 means and texture features combined. The
first step of the sequential feature selection involved performing
unpaired # tests on all individual features to compare their group
means (all features were found to be normally distributed based on
the Shapiro-Wilk normality test). The features were then sorted from
lowest to highest P value. Starting with the lowest P value feature as
the initial model, features were sequentially added to or discarded
from the model until there was no improvement in classification. The
features of the final model resulting from the sequential feature
selection were termed the optimal features.

A leave-one-patient-out analysis was performed on NV = 57 patients
using QUS features obtained by averaging across the tumor cross
sections to obtain a volumetric average for each patient. The true
labels (tumor grade) were determined from biopsy findings. For each
patient left out, the N - 1 patients were used to train the classifier,
and the remaining one patient was used to predict its response. The
process was repeated /V times to obtain classifier predictions from all
N tested patients.
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Table 2. Summary of Classification Performances for Optimal Features Obtained from Sequential
Feature Selection from All Means, All Textures, and All Means and Textures

GI Prediction GII to IIT Overall Az (LB, UB)

Rate (%) Prediction Rate (%) Accuracy (%)
Optimal means 57 82 79 0.71(0.49, 0.94)
Optimal textures 43 88 82 0.74 (0.52, 0.96)
Optimal means and textures 71 88 86 0.76 (0.54, 0.97)

All results were obtained by leave-one-out cross-validation. Az is the area under the ROC curve,
LB and UB are the lower and upper 95% confidence bounds of Az.

Results

Patient Characteristics

Relevant patient characteristics, including age, tumor size, tumor
type, and tumor grade, are listed in Table 1. Patients were aged between
29 and 67 and had a mean tumor size of 6.5 cm (range, 1.9 to 15 cm).
Tumors were predominantly of the invasive ductal carcinoma type
(91%), with the exception of one case of invasive ductal carcinoma with
mucinous features, one case of invasive ductal carcinoma with basal-like
features, one case of invasive lobular carcinoma, and one case of
metaplastic carcinoma. The tumors were largely grade I to III (V= 50),
with a few incidences of grade I tumors (V = 7), determined by
institutional pathologists from surgical biopsy specimens.

Quantitative Ultrasound

Linear discriminant analysis results obtained from three cases:
using the means of all parametric maps, using the texture features of
all parametric maps, and using both the means and textures of all
parametric maps, are summarized in Table 2. GI prediction rate was
defined as the percent ratio of correctly classified GI samples to all GI
samples, and GII to III prediction rate was defined as the ratio of
correctly classified GII to III samples to all GII to III samples.
Accuracy was defined as the ratio of all correctly classified samples
to all samples. All results were obtained after leave-one-out cross-
validation. The results demonstrated that using only the means of the
parametric maps yields lower accuracy (79%) compared to using the
textural features (82%). Furthermore, combining means and textural
features further improved the accuracy of the classification (86%). In
all cases, lower GI prediction rate was obtained compared to GII to I1I
prediction rate.

Table 3 presents the structure vector, which consists of the optimal
features obtained from sequential feature selection from all QUS
means and textures and their coefficients. The linear discriminant
function was composed of 18 features. The shown coefficients represent
the correlation between each feature and the obtained discriminant
function. A higher absolute value indicates a higher relevance of the
feature to the discrimination of the classes. It is evident from Table 3
that the COR feature was the most frequently appearing feature with
relatively strong contribution to the discriminant function, as it
appeared for SAS (R*=0.213), SS (R* = 0.194), and AAC (R* = 0.179).
Another observation was that all SAS texture features and means
proved to contribute to the discrimination of tumor grades,
indicating that SAS played an important role in the tumor
grade classification.

ROC curves for the three cases, obtained from the cross-validated
data set, are presented in Figure 1. The ROC curve approaches the
optimal point (upper left corner) as better feature sets are selected
(means, textures, and combined means/textures, respectively).
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Table 3. Discriminant Function Structure Vector for Optimal QUS Means and Textures

Rank Feature Coefficient
1 SASenE 0.236
2 SAScor 0.213
3 SScor 0.194
4 AACcor 0.179
5 Slyom 0.143
6 AAC o ~0.131
7 ASDrom 0.126
8 SASrom -0.116
9 AACng 0.098
10 ACE, 0, 0.093
11 ASD g 20.086
12 SAS e 20.069
13 AACyoMm 0.061
14 SAScon 0.057
15 SSenE 0.048
16 MBFeng -0.048
17 SScon ~0.046
18 Sleon -0.038

Coefficients represent the correlation between each feature and the obtained discriminant function.
Features are listed in order of decreasing absolute coefficient.

Based on the classification results, a hybrid parameter was
determined that represents the linear combination of a subset of
QUS means and textures that provides the optimal classification
accuracy (row 3 of Table 2). This parameter is equivalent to the
output of the optimal linear discriminant function whose structure
vector is provided in Table 3. Figure 2 presents a one-dimensional
scatter plot of the hybrid parameter values for all patients grouped in
terms of their tumor grade. The linear discriminant function was
optimized to produce positive values for grade I tumors and negative
values for grade II to III tumors. The difference between the mean
hybrid values of grade I and grade II to III tumors was determined to
be statistically significant (P <.05).

Figure 3 shows representative B-mode images, hybrid parameter
images, and hematoxylin and eosin histology sections of grade I, 11,
and III tumors. For QUS means, QUS window values were used to
compute the linear discriminant function in each window. For QUS
textures, all windows were assigned a constant texture value for each
texture feature (CON, COR, ENE, HOM) because the GLCM was
computed from the ROI rather than the window. Because QUS
means have a lower weight in the discriminant function compared to
texture features, the resulting parametric image will have relatively
small standard deviation, as can be seen in Figure 3B. Figure 3B
presents the hybrid image in a common scale to help realize the
differences between the tumors, whereas Figure 3C presents the
hybrid images in individually optimized scales to help visualize the
internal deviations. Whereas the conventional B-mode images
presented all breast tumors as complex hypoechoic masses with little
differences in terms of grade and difficult-to-visualize features, the
hybrid images demonstrated a clear trend of decreasing hybrid value
with increasing tumor grade. Histology images show cancerous glands
as purple-stained structures, the stroma as pink-stained structures,
and adipose tissue as white structures. The images depict cancerous
tissue with increasingly disordered clusters of cancerous glands and
decreasing stromal density with increasing grade.

Discussion

This study demonstrated for the first time the efficacy of textural
analysis techniques on QUS parametric maps to discriminate between
grade I and grade II to III breast tumors. After acquiring several planes



764 Noninvasive Characterization of Breast Cancer ~ Tadayyon et al.
1 r———— ==
|
0.9 !
w
g 0.7 Aol ST
- I:
£ 0.6 1
'0 ......... (S R Means
L o5
L : ——-Textures
E 04r | 777 —Means and textures
a |
& 03} i'l
ozt |1
1
0.1(1:
1
0 1: L L L L L L L L '
¢ 01 02 03 04 05 06 07 08 09 A1

1-GlI-lll prediction rate

Figure 1. ROC curves for the different feature sets. Set A: means
and textures of MBF, SS, SI, and SAS, plus ACE. Set B: means and
textures of ASD, AAC, and SAS, plus ACE. Set C, all parameter
means and textures included.

of RF data from tumors of patients with LABC, features such as
mean, CON, COR, ENE, and HOM were extracted from QUS
parametric maps computed from tumor ROIs within the breast. An
optimal feature set was selected using sequential feature selection, and
linear discriminant analysis was performed on the set with cross-
validation using true labels identified histopathologically from biopsy
specimens. Three types of feature sets were considered: feature selection
from means, textures, and the combinations of means and textures. The
most accurate classification was obtained when the combination of
QUS means and textures was used (86% accuracy).

Quantitative ultrasound has been investigated in the past as an aid
to characterize breast tumors 7 vivo and to differentiate clinically
malignant breast tumors from benign masses [22,28,42,43].
Specifically, the work of Oelze et al. [42] has demonstrated the
ability to differentiate mouse mammary carcinoma from benign rat
fibroadenomas using mean values of scatterer size and acoustic
concentration parametric maps obtained from a 20-MHz ultrasound
system. On the other hand here, the differentiation between lower-
grade tumors (analogous to benign fibroadenomas) and mid- to high-
grade tumors (analogous to mammary carcinoma) was best seen using
the textural features of acoustic concentration (AAC) and scatterer
size (ASD), giving accuracy as high as 86%. Mean values yielded less
than optimal separation (79 %). Similarly, when Nasief et al. [43]
investigated QUS features such as scatterer size, attenuation, and
heterogeneity index to differentiate clinically benign breast tumors
from malignant ones, only subtle differences could be found because
only mean values were considered. The parametric images here
(Figure 3), however, suggested clear distinctions between tumors of
different grades when textures of QUS parameters were included.

Similar to the finding in our previous study that the linear
combination of ASD mean and texture features demonstrated a better
separation between tumor grades than did ASD mean or textures
alone [30], the linear combination of QUS parameter means and
texture features demonstrated better classification results than did
means or texture features alone. Our previous study [30] lacked
attenuation correction of spectra using tumor—speciﬁc attenuation
coefficient estimates and reported statistical significances of QUS
differences between tumor grades; no tumor grade classification was
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Figure 2. One-dimensional scatter plot of the hybrid QUS
biomarker versus tumor aggressiveness. Each point represents
the hybrid QUS value of each patient. The horizontal lines represent
the means of the groups.

performed. Here, we have included tumor-specific attenuation
correction and have performed linear discriminant analysis including
leave-one-out classifier evaluation. It should be noted that other
attenuation correction functions are available, which take into
account the gate length, such as Oelze and O'Brien and O’Donnell
and Miller methods [36]. However, these functions offer accuracy
advantages only for large gate lengths. For the relatively small gate
length used in this study (2 mm), the point-attenuation, Oelze and
O'Brien, and O’Donnell and Miller methods all result in similar
scatterer size estimations, as demonstrated in [36], Figure 5.

In this study, texture analysis of the QUS parametric maps of
different grades of breast tumors demonstrated an 82% classification
accuracy when the texture features of QUS parametric maps were
used (CON, COR, ENE, HOM), whereas using only means resulted
in a classification accuracy of 79%. A further improvement in
classification was achieved when the means of parametric maps were
combined with the textures (86% accuracy).

Interuser variability should be minimal, although in this study,
only one user selected ROIs consistently, which were checked by one
oncologist. One of the limitations of this technique was tumor size
(>3 cm). As QUS textural features are sensitive to heterogeneity of
the tumor, the tumors must be sufficiently large to be differentiable in
terms of their internal ultrasonic echo properties. Smaller tumors may
limit outcomes of this work. There is also an issue of variability in
QUS feature estimates due to the user dependence of the manual
segmentation process involved. However, variability in QUS feature
estimates due to different ROI locations was minimized by
consistently imaging each tumor in the focal region of the transducer,
thereby avoiding regions of near field, far field, and diffraction. It is
acknowledged that relatively lower GI prediction rates were obtained
compared to GII to IIT prediction rates. This is likely due to the
presence of imbalanced data, where there are much more grade II to
I cases than grade I cases, naturally driving the classifier to learn the
data pattern of the more populated group more effectively.
Compensation for imbalanced data sets is an active area of research
and requires thorough investigation in a separate study. Nevertheless
a leave-one-out analysis here was able to fairly accurately identify
grade I tumors compared to grade II to III tumors, which are often
managed differently in terms of clinical care. The complexity of the
proposed model is acknowledged given the large number of features
compared to the number of observations. However, the effects of
overfitting were minimized by performing sequential feature selection


image of Figure�1

Translational Oncology Vol. 7, No. 6, 2014

Noninvasive Characterization of Breast Cancer

Tadayyon et al. 765

Gll

Glil

25 -5.5

Figure 3. Representative images of grade |, I, and lll breast tumors. (A) B-mode images of the tumor regions, where the tumors appear as
hypoechoic masses. (B) Corresponding hybrid QUS biomarker images of the tumors obtained from optimized linear combination of
original QUS means and textures. A common scale bar was used to include the range for all three tumors. (C) Corresponding hybrid QUS
biomarker images of the tumors obtained from optimized linear combination of original QUS means and textures. Individual scale bars
were used to show the standard deviations in each tumor. (D) Hematoxylin and eosin—stained histopathology images of the tumors. Scale

bars: 1 cm (US), 100 um (hist).

to find the minimum number of features (18 features) that can
provide optimal classification accuracy, excluding noncontributing or
minimally contributing features. Additionally, the leave-one-patient-out
analysis performed has been known to minimize overfitting [44].

As previously mentioned, acoustic concentration is the product of
scatterer number density and acoustic impedance difference between
the scatterer and the background, and acoustic impedance is the
product of sound speed and density. Thus, the fact that parameters
related to the scatterer spacing and acoustic concentration including

SAS, AAC, MBF, and SI formed the major portion of the
discriminant function (Table 2) compared to parameters related to
the scatterer size (i.e., SS and ASD) suggests that the spatial
organization and material properties of the tumor microstructure play
a more important role than its size in the discrimination of tumor
histologic grades. This was not surprising because the breast tumor is
a complex tissue containing blood vessels, adipose tissue, and stroma,
in addition to cancerous glands. Thus, scatterer size may not refer to
the size of glands alone but to a mixture of structures.
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In summary, breast tumor grading is an important part of breast
cancer diagnosis and provides valuable information for treatment
planning. In this light, noninvasive methods such as texture-based QUS
analysis can provide beneficial diagnostic information that can be applied
before and during the course of treatment. This study demonstrated a
high potential for textural characteristics of QUS parametric maps to be
used in the diagnosis and grading of breast tumors. The best tissue
classification could be achieved when the combination of mean and
textural properties of MBF, SS, SI, SAS, ASD, and AAC parametric
maps was used. This work provides a framework for future clinical
studies in which the proposed classification scheme is evaluated on larger
cohorts of patients to further assess its capabilities for an accurate breast
tumor diagnosis and grading noninvasively.
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