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Abstract

Finding the right amount of deliberation, between insufficient and excessive, is a hard deci-

sion making problem that depends on the value we place on our time. Average-reward,

putatively encoded by tonic dopamine, serves in existing reinforcement learning theory as

the opportunity cost of time, including deliberation time. Importantly, this cost can itself vary

with the environmental context and is not trivial to estimate. Here, we propose how the

opportunity cost of deliberation can be estimated adaptively on multiple timescales to

account for non-stationary contextual factors. We use it in a simple decision-making heuris-

tic based on average-reward reinforcement learning (AR-RL) that we call Performance-

Gated Deliberation (PGD). We propose PGD as a strategy used by animals wherein deliber-

ation cost is implemented directly as urgency, a previously characterized neural signal effec-

tively controlling the speed of the decision-making process. We show PGD outperforms AR-

RL solutions in explaining behaviour and urgency of non-human primates in a context-vary-

ing random walk prediction task and is consistent with relative performance and urgency in

a context-varying random dot motion task. We make readily testable predictions for both

neural activity and behaviour.

Author summary

The value we place on our time impacts what we choose to do with it. Value our time too

little, and we obsess over all details. Value it too much, and we rush carelessly to move on.

How we value our time and how this value affects how much of it we allocate to tasks is

not well-understood. The related cognitive processes are nevertheless thought to play a

role in a wide range of diseases from Parkinson’s to addiction. We propose a general strat-

egy that balances the expected value of deliberation with the time spent, where time is val-

ued according to recent performance. We found that recorded behaviour and brain

activity from a previous experiment using non-human primates could be explained by

this simple decision-making strategy. We show that this strategy explains how a brain sig-

nal called ‘urgency’, which limits how long subjects deliberate, varies with context. Our
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work helps to integrate the neuroscience of reward representations and the brain dynam-

ics associated with deliberation.

Introduction

Humans and other animals make a wide range of decisions throughout their daily lives. Any

particular action usually arises out of a hierarchy of decisions involving a careful balance

between resources. Opportunity cost [1] is the economics concept of the value of an alternative

use that is lost when committing a limited resource to a given use. Opportunity costs are used

to discount the value of allocating the resource to account for these forgone alternatives. A

resource that is always limited is time. When to stop exploiting a local patch and leave to find

another is central to time-limited patch foraging [2]. More generally, how long to deliberate in

sequential decision-making settings is central to a wide range of tasks. The cost of spending
time depends on its value, a construct that relies on comparing against the alternative things

an agent could potentially do with it. Estimating time’s value is not straightforward for a num-

ber of reasons. There are alternative choices at multiple decision levels, e.g. moving on from a

job and moving on from a career, and each level requires its own evaluation. Moreover, the

value of alternatives needs to be tracked as they may change over time depending on the con-

text in which a decision is made. For example, animals will learn to value a given food resource

differently depending on whether it is encountered during times of plenty versus scarcity [3].

The agent’s knowledge of and ability to track context thus influences the value it assigns to pos-

sible alternatives. Factors that influence this knowledge have been shown to have direct conse-

quences on behaviour.

These are significant, practical complications of making decisions contingent on opportu-

nity cost. The opportunity cost of time is nevertheless well-studied in decision-making theory.

It plays the role of a reference reward in definitions of relative value, most notably as the aver-

age reward in average-reward reinforcement learning (AR-RL) [4].

In neuroscience, AR-RL was first proposed to extend the reward prediction error hypothe-

sis for phasic dopamine to account also for the observed properties of tonic dopamine levels

[5]. It has since been used to emphasize the relative nature of reward-based decision-making

[6] in explanations of human and animal behaviour in foraging [2], free-operant conditioning

[7], perceptual decision-making [8, 9], cognitive effort/control [9, 10], and even economic

exchange [11]. This perspective has been applied in clinical work through dopamine’s relation-

ship with vigor impairments. In particular, people’s willingness to leave deplenished patches

have been shown to be influenced by dopaminergic depletion and restoration in Parkinson’s

disease [12] and dopaminergic drugs in healthy participants [13]. More generally, it provides a

normative explanation for why deliberation times are shorter in contexts with high average

reward and longer in contexts with low average reward due to the opportunity cost of time

[14].

Unlike the alternative discount-reward approach, AR-RL is a theoretically well-defined and

numerically stable formulation for long horizon decision problems [15], such as with task

environments in which there is no definite end (known as continuing environments [16]). Solu-

tions to AR-RL problems maximize average reward, in contrast to traditional fixed accuracy

criteria in perceptual decision-making tasks that focus on maximizing trial reward alone [17].

The solutions to AR-RL formulations of tasks of long sequence of trials are decision bound-

aries in the state space of a trial. Determining this decision boundary requires maximizing the

relative value, defined using the opportunity cost of time. The resulting optimal decision
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boundaries typically ‘collapse’ over a trial: they cut deliberation short, e.g. in tasks where trial

difficulty is variable [8, 18]. Up to now, however, AR-RL and most of its applications have

focused on fixed contexts and have used the stationary average reward as the fixed opportunity

cost of time, which ignores context-dependent performance variation. This is perhaps not sur-

prising given that in psychological and neuroscientific studies of decision-making, we usually

eliminate such contextual factors from the experimental design such that our models describe

stationary behaviour. However, the brain mechanisms under study are adapted to a more

diverse natural world in which changing environmental factors are often relevant, hard to

infer and vary over time [6]. For example, the variance of rewards over contexts has long been

shown to factor into preferences [19] and has made its way into modern studies on the range

adaptation of reward representations [20].

We pursue a theory of approximate relative-value decision-making under uncertainty in a

setting relevant to decision-making neuroscience. We first show that value in AR-RL can be

expressed using the opportunity costs of deliberation and commitment. Here, the commit-

ment cost is the shortfall in reward (relative to the maximum possible in a trial) that is expected

to be lost when committing to a decision at a given time. The deliberation cost integrates the

estimated cost rate of time. Highlighting the risk of value representations in non-stationary

environments, we propose an approximation to the AR-RL value-optimal solution, Perfor-

mance-Gated Deliberation (PGD). It uses the increasing opportunity cost of time in a trial to

collapse the decision boundary directly, by-passing the need to maximize relative value. PGD

thus reduces decision-making to estimating two opportunity costs: a commitment cost learned

from the statistics of the environment and a deliberation cost estimated from tracking one’s

own performance in that environment. It explains how an agent, without explicitly tracking

context parameters or storing a value function, can trade-off speed and accuracy according to

performance at the typically longer timescales over which context changes. We propose that

deliberation cost is then directly encoded as “urgency” in the neural dynamics underlying deci-

sion-making [8, 21–23]. The theory is thus directly testable using both behaviour and neural

recordings.

To illustrate how PGD applies in a specific continuing decision-making task, and to make

the links to a neural implementation explicit, we analyze behavior and neural recordings col-

lected over eight years from two non-human primates (NHPs) [24, 25]. They performed suc-

cessive trials of the “tokens task”, a probabilistic guessing task in which information about the

correct choice is continuously changing within each trial, and a task parameter controlling the

incentive to decide early (the context) is varied over longer timescales. Behavior in the task, in

both humans [22] and monkeys [25], provides additional support to an existing hypothesis

about how neural dynamics implements time-sensitive decision-making [21]. Specifically,

neural recordings in monkeys suggest that the evidence needed to make the decision predomi-

nates in dorsolateral prefrontal cortex [26]; a growing context-dependent urgency signal is

provided by the basal ganglia [27]; and the two are combined to bias and time, respectively, a

competition between potential actions that unfolds in dorsal premotor and primary motor

cortex [24]. Similar findings have been reported in other tasks—for example, in the frontal eye

fields during decisions about eye-movements [23]. We propose PGD as a theoretical explana-

tion for why decision-making mechanisms are organized in this way. As an algorithm, it serves

as a robust means to balance immediate rewards and the cost of time across multiple time-

scales. As a quantitative model, it serves to explain concurrently recorded behaviour and neu-

ral urgency in continuing decision-making tasks. From neural recordings in non-human

primates and and behaviour in human and non-human primates, we show that it does so

more accurately than AR-RL solutions. Adapting PGD to the random dot motion task in
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which urgency was first characterized [23], we make quantitative predictions about neural

urgency in such tasks, which we validate on their data within error bounds.

Symbol glossary. Highlighted in gray are parameters of the PGD model presented in this

paper.

symbol quantity

t within-trial time

k trial index

St within-trial state at time t

St state sequence up to time t

Rk reward of kth trial

Tk duration of kth trial

tdeck decision time of kth trial

Cdel
t

within-trial opportunity cost of deliberation

rmax maximum reward acheiveable in a trial

bt belief of correct report given St

�r t expected reward for reporting at time t

Ccom
t within-trial opportunity cost of commitment

ρ stationary reward rate

ρ* optimal stationary reward rate

α context parameter

ρα context-conditioned stationary reward rate

Tα context-conditioned stationary average trial duration

r̂tk reward history filtered through a timescale, τ

τlong a long timescale over which to estimate ρ
τcontext a context-specific timescale over which to estimate ρα
ν tracking cost sensitivity

K subjective reward scale factor

Tblock characteristic duration of a trial block

c auxiliary deliberation cost rate

Nt tokens difference

p jump probability of random walk, p� 1/2

Results

Theory of performance-gated deliberation

Opportunity costs of deliberation and commitment, and drawbacks of average-reward

reinforcement learning. We consider a class of tasks consisting of a long sequence of trials

indexed by k = 1, 2, . . . (see Fig 1A), each of which provides the opportunity to obtain some

reward by choosing correctly. In each trial, a finite sequence of states, St, t = 0, . . ., tmax, is

observed that provide evidence for an evolving belief about the correct choice among a fixed

set of options. To keep notation simple, we suppress denoting the trial index, k, on quantities

such as trial state, St, that also depend on trial time, t. The time of decision, tdeck , and the chosen

option determine both the reward received, Rk, and the trial duration, Tk � tdeck . Importantly,

decision timing can affect performance because earlier decisions typically lead to shorter trials

(and thus more trials in a given time window), while later decisions lead to higher accuracy.

Effectively balancing such speed-accuracy trade-offs is central to performing well in continu-

ing episodic task settings. For a fixed strategy, the stationary reward rate (see slope of dashed
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line in Fig 1A(right)) is

r ≔ lim
k!1

X

k

Rk
.X

k

Tk : ð1Þ

For a stochastic task environment, the definition of ρ includes an average over different reali-

zations of the task. Free-operant conditioning, foraging, and several perceptual decision-mak-

ing tasks often fall into this class. Previous work [8, 28] has studied the belief of correct report

for binary rewards, bt = P(Rk = 1|St, tdec = t), which also gives the expected trial reward, �rt ¼
bt � 1þ ð1 � btÞ � 0 ¼ bt [8] (see [29] for more about the relationship between value-based and

perceptual decisions). St denotes the state sequence observed so far, (S0, . . ., St). We consider

greedy strategies that report the choice with the largest belief at decision time. The decision

problem is then about when to decide.

Fig 1. AR-RL and performance-gated deliberation. (A) Task setting. Left: Within trial state, St evolves over trial time t in successive trials

indexed by k. The decision ‘A’ is reported at the decision time tdeck (red cross), determining trial reward, Rk, and trial duration, Tk. Right: Sketch

of cumulative reward versus cumulative duration. Context-conditioned reward rate (slope of red line), varies with alternating context (labelled 1

and 2) around average reward, ρ (dashed line). (B) Decision rules based on opportunity costs of commitment, Ccom
t , and deliberation, Cdel

t . The

AR-RL rule (black ‘x’) finds t that minimizes Cdel
t þ Ccom

t . The PGD rule (black cross) finds tdec at which they intersect, Cdel
t ¼ Ccom

t . (C) Schematic

diagram of each algorithm’s dependency. PGD computes a decision time directly from the two opportunity costs, while AR-RL uses both to first

estimate a value function, whose maximum specifies the decision time. (D) Loss (error in performance with respect to the optimal policy,

(ρ� − ρ)/ρ�) over learning time in a patch-leaving task (AR-RL: brown, PGD: black). The arrow indicates when the state labels were randomly

permuted.

https://doi.org/10.1371/journal.pcbi.1010080.g001
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Average-reward reinforcement learning (AR-RL), first proposed in artificial intelligence

[30], was later incorporated into reward prediction error theories of dopamine signalling [5]

and employed to account for the opportunity cost of time [7]. AR-RL was subsequently used

to study reward-based decision-making in neuroscience and psychology [8, 9, 14, 31]. AR-RL

centers around the average-adjusted future return, which penalizes the passage of time by

using the average reward as a cost rate. Value is defined as this future return averaged over

trial statistics. This average of a sum into the future of reward deviations from the average con-

verges without a discount factor on account of the transient effects of conditioning the statis-

tics on the state at which the decision is made. The AR-RL algorithms we consider aim to

achieve the highest ρ by also maximizing the average-adjusted value (see Methods for details).

We now provide an alternative, but equivalent definition of average-adjusted trial return in

terms of opportunity costs incurred by the agent.

We denote the opportunity cost of committing at time t within a trial as Ccom
t , defined as the

difference

Ccom
t ¼ rmax � �rt ; ð2Þ

where rmax is the maximum trial reward possible a priori. Within a trial, an agent lowers its

commitment cost towards zero by accumulating more evidence, i.e. by waiting. Waiting, how-

ever, incurs another opportunity cost: the reward lost by not acting. We denote this opportu-

nity cost of deliberation incurred up to a time t in a trial as Cdel
t . In AR-RL, the constant

opportunity cost rate of time is integrated so that for Tk ¼ tdeck ,

Cdel
t ¼ rt : ð3Þ

With these definitions, the average-adjusted trial return for deciding at a time t can be

expressed as rmax � ðC
com
t þ Cdel

t Þ. It is maximized by jointly minimizing Cdel
t and Ccom

t (Fig 1B),

giving the AR-RL optimal solution (see Methods for a formal statement and solution of the

AR-RL problem). Expressed in this way, the average-adjusted trial return emphasizes the more

general perspective that an agent’s solution to the speed-accuracy trade-off is about how it bal-

ances the decaying opportunity cost of commitment and the growing opportunity cost of

deliberation.

Despite their utility, value representations such as the average-adjusted trial return can be a

liability in real world tasks where task statistics are non-stationary. To illustrate this, we con-

sider the following foraging task. A foraging agent feeds among a fixed set of food (e.g. berry)

patches. Total berries consumed in a patch saturates with duration t according to a given satu-

ration profile, shared across patches, as the fewer berries left are harder to find. Patches differ

in their richness (e.g. berry density), which is randomly sampled and fixed over the task.

Denoting patch identity (serving as context) by s, the food return is directly observed and

deterministic given s. To perform well, the agent needs to decide when to move on from

depleting the current patch. Further details about the task and its solution are given in the

Methods. For a broad class of online AR-RL algorithms, the agent learns the average-adjusted

trial return as a function of state and time. For a given patch, it then leaves when this return is

at its maximum (c.f. Fig 1B). In Fig 1D, we show how the performance (brown line)

approaches that of the optimal policy in time as the estimation of the AR-RL trial return

improves with experience (see Methods for implementation details). However, if the agent’s

environment undergoes a significant disturbance (e.g. a forest fire due to which the patch loca-

tions are effectively re-sampled), the performance of this AR-RL algorithm can drop back to

where it started. We implement such a disturbance via random permutation of the state labels

at the time indicated by the arrow in Fig 1D. This is true over a range of learning rates and the
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number of patches (S8 Fig). More generally, any approach that relies on estimating state-value

associations shares this drawback, including those approaches that implicitly learn those asso-

ciations by directly learning a policy instead [32]. Could context-dependent decision times be

obtained without having to associate value or action to state? A means to do so is presented in

the next section.

Performance-gated deliberation. We propose that instead of maximizing value as in

AR-RL, which minimizes the sum of the two opportunity costs, Cdel
t þ Ccom

t , the agent simply

takes as its decision criterion when they intersect (shown as the black cross in Fig 1B).

tdec ≔ min
t
ft j Cdel

t � Ccom
t g ðPGD decision ruleÞ ð4Þ

We call this heuristic rule at the center of our results Performance-Gated Deliberation (PGD).

Plotted alongside the AR-RL performance in Fig 1D for our example foraging task, PGD

(black line) achieves better performance than AR-RL overall. It is also insensitive to the applied

disturbance since PGD uses Cdel
t and Ccom

t directly when deciding, rather than as input to prob-

lem of optimizing average-adjusted value as in AR-RL (Fig 1C).

We constructed the above task so that PGD is the AR-RL optimal solution. In general, how-

ever, PGD is a well-motivated approximation to the optimal strategy, so we call it a heuristic.

In the more general stochastic setting where there is residual uncertainty in trial reward at

decision time, the PGD agent will have to learn the association between state and expected

reward, �rt. This association is learned from within-trial correlations only. In contrast, the

opportunity cost of time as the basis for the deliberation cost depends on across-trial correla-

tions that together determine the overall performance. It is thus more susceptible to non-sta-

tionarity. A typical task setting is when the value of the same low-level action plan differs

across context. From hereon, we will assume the agent has learned the stationary opportunity

cost of commitment and so focus on resolving the remaining problem: how to learn and use

an opportunity cost of deliberation that exhibits non-stationarity on the longer timescales over

which context varies.

Reward filtering for a dynamic opportunity cost of deliberation. The state disturbance

in the toy example above altered task statistics at only a single time point. In general, however,

changes in task statistics over time can occur throughout the task experience. A broader notion

of deliberation cost beyond the static average reward is thus needed–one that can account for

extended timescales over which performance varies. Such a cost serves as a dynamic reference

in a relative definition of value based on a non-stationary opportunity cost of time. We first

address how performance on various timescales can be estimated.

As a concrete example, we make use of the task that we will present in detail in the following

section. This task has a context parameter, α, that can vary in time on characteristic timescales

longer than the moment-to-moment and can serve as a source of non-stationarity in perfor-

mance. Here, the context sequence, αk, varies on a single timescale, e.g. through periodic

switching between two values. The resulting performance (Fig 2A(top)) varies around the sta-

tionary average, ρ (purple), with context variation due to the switching (orange), as well as

context-conditioned trial-to-trial variation (blue). The decomposition of time-varying perfor-

mance into these multiple, timescale-specific components can be achieved by passing the

reward signal through parallel filters, each designed to retain the signal variation specific to

that timescale (Fig 2A(bottom)). There are multiple approaches to this decomposition. We

chose a heuristic approach in which the performance over a finite memory timescale can be

estimated by filtering the sequence of rewards through a simple low-pass filter [9, 33]. This fil-

ter is defined by an integration time, τ, tuned to trade off the bias and variance of the estimate

in order to best capture the variation on the desired timescale (e.g. how performance varies
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over different contexts). We denote such an estimate r̂tk, and show in the Methods that it

approximates the average reward over the last τ time units. We discuss the question of biologi-

cal implementation in the discussion, but note here that the number and values of τ needed to

represent performance variation in a given task could be learned or selected from a more com-

plete set in an online fashion during task learning. In an experimental setting, these learned

values can in principle be inferred from observed behaviour and we developed such an

approach in the analysis of data that we present in the following section.

Applying this heuristic decomposition here, the stationary reward rate, ρ, can be estimated

to high precision by using a long integration time, τlong, to the reward sequence Rk, producing

the estimate r̂
tlong
k . If αk were a constant sequence, Cdel

t ¼ r̂
tlong
k t, the stationary opportunity cost

of deliberation Eq 3 of AR-RL. However, in this example context varies on a specific timescale,

to which the former is insensitive. Thus, a second filtered estimate r̂
tcontext
k is needed to estimate

performance on this timescale. Unlike r̂
tlong
k , this estimate tracks the effective instantaneous,

context-specific performance, rak . Its estimation error arises from a trade-off, controlled by

the integration time, τcontext, between its speed of adaptation and its finite memory.

We consider two distinct hypotheses for how to extend AR-RL to settings where perfor-

mance varies over context. The first hypothesis, Cdel
t ¼ rat, is the straightforward, trial-

unaware extension of Eq 3, shown in Fig 2B(top). Here, performance is tracked only on a time-

scale sufficient to capture context variation and the corresponding cost estimate, r̂
tcontext
k� 1 , is

incurred moment-to-moment, neglecting the trial-based task structure. However, this incor-

rectly lumps together two distinct opportunity costs: those incurred by moment-by-moment

decisions and those incurred as a result of the effective planning implied by performance that

varies over context. In particular, context is defined over trials not moments, and thus the

Fig 2. Non-stationary opportunity cost. (A) Top: Dynamics of trial performance (rtrial
k ≔ Rk=Tk; blue) with its

distribution as well as dynamics of between context-conditioned averages of performance (ra ¼ hr
trial
k ikja; orange), and the

effectively stationary average performance (r � hrtrial
k ik; purple). Bottom: these are decomposed into a hierarchy by

filtering reward history on trial, context, and long timescales, respectively. (B) Two hypothetical forms for context-specific

trial opportunity cost. Top: Trial-unaware cost in which context varies the slope around ρ. Bottom: Trial-aware cost in

which context variation is through a bias (c.f. Eq 5).

https://doi.org/10.1371/journal.pcbi.1010080.g002
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context-specific component of opportunity cost of a trial is a sunken cost paid at the outset of a

trial. This inspires a second trial-aware hypothesis

Cdel
t ¼ rt þ ðra � rÞTa : ðtrial-aware opportunity costÞ ð5Þ

Eq 5 is plotted over trial time t in Fig 2B(bottom). Its first term is the AR-RL contribution

from the stationary opportunity cost of moment-to-moment decisions using the stationary

reward rate, ρ estimated with r̂
tlong
k . The second, novel term in Eq 5 is a context-specific trial

cost deviation incurred at the beginning of each trial and computed as the average deviation in

opportunity cost accumulated over a trial from that context (Tα is the average duration of a

trial in context α). This deviation fills the cost gap made by using the stationary reward rate ρ
in the moment-to-moment opportunity cost instead of the context-specific average reward, ρα.

This baseline cost derived from the orange time series in Fig 2A(bottom) vanishes in expecta-

tion, as verified through the mixed-context ensemble average reward (e.g. ρ� ∑α ραTα/∑α Tα

Fig 3. PGD agent performs the tokens task for periodic context switching. (A) A tokens task trial. Left: Tokens jump from a

center to a peripheral region (gray circles). Right: The tokens difference, Nt, evolves as a random walk that accelerates according

to α (here 3/4) post-decision time, tdec. The trial duration is T, which includes an inter-trial interval. (B) Decision dynamics in

cost space obtained from evidence dynamics in (A). Commitment cost trajectories (gray lattice; thick gray: trial-averaged) start

at Ccom
t¼0

and end at 0. Trajectory from (A) shown in black. tdec (black cross) is determined by the crossing of the commitment and

deliberation cost. (C) Incentive strength switches between two values every 300 trials. (D) Expected rewards filtered on τlong

(r̂
tlong
k , purple) and τcontext (r̂

tcontext
k , green). Black dashed lines from bottom to top are ρα=1/4, ρ, and ρα=3/4.

https://doi.org/10.1371/journal.pcbi.1010080.g003
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when the context is distributed evenly among trials such that ∑α(ρα − ρ)Tα = 0). Thus, this

opportunity cost reduces to that used in AR-RL when ignoring context, and suggests a general-

ization of average-adjusted value functions to account for non-stationary context. We estimate

this baseline cost using ðr̂
tcontext
k� 1 � r̂

tlong
k� 1 ÞTk� 1, where we have used the sample Tk−1 in lieu of the

average Tα. See S1 Fig for a signal filtering diagram that produces this estimate of Eq 5 from

reward history. A main difference between the cost profiles from the two hypotheses is the cost

at early times. Both the behaviour and neural recordings we analyze below seem to favor the

second, trial-aware hypothesis Eq 5. We hereon employ that version in the main text, and

show the results for the trial-unaware hypothesis in S7 Fig.

Neuroscience application: PGD in the tokens task

In this section, we apply the PGD algorithm to the “tokens task” [22]. We first give a simulated

example with periodic context dynamics. We then present an application to a set of non-

human primate experiments in which context variation was non-stationary [25]. For the latter,

we used the decision time dynamics over trials to fit a model for each of the two subjects. We

then validated the models by assessing their ability to explain (1) the concurrently recorded

behaviour via their context-specific behavioural strategies and (2) the neural activity in premo-

tor cortex (PMd) via the temporal profile of the underlying neural urgency signals.

In the tokens task, the subject must guess as to which of two peripheral reaching targets will

receive the majority of tokens that randomly jump, one by one every 200ms, from a central

pool initialized with a fixed number of tokens. Importantly, after the subject reports, the time

interval between remaining jumps contracts to once every 150ms (the “slow” condition) or

once every 50ms (the “fast” condition), giving the subject the possibility to save time by taking

an early guess. The interval contraction factor, 1 − α, for slow (α = 1/4) and fast (α = 3/4) con-

dition is parametrized by α 2 [0, 1], the incentive strength to decide early, which then serves as

the task context. The subject is thus tasked with learning the statistics of the number of tokens

at the end of the trial conditioned on an intermediate state in order to balance accuracy and

deciding early.

In contrast to the patch leaving task example from Section A, the tokens task has many

within-trial states and the state dynamics is stochastic. With the tth jump labelled St 2 {−1, 1}

serving as the state, for the purposes of prediction, the history of states can be compressed into

the tokens difference, Nt ¼
Pt

i¼1
Si, between the two peripheral targets with N0 = 0. The

dynamics of Nt is an unbiased random walk (see Fig 3A), with its current value sufficient to

determine the belief of a correct report, bt (computed in Methods). Since for binary rewards, bt
is also the expected reward, Nt is also sufficient for determining the opportunity cost of com-

mitment, Ccom
t (Eq 2). We display this commitment cost dynamics in Fig 3B. It evolves on a lat-

tice (gray), always starting at 0.5 (for p = 1/2) and ending at 0 for all p. We assume the agent

has learned to track this commitment cost. The PGD agent uses this commitment cost, along

with the estimate of the trial-aware deliberation cost, to determine when to stop deliberating

and report its guess.

A simulated example for a regularly alternating context sequence. We first show the

behaviour of the PGD algorithm in the simple case where α switches back and forth every 300

trials (see Fig 3). We call such segments of constant α ‘trial blocks’, with context alternating

between slow (α = 1/4) and fast (α = 3/4) blocks. The decision space in PGD is a space of

opportunity costs, equivalent to the alternative decision space formulated using beliefs [8]. In

particular, one can think of the deliberation cost as the decision boundary (Fig 3B). This

boundary is dynamic (see S1 Video), depending on performance history via the estimates,

r̂
tcontext
k and r̂

tlong
k , of the context-conditioned and stationary average reward, respectively. The
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result of these dynamics is effective context planning: the PGD algorithm sacrifices accuracy to

achieve shorter trial duration in trials of the fast block, achieving a higher context-conditioned

reward rate compared to decisions in the slow block (c.f. the slopes shown in the inset of S2(D)

Fig). This behaviour can be understood by analyzing the dynamics of r̂
tcontext
k and r̂

tlong
k , and

their effect on the dynamics of the decision time ensemble.

The two performance estimates behave differently from one another solely because of their

distinct integration times. Ideally, an agent would choose τcontext to be large enough that it

serves to average over trial-to-trial fluctuations in a context, but short enough to not average

over context fluctuations. In contrast, the value of τlong would be chosen large enough to aver-

age over context fluctuations. We apply those choices in this simulated example, with rounded

values chosen squarely in the range in which the values inferred from the behaviour in the fol-

lowing application will lie. As a result of this chosen values, the context estimate r̂
tcontext
k relaxes

relatively quickly after context switches to the context-conditioned stationary average perfor-

mance (dashed lines in Fig 3D), but exhibits stronger fluctuations as a result. The estimate of

the stationary reward, r̂
tlong
k , on the other hand has relatively smaller variance. This variance

results from the residual zigzag relaxation over the period of the limit cycle. Given the charac-

teristic block duration, Tblock, we can be more precise. In particular, when Tblock is much less

than τlong (Tblock/τlong� 1), the within-block exponential relaxation is roughly linear. Thus,

the average unsigned deviation between r̂
tlong
k and the actual stationary reward, ρ, can be

approximated using 1 − exp[−Tblock/τlong]� Tblock/τlong� 1. This scaling fits the simulated

data well (S2(D) Fig: inset).

The dynamics of these two performance estimates drives the dynamics of the k-conditioned

decision time ensemble via how they together determine the deliberation cost (Eq 5; S1

Video). For example, the mean component of this ensemble relaxes after a context switch to

the context-conditioned average, while the fluctuating component remains strong due to the

sequence of random walk realizations (S2(C) Fig). In the case of periodic context, the perfor-

mance estimates and thus also the decision time ensemble relax into a noisy periodic trajectory

over the period of a pair of fast and slow blocks (Fig 3D). Over this period, they exhibit some

stationary bias and variance relative to their corresponding stationary averages (distributions

shown in S2(E) Fig).

Fit to behavioural data from non-human primates and model validation. Next, we fit a

PGD agent to each of the two non-human primates’ behaviour in the tokens task experiments

reported in [25] and compare to AR-RL solutions. As with the above example (c.f. Fig 3), trials

were structured in alternating blocks of α = 1/4 and α = 3/4. Fig 4A shows context-switching

α-sequence from these experiments, which, in contrast to the above example exhibits large,

irregular fluctuations in block size (These were primarily as as result of the experimenter

adapting to fluctuations in motivation of the subject. D. Thura. Personal communication).

So far, PGD has only two free parameters: the two filtering time constants, τlong and τcontext.

We anticipated only a weak dependence of the fit on the τlong, so long as it exceeded the aver-

age duration of a handful of trial blocks enabling a sufficiently precise estimate of ρ. In con-

trast, the context filtering timescale, τcontext, is a crucial parameter as it dictates where the PGD

agent lies on a bias-variance trade-off in estimating rak , the value of which determines the con-

text-specific contribution to the deliberation cost (Eq 2). To facilitate the model’s ability to fit

individual differences, we introduce a subjective reward bias factor, K, that scales the rewards

fed into the performance filters. We also add a tracking-cost sensitivity parameter, ν, that con-

trols τcontext to avoid wasting adaptation speed (see Methods for details). The latter made it

possible to fit the asymmetric switching behaviour observed in the average decision time

dynamics. With these four parameters, we quantitatively match the baselines and exponential-
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like relaxation of the average decision time dynamics around the two context switches (Fig 4B

and 4C; see Methods for fitting details).

A comparison of the best-fitting parameter values over the two monkeys (Fig 4D–4F) sug-

gests that the larger the reward bias, K (Fig 4E), the more hasty the context-conditioned perfor-

mance estimate (the smaller τcontext), and the lower the sensitivity to the tracking cost (Fig 4F).

This is consistent with the hypothesis that subjects withhold cognitive effort in contexts of

higher perceived reward [9]. Along with the correspondence in temporal statistics of the

behaviour (e.g. S6 Fig), the fitted model parameters for the two subjects provides a basis on

which to interpret the subject differences in the results of the next section, in particular their

separation on a speed-accuracy trade-off, as originating in the distinct reward sensitivity

shown here.

To better understand where both the data and the learned PGD agent lie in the space of

strategies for the tokens task, we computed reward-rate (AR-RL) optimal solutions for a given

Fig 4. PGD model fit to NHP behaviour for non-stationary α-dynamics reported in Ref. [25]. (A) Block length sequence used in the experiment. (b,c) decision

times (dots) aligned on the context-switching event type (fast-to-slow in gray; slow-to-fast in color) and averaged. Shaded regions are the standard error bounds of the

models’ average decision times. (D) Error evaluated on a ðt̂context; t̂ longÞ-plane cut through the parameter space at the best-fitting n ¼ n̂� and K ¼ K̂ � (gray area indicates

timescales within an order of magnitude of the end of the experiment). Contours show the first 10 contours incrementing by 0.01 error from the minimum (shown as a

circle marker). Colors refer to subject, as in (B) and (C). (E) Same for ðt̂context; K̂ Þ at t̂ long ¼ t̂
�
long and n ¼ n̂�. (F) Same for ðt̂context; n̂Þ at t̂ long ¼ t̂

�
long and K ¼ K̂ �.

https://doi.org/10.1371/journal.pcbi.1010080.g004
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fixed context, α (here α 2 [0, 1]), using the same approach as [8] (we confirmed that the con-

ventional discount-reward value iteration achieved the same solution in the limit of the undis-

counted case). In each of average-reward and discount-reward formulations, the dynamic

programming approach involves iterating Bellman’s equation to obtain the optimal value func-

tions from which the optimal policy and its reward rate can be obtained (see Methods for

details). The optimal reward rate as a function α is shown in Fig 5A. The strategies generating

these reward rates interpolate from the wait-for-certainty strategy at low α to the one-and-

done strategy [34] at high α. The former decides when the success probability first hits 1 and

the latter decides after a single token jump in the direction of that jump. The α-conditioned

reward rates achieved by the two primates with their corresponding PGD model, and a refer-

ence human (Single subject behavioural data shared by Thomas Thierry.) are also shown in

Fig 5A. They clearly fall below the optimal strategy, and, as expected, above the strategy that

picks one of the three actions (report left, report right, and wait) at random.

To confirm that this similarity in performance between PGD and the data arises from a bet-

ter fit to the behaviour than AR-RL, we plotted the distribution of the differences between

model and data decision times, |Δtdec|, conditioned on the context (Fig 5B and 5C). For com-

parison with previous work [8] and to account for deliberation cost in AR-RL, we added to the

AR-RL reward objective a constant auxiliary deliberation cost rate, c, incurred up to the deci-

sion time in each trial, and chose the cost rate, c�, that gave the lowest mean difference. In both

contexts, PGD exhibits significantly lower error than this c� AR-RL solution (Kolmogorov-

Smirnov two-sample test).

To reveal the source of this discrepancy in both performance and behaviour, we turned to

analyzing the corresponding policies of PGD and c-based AR-RL agents. A robust and rich

representation of the behavioural statistics is the state and time-conditioned survival probabil-

ity that a decision has not yet occurred. It serves as a summary of the action policy associated

with a stationary strategy (see Methods for its calculation from response times). Applied

equally to the decision times of both model and data, it can provide a means of comparison

even in this non-stationary setting. We give this conditional probability for each of the two

contexts for subject 1 and its fitted PGD model in Fig 5D–5G. We left the many possible noise

sources underlying the behaviour out of the model in order to more clearly demonstrate the

PGD algorithm. However, such noise sources would be necessary to quantitatively match the

variability in the data (e.g. added noise in the performance estimates leads to larger variability

in the location of the decision boundary and thus also to larger spread in these survival proba-

bility functions). In the absence of these noise sources, we see the model underestimates the

spread of probability over time and tokens state. Nevertheless, the remarkably smooth average

strategy is well captured by the model (white dashed lines in Fig 5D–5G). Specifically, policies

approximately decide once either of the peripheral targets receive a certain number of tokens.

Comparing results across context, we find that fast block strategies (Fig 5E and 5G) exhibit ear-

lier decision times relative to slow block strategies (Fig 5D and 5F) in both model and data.

The strategies for subject 2 are qualitatively similar, but shifted to earlier times relative to sub-

ject 1 (S3 Fig). Our model explains this inter-individual difference as resulting from subject 2

having a larger reward bias, K, and faster context integration time, τcontext (c.f. Fig 4E).

The correspondence between the PGD model and data over the many token states in Fig

5D–5G explains their similar performance (c.f. Fig 5A). This similarity in policy is remarkable

given that the model has essentially only a single, crucial degree of freedom (τcontext), a priori
unrelated to how decision times depend on token state. Note that in both the fitted PGD

model and the primate behaviour, residual ambiguity (Nt� 0) is resolved at intermediate trial

times (Fig 5B–5E).
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Fig 5. Context-conditioned analysis of PGD and comparison to AR-RL models. (A) Shown is the reward rate as a function of incentive strength, α. The AR-RL

solution with no augmented cost (c = 0) interpolates between the wait-for-certainty strategy (brown) and the one-and-done strategy (red). We also show the slow

and fast context-conditioned reward rates for the two primates (blue and orange circles) and the PGD model fitted to them (crosses). For reference, we show the

mean+/-std.dev. of a forthcoming dataset of 32 humans. Reward rates for the human and non-human primates are squarely in between the best (black dashed) and

uniformily random (gray) strategy. (b,c) The distribution over trials of differences in decision times between model and data, |Δtdec| = |tdec,data − tdec,model|,

conditioned on slow and fast block contexts. Solid lines are for PGD. Dotted lines are for the AR-RL solution using the cost rate, c�, with the lowest mean error. The

residual sum of squares (RRS) for each model/block combination is displayed. (d-g) Interpolated state-conditioned survival probabilities, P(tdec = t|Nt, t), over slow

(d,f) and fast (e,g) blocks. White dotted lines show the P(tdec = t|Nt, t) = 0.5 contour. (h,i) State-conditioned decision time frequencies (cross size) from AR-RL

optimal decision boundaries across different values of the cost rate, c (colored crosses) for slow (h) and fast (i) conditions. Only samples withNt< 0 and Nt> 0,

respectively, are shown. For comparison, the reflected axes shows as gray crosses the state-conditioned decision time frequencies of the data.

https://doi.org/10.1371/journal.pcbi.1010080.g005
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The AR-RL strategies are plotted across c in Fig 5G and 5H. In contrast, they give no inter-

mediate decision times at ambiguous (Nt� 0) states, invariably waiting until the ambiguity

resolves. This in fact holds over the entire (α, c)-plane (see S9 Fig for the complete depen-

dence), and also under the addition of a movement cost, i.e. a constant cost incurred by either

of the reporting actions. Thus, whereas AR-RL policies shift around the edges of the relevant

decision space as α or c is varied, the PGD policy lies squarely in the bulk, tightly overlaying

the policy extracted from the data. We conclude that the context-conditioned strategies of the

non-human primates in this task are well-captured by PGD, while having little resemblance to

the behaviour that would maximize reward rate with or without a fixed deliberation cost rate.

We address the additional freedom of a time-varying cost rate in the discussion.

Neural urgency and context-dependent opportunity cost. So far, we have fit and ana-

lyzed the PGD model with respect to recorded behaviour. Here, we take a step in the important

direction of confronting the above theory of behaviour with the neural dynamics that we pro-

pose drive it. The proposal for the tokens task mentioned at the end of the introduction has

evidence strength and urgency combining in PMd, whose neural dynamics implements the

decision process. In Fig 6A, we restate in a schematic diagram an implementation of this

dynamics that includes a collapsing decision boundary. In the one-dimensional belief space

for the choice (Fig 6A(top)) [8, 35], the rising belief collides with the collapsing boundary to

determine the decision time. In the equivalent commitment and deliberation cost formulation

developed here (Fig 6A(middle)), the falling commitment cost collides with the rising delibera-

tion cost. The collapsing boundary in belief space can be parametrized as C − ut, where C is the

initial strength of belief, e.g. some desired confidence, that is lowered by a growing function of

trial time ut> 0. The decision criterion is then bt> C − ut, where bt is the belief, i.e. the proba-

bility of a correct report. For AR-RL optimal policies, ut emerges from value maximization

and thus has a complicated dependence on the opportunity cost sequence, Cdel
t . For PGD, in

contrast, C is interpreted as the maximum reward rmax and ut is identically Cdel
t . For a linear

neural encoding model in which belief, rather than evidence, is encoded in neural activity, the

Fig 6. Comparing neural urgency and collapsing decision boundaries. (A) Top: Rising belief (blue) meets collapsing decision boundary (black

dashed) in belief space. Middle: Falling commitment cost (blue) meets rising deliberation cost (black-dashed) in cost space. Bottom: Belief/

commitment cost is encoded (blue) into a low-dimensional neural manifold, with the addition of an urgency signal (orange) (c.f. Figure 8 in [8]). The

decision (red circle) is taken when the sum passes a fixed threshold (black-dashed). (B) Deliberation cost maps onto the urgency signal extracted

from zero-evidence conditioned cell-averaged firing rate in PMd (200ms time steps).

https://doi.org/10.1371/journal.pcbi.1010080.g006
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sum of the encoded belief ~bt and the encoded collapsing boundary, ~ut , evolve on a one-dimen-

sional choice manifold. According to the proposal, when this sum becomes sufficiently large

(e.g. ~bt þ ~ut > ~C for some threshold ~C), PMd begins to drive the activity in downstream

motor areas towards the associated response.

Neural urgency was computed from the PMd recordings of [25] in [36]. This computation

relies on the assumption that while a single neuron’s contribution to ~bt will depend on its

selectivity for choice (left or right report), the urgency ~ut is a signal arising from a population-

level drive to all PMd neurons, irrespective of their selectivity. Thus, ~ut can be extracted from

neural recordings by conditioning on zero-evidence states (~bt ¼ 0) and averaging over cells.

In [36], error bars were computed at odd times via bootstrapping; data at even times was

obtained by interpolating between Nt = ±1; and data was pooled from both subjects. We have

excluded times at which firing rate error bars exceed the range containing predictions from

both blocks. To assess the correspondence of the components of the deliberation cost devel-

oped here and neural urgency, in Fig 6B we replot their result (c.f. Figure 8B of [36]). We over-

lay the mean (+/- standard deviation) of the opportunity cost sequence, Cdel
t (shaded area in

Fig 4; averaged over all trials produced by applying the two fitted PGD models on the data

sequence and conditioning the resulting average within-trial deliberation cost on context). To

facilitate our qualitative comparison, we convert cost to spikes/step simply by adjusting the y-

axis of the deliberation cost. The observed urgency signals then lie within the uncertainty of

the context-conditioned deliberation cost signals computed from the fitted PGD models.

There are multiple features of the qualitative correspondence exhibited in Fig 6B: (1) the linear

rise in time; (2) the same slope across both fast and slow conditions; and (3) the baseline offset

between conditions, where the fast condition is offset to higher values than the slow condition.

Such features would remain descriptive in the absence of a theory. With the theory we have

presented here, however, each has their respective explanations via the interpretation of

urgency as the opportunity cost of deliberation: (1) the subject uses a constant cost per token

jump, (2) this cost rate refers to moment-to-moment decisions, irrespective of context, that is

reflective of the use of the context-agnostic stationary reward, and (3) trial-aware planning

over contexts leads to an opportunity cost baseline offset with a sign given by the reward rate

deviation ρα − ρ with respect to the stationary average, ρ.

Up to now, the computational and neural basis for urgency has remained largely unex-

plored in normative approaches, which also typically say little about adaptation effects (see

[37] for a notable exception). In summary, we exploited the adaptation across context switches

to learn the model and explained earlier responses in high reward rate contexts as the result of

a higher opportunity cost of deliberation. While this qualitative effect is expected, we go

beyond existing work by quantitatively predicting the average dependence on both time and

state (Fig 5B–5E) as well as the qualitative form of urgency signal (Fig 6B). Taken together, the

data is thus consistent with our interpretation that neural activity underlying context-condi-

tioned decisions is gated by opportunity costs reflective of a trial-aware timescale hierarchy

computed using performance estimation on multiple timescales.

Discussion

We introduced PGD, a heuristic decision-making algorithm for continuing tasks that gates

deliberation based on performance. We constructed a foraging example for which PGD is the

optimal strategy with respect to the average-adjusted value function of average-reward rein-

forcement learning (AR-RL). While this will not be true in general, PGD does strike a balance

between strategy complexity and return. The PGD decision rule does not depend on task
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specifics and exploits the stationarity of the environment statistics while simultaneously hedg-

ing against longer term non-stationarity in reward context. It does so by splitting the problem

into two fundamental components—learning the statistics of the environment in order to

compute the opportunity cost of commitment, and tracking one’s own performance in that

environment with which to compute the opportunity cost of deliberation. This splitting is not

only crucial to making efficient use of the opportunity cost of time in non-stationary settings.

Building on the field’s current understanding of how the cortico-basal ganglia system supports

higher-level decision-making [38], we propose that the cost of deliberation arises from perfor-

mance estimated on multiple, behaviourally-relevant timescales and is broadcast to multiple,

lower-level decision-making areas to gate the speed of their respective evidence-driven

attractor dynamics. Incorporating this cost into existing models of such dynamics [35, 39, 40]

is an interesting direction for future work. Consistent with this picture, PGD’s explanatory

power was borne out at both the behavioural and neural levels for the tokens task data we ana-

lyzed. In particular, a deliberation cost constructed from trial-aware planning was supported

independently by both these data sources. We used behavioural data to fit and validate the the-

ory, and neural recordings to provide evidence of one of the neural correlates it proposes: the

temporal profile of neural urgency.

Scientific and clinical implications

In our proposal, we have linked two important and related, but often disconnected fields: the

systems neuroscience of the neural dynamics of decision-making and the cognitive neurosci-

ence of opportunity cost and reward sensitivity. The view that tonic dopamine encodes average

reward is two decades old [5]. However, the existence of a reward representation decomposed

by timescale has received increasing empirical support only in recent years, from cognitive

results [41–43] to a recent unified view of how dopamine encodes reward prediction errors

using multiple discount factors [44, 45] and of dopamine as encoding both value and uncer-

tainty [46]. Dopamine’s effect on time perception has been proposed [47] and has empirical

support [48], but the mechanism by which its putative effect on decision speed is implicated in

the neural dynamics of the decision-making areas driving motor responses was unknown. Our

theory fills this explanatory gap by considering dynamic evidence tasks and parametrizing

urgency using a multiple-timescale representation of performance. One candidate for the lat-

ter’s neural implementation is in the complex spatio-temporal filtering of dopamine via

release-driven tissue diffusion and integration via DR1 and DR2 binding kinetics [49]. Subse-

quent neural filtering and computation by striatal network activity could also play a role [50].

The study of spatiotemporal filtering of dopamine is increasingly accessible experimentally

[51, 52] and provides an exciting direction for multiscale analysis of behaviour. Our proposal

that urgency is the means by which the neural representation of reward ultimately affects neu-

ral dynamics in decision-making areas frames a timely research question on which these

experimental methods could shed light.

We applied PGD to decisions playing out in PMd, a decision-making area relevant to arm

movements. PGD appears to be relevant to other kinds of decisions, however. For instance, a

large body of work has studied decisions through recordings in lateral intraparietal cortex in

random dot motion tasks whose environment is formally similar to that of the tokens task.

One seminal study identified an urgency signal with the same properties as those exhibited by

the tokens task: a linear rise at early trial times that is independent of trial evidence and an off-

set with sign given by the reward rate deviation of the current context, here two and four-

choice trials [23]. While decision boundaries obtained using AR-RL are evidence-independent,

these models require tailored cost functions that are fit to those experiments in a procedure
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that assumes optimality a piori [8]. Here, we offer an alternative explanation that behaviour is

in fact suboptimal, with the decision boundary determsined directly by the estimated opportu-

nity cost only. PGD decision boundaries are thus independent of evidence by construction. In

contrast to the tokens task, however, context in these random dot task experiments was sam-

pled randomly and thus its dynamics lacked temporal correlation [23]. In this case, a natural

hypothesis from our approach is that a pair of performance filters, one for each context, tracks

the reward history in two parallel streams. In this case, our theory would predict that the ratio

of slopes of urgency across the two contexts reflects the ratio of context-conditioned reward

rates. An estimation procedure described in the Methods for this data [23] agrees to within

20% error, providing support for the hypothesis that PGD underlies non-human primate

behaviour on this widely-studied task. Within the context of the drift-diffusion models typi-

cally used to understand neural activity for that task, PGD provides a principled mechanism

that implements collapsing decision boundary. PGD is thus easily incorporated into such

models and testing the generality of our theory using tailored experiments in this setting is an

important next step. We expect that the ideas behind PGD can also provide an explanation to

the context dependence observed in response times in non-episodic tasks with varying context

(e.g. in bandit tasks [53]) and foraging tasks.

Urgency may play a role in both decision and action processes, potentially providing a

transdiagnostic indicator of a wide range of cognitive and motor impairments in Parkinson’s

disease and depression [54]. When fit to recorded behaviour from each subject across a set of

subjects, our model can be used in clinical contexts to dissect inter-individual differences via

the differences in the fitted model parameters. We gave an example here for the two non-

human primates, explaining one as more hasty than the other due to higher reward bias and

shorter memory. Our theory offers a means to ground these diverse results in neural dynamics

by formulating opportunity cost estimation as the underlying causal factor linking vigor

impairments (e.g. in Parkinson’s disease) and dysregulated dopamine signalling in the reward

system [54–56]. We provide a concrete proposal for a signal filtering system that extracts a

context-sensitive opportunity cost from a reward prediction error sequence putatively encoded

by dopamine. Neural recordings of basal ganglia provide a means to identify the neural sub-

strate for this system.

Commitment cost estimation

Beyond the estimation of the opportunity cost of deliberation, we assumed that the agent had a

precise estimate of the expected reward, which it used to compute the within-trial commit-

ment cost. For the tokens task, a recorded signal in dorsal lateral prefrontal cortex of non-

human primates correlates strongly with belief [26], equivalent to the expected reward for

binary rewards). How this quantity is computed by neural systems is not currently known.

However, for a general class of tasks, a generic, neurally plausible means to learn the expected

reward is via distributional value codes [46]. For example, the Laplace code is a distributional

value representation that uses an ensemble of units over a range of temporal discount factors

and reward sensitivities [57]. The authors show that expected reward is linearly decodeable

from this representation.

Experimental predictions

A feature of our decision-making theory is that it is highly vulnerable to falsification. First,

with regards to behaviour via the shape of the action policy using our survival probability

representation (c.f. Fig 5B–5E, 5G and 5H), PGD varies markedly with reward structure and

thus provides a wealth of predictions for how observed behaviour should be altered by it. For
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example, a salient feature of the standard tokens task is its reflection symmetry in the tokens

difference, Nt. We can break this symmetry for which the theory predicts a distinctly asymmet-

ric shape (S10 Fig; for details see Methods). Our theory is also prescriptive for neural activity

via the temporal profile of neural urgency. The slope of Cdel
t remained fixed across blocks for

relatively short block lengths used in the data analyzed here. In the opposite limit, Tblock/τlong

� 1, r
tlong
k approaches ρα except when undergoing large, transient excursions after context

switches. Thus, the deliberation cost is given by the first component in Eq 5 most of the time,

with the context specific reward rate as the slope. One simple prediction is that the slope of

urgency should exhibit increasing variation as the duration of the blocks increases.

Reinforcement learning theory

We suggest how to generalize average-adjusted value functions to context-varying opportunity

cost of time in a way that reduces to AR-RL when context is fixed or not tracked. This adds a

continuing task perspective to episodic AR-RL, in line with recent work in machine learning,

which is arguably the more appropriate reinforcement learning setting for many decision-

making experiments in neuroscience. The epistemic perspective entailed in the estimation of

these costs parallels a recent epistemic interpretation of the discount-reward formulation as

encoding knowledge about the volatility of the environment [58].

Our work also suggests a new class of reinforcement learning algorithms between model-

based and model-free: only parts of the algorithm need adjustment upon task structure varia-

tion. This is reminiscent of how the effects of complex state dynamics are decoupled from

reward when using a successor representation [59], but tailored for the average-reward rather

than the discount-reward formulation. We have left analysis of the algorithmic complexity of

PGD to future work, but expect performance improvements, as with successor representa-

tions, in settings where decoupling the learning of environment statistics from the learning of

reward structure is beneficial.

Comparison with humans

In the space of strategies, PGD lies in a regime between fully exploiting assumed task knowl-

edge (average-case optimal) and assumption-free adaptation (worst-case optimal). Highly

incentivized human behaviour is likely to be more structured than PGD because of access to

more sophisticated learning. While some humans land on the optimal one-and-done policy in

the fast condition when playing the tokens task (Personal communication, Thomas Thierry),

most do not. The human brain likely has all the components needed to implement PGD. Nev-

ertheless, the situations in which we actually exploit PGD, if any, are as yet unclear. In particu-

lar, how PGD and AR-RL relate to existing behavioural models tailored to explain relative-

value, context-dependent decision-making in humans [6], such as scale and shift adaptation

[60], is an open question. Whether or not PGD is built into our decision-making, the question

remains if PGD is optimal with respect to some bounded rational objective. In spite of the

many issues with the latter approach [61], using it to further understand the computational

advantages of PGD is an interesting direction for future work.

Despite our putative access to sophisticated computation, humans still exhibit measurable

bias in how we incorporate past experience [62]. One simple example is the win-stay/lose-shift

strategy, a more rudimentary kind of performance-gated decision-making than PGD, which

explains how humans approach the rock-paper-scissors game [63]. In that work, numerical

experiments demonstrated that this strategy outperforms at a population level the optimal

Nash equilibrium for this game, demonstrating that the use of such seemingly sub-optimal

strategies can confer a surprising evolutionary advantage. This example supports the claim
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that relatively simple and nimble strategies such as PGD make for attractive candidates when

acknowledging that a combination of knowledge and resource limitations over task, develop-

ment, and evolutionary timescales have shaped decision-making in non-stationary

environments.

Methods

Code for simulations and main figure generation (written in Python 3) is publicly accessible as

a online repository: https://github.com/mptouzel/dyn_opp_cost/.

Patch leaving task

We devised a mathematically tractable patch leaving task for which PGD learning is optimal

with respect to the average-adjusted value function. Here the value is simply the return from

the patch. This value function is related, but not equivalent to the marginal value of optimal

foraging, for which the decision rule is Cdel
t > rmax � Ccom

t ¼ �rt [2]). This choice of task allowed

us to compare PGD’s convergence properties relative to conventional AR-RL algorithms that

make use of value functions. In contrast to PGD, the latter requires exploration. For a compar-

ison generous to the AR-RL algorithm, we allowed it to circumvent exploration by estimating

the value function from off-policy decisions obtained from the PGD algorithm using the same

learning rate. We then compared them to PGD using their on-policy, patched-averaged

reward. This made for a comparison based solely between the parameters of the respective

models. If we did not allow for this, the AR-RL algorithms would have to find good learning

signals by exploring. In any form, this exploration would lead them converge substantially

slower. This setting thus provides a lower bound on the convergence times of the AR-RL

algorithm.

In this task, the subject randomly samples (with replacement) d patches, each of a distinct,

fixed, and renewable richness defined by the maximum return conferred. These maximum

returns are sampled before the task from a richness distribution, p(rmax), with rmax > 0 and are

fixed throughout the experiment. The trials of the task are temporally extended periods during

which the subject consumes the current patch. After a time t in a patch, the return is defined r
(t) = rmax(1 − (λt)−1). This patch return profile, 1 − (λt)−1, is shared across all patches and satu-

rates in time with rate λ, a parameter of the environment that sets the reference timescale. The

return diverges negatively for vanishing patch leaving times for mathematical convenience,

but also evokes situations where leaving a patch soon after arriving is prohibitively costly (e.g.

when transit times are long). A stationary policy is then a leaving time, ts, for each of d patches,

where the s-subscript indexes the patch. Given any policy, the stationary reward rate for uni-

formly random sampling of patches is then defined as

r ¼
Xd

s¼1

rsðtsÞ
�
Xd

s¼1

ts : ð6Þ

We designed this task to (1) emphasize the speed-return trade-off typical in many deliberation

tasks, and (2) have a tractable solution with which to compare convergence properties of PGD

and AR-RL value function learning algorithms.

A natural optimal policy is the one that maximizes the average-adjusted trial return, Q(r, t)
= r−ρt. Given the return profile we have chosen, the corresponding optimal decision time, t�s ,

in the sth patch obtained by maximizing r − ρt is t�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmax;s=ðlrÞ

q
, which scales inversely

with the reward rate so that decision times are earlier for larger reward rates, because con-

sumption (or more generally deliberation) at larger reward rates costs more. We chose this
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return profile such that stationary PGD learning gives exactly the same decision times: the con-

dition Cdel
t ¼ Ccom

t for patch s here takes the form ρts = rmax,s/(λts). Thus, they share the same

optimal reward rate, ρ�. Using t�s for each patch in Eq 6 gives a self-consistency equation for ρ
with solution r� ¼ lm2

1
=4m2

1=2
, where mn ¼ hrnmaxipðrmaxÞ

(we have assumed d is large here to

remove dependence on s). Described so far in continuous time, the value function was imple-

mented in discrete time such that the action space is a finite set of decision times selected

using the greedy policy, t� ¼ argmaxtQ̂ðr; tÞ, where Q̂ðr; tÞ is the estimated trial return. As a

result, there is a finite lower bound on the performance gap, i.e. the relative error, � = (ρ� − ρ)/

ρ� > 0 for the AR-RL algorithm. Approaching this bound, convergence time for both PGD

and AR-RL learning is limited by the integration time τ of the estimate r̂tk (c.f. Eq 8) of ρ. We

note that PGD learns faster in all parameter combinations tested. To demonstrate the insensi-

tivity of PGD to the state space representation, at 5 × 105 time steps into the experiment we

shuffled the labels of the states. PGD is unaffected, while the value function-based AR-RL algo-

rithm is forced to relearn and in fact does so slower than in the initial learning phase, due to

the much larger distance between two random samples, than between the initial values (chosen

near the mean) and the target sample.

Filtering performance history

For unit steps of discrete time, the step-wise update of the performance estimate, r̂tt , is

r̂tt ¼ ð1 � bÞr̂
t
t� 1
þ bRt ; ð7Þ

with β = 1/(1 + τ) called the learning rate, and τ the characteristic width of the exponential

window of the corresponding continuous time filter over which the history is averaged. We

add τ as a superscript when denoting the estimate to indicate this. Exceptionally, here t indexes

absolute time rather than trial time. Note that a continuous-time formulation of the update is

possible via an event-based map given the decision times in which the reward event sequence

is given as a sum of delta functions. In either case, to leading order in β, r̂tt � b
Pt

i Ri, i.e. the

filter sums past rewards. Thus, when t � OðtÞ � 1, b � Oð1=tÞ � 1 and so r̂tt � b
Pt

i Ri !
r when t is large.

The rewards in this task are sparse: Rt = 0 except when a trial ends and the binary trial

reward Rk (1 or 0) is received. A cumulative update of Eq 7 that smooths the reward uniformly

over the trial duration and is applied once at the end of each trial is thus more compuatation-

ally efficient. Resolving a geometric series leads to the cumulative update [9, 33]

r̂tk ¼ ð1 � bÞ
Tk r̂tk� 1

þ ð1 � ð1 � bÞ
TkÞrtrial

k ; ð8Þ

where the smoothed reward, rtrial
k ¼ Rk=Tk, can be interpreted as a trial-specific reward rate.

The initial estimate, r̂t
0
, is set to 0. Exceptionally, r̂t

1
¼ R1=T1, after which Eq 8 is used. Using

the first finite sample as the first finite estimate is both more natural and robust than having to

adapt from zero. We will reuse this filter for different τ and denote the filtered estimate from

its application with a τ-superscript, r̂tk. For example, the precision of r̂
tlong
k as an estimate of a

stationary reward rate ρ is set by how many samples it averages over, which is determined by

the effective length of its memory given by τlong. Since we assume the subject has learned the

expected reward, �rt, we use it instead of Rk when computing rtrial
k .

Tokens task: A random walk formulation

The tokens task is a continuing task of episodes (here trials), which can be formulated using

the token difference, Nt. Each trial effectively presents to the agent a realization of a finite-
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length, unbiased random walk, N tmax
¼ ðN0; . . . ;Ntmax

Þ with Nt = {−t, . . ., t} and N0 = 0. We

express time in units of these steps. The agent observes the walk and reports its prediction of

the sign of the final state, signðNtmax
Þ ¼ �1 (tmax is odd to exclude the case it has no sign). The

time at which the agent reports is called the decision time, tdec 2 {0, 1, . . ., tmax}. For a greedy

policy, sign(Nt) can be used as the prediction (and the reporting action selected randomly if

Ntdec = 0). The decision-making task then only involves choosing when to decide. In this case,

the subject receives reward R ¼ YðNtmax
NtdecÞ at the end of the random walk, i.e. a unit reward

for a correct prediction, otherwise nothing (Θ is the Heaviside function: Θ(x) = 1 if x> 0, zero

otherwise).

An explicit action space beyond decision time is not necessary for the case of greedy actions.

It can nevertheless be specified for illustration in an Markov decision process (MDP) formula-

tion: the agent waits (at = 0 for t< tdec) until it reports its prediction, atdec = ±, after which

actions are disabled and the prediction is stored in an auxiliary state variable used to determine

the reward at the end of the trial. A MDP formulation for a general class of perceptual deci-

sion-making tasks, including the tokens and random dots task, is given in Methods).

Perfect accuracy in this task is possible if the agent reports at tmax since R ¼ YðN2
tmax
Þ ¼ 1.

The task was designed to study reward rate maximizing policies. In particular, the task has

additional structure that allows for controlling what this optimal policy is through the incen-

tive to decide early, α, incorporated into the trial duration for deciding at time t in the trial,

TðtÞ ¼ t þ ð1 � aÞðtmax � tÞ þ TITI: ð9Þ

Here, a dead time between episodes is added via the inter-trial interval, TITI, to make subopti-

mal the strategy of predicting randomly at the trial’s beginning. It was set to 7.5 steps, the value

used in [25]. In practise, this time also includes a random wait time (uniformly distributed

between 2 and 3 steps) at the beginning of the trial to allow the subject to set-up. We excluded

this time from our analysis. Only trials in which the subject completed the trial were analyzed.

We emphasize that it is through the trial duration that α serves as a task parameter controlling

the strength of the incentive to decide early. When α is fixed, we denote the corresponding

optimal stationary reward rate, ρα, obtained from the reward rate maximizing policy. This pol-

icy shifts from deciding late to deciding early as α is varied from 0 to 1 (c.f. S9(F) and S9(G)

Fig).

We consider a version of the task where α is variable across two episode types, a slow (α =

1/4) and fast (α = 3/4) type. The agent is aware that the across-trial α dynamics are responsive

(maybe even adversarial), whereas the within-trial random walk dynamics (controlled by the

positive jump probability, here p = 1/2) can be assumed fixed (see the next section for how p
factors into the expression for the expected reward, �rt.

Expected trial reward for the tokens task

We derived and used an exact expression for the expected reward in a trial of the tokens task.

We derive that expression here as well as a simple approximation. The state sequence is formu-

lated as a tmax-length sequence of random binary variables, Stmax
¼ ðS1; . . . ; Stmax

Þ, St = ±1, i = 1,

2, . . ., tmax. Consider a simple case in which each is an independent and identically distributed

Bernoulli sample, PðsÞ ¼ p1þs
2 ð1 � pÞ

1� s
2 , for jump probability p� 1/2. The distribution of Stmax

is then

Pðstmax
Þ ¼

Ytmax

i¼1

PðsiÞ : ð10Þ
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We will use this distribution to compute expectations of quantities over this space of trajecto-

ries, namely the sign of Nt ¼
Pt

i¼1
Si, for some 0� t� tmax and in particular the sign of the

final state, x ≔ sgnðNtmax
Þ 2 fþ; � g given Nt = n. Note that Nt is even if t is even and same

with odd values. We remove the case of no sign in Ntmax
by choosing tmax to be odd.

First, consider predicting sgn(Nt) with no prior information. The token difference, −t� Nt
� t, appears directly in Pðstmax

Þ. Marginalizing (here just integrating out) the additional degrees

of freedom leads to a binomial distribution in the number of Si for i� t for which Si = +1,

Nþt ¼
Pt

i¼1
YðsiÞ ¼ ðt þ NtÞ=2,

PðNþt ¼ nÞ ¼
t
n

� �

pnð1 � pÞt� n ; ð11Þ

with n 2 {0, . . ., t} and Nt ¼ 2Nþt � t. Thus, the probability that Nt> 0, i.e. Nþt > t=2, is

PðNt > 0Þ ¼
Xt

n¼0

t
n

� �

pnð1 � pÞt� nYðn � t=2Þ : ð12Þ

Now consider predicting x ¼ sgnðNtmax
Þ, given the observation Nt = n. Define t0 = tmax − t

as the remaining time steps to the predicted time and Nt0 ¼
Ptmax

i¼tþ1
si, i.e. the total count in the

remaining part of the realization. Then the probability of ξ = + conditioned on the state Nt = n,

denoted pn,t, is defined in the same way as P(Nt> 0),

pþn;t ≔ Pðx ¼ þjNt ¼ nÞ ¼
Xt0

n0¼0

t0

n0

� �

pn0 ð1 � pÞt
0 � n0
Yðn0 � ðt0 � nÞ=2Þ : ð13Þ

where Nþt0 ¼ n0 is the number of positive jumps in the remaining t0 = tmax − t steps and we

have used Ntmax
¼ Nt þ Nt0 ¼ Nþt0 � ðt0 � NtÞ=2. The Θ(n0 − (t0 − n)/2) factor effectively

changes the lower bound of the sum to max{0, d(t0 − n)/2e}, where d�e rounds up. If d(t0 − n)/

2e � 0 then pþn;t ¼ 1 since the sum is over the domain of the distribution, which is normalized.

Otherwise, the lower bound is d(t0 − n)/2e, and the probability of ξ = +1 is

pþn;t ¼
Xt0

n0¼dðt0 � nÞ=2e

t0

n0

� �

pn0 ð1 � pÞt
0 � n0

: ð14Þ

For odd tmax, the probability that ξ = − is denoted p�n;t ¼ 1 � pþn;t. For the symmetric case,

p = 1/2,

pþn;t ¼
1

2t
0

Xt0

n0¼dðt0 � nÞ=2e

t0

n0

� �

; ð15Þ

when d(t0 − n)/2e> 0 and 1 otherwise. This expression is equivalent to equation 5 in [22],

which was instead expressed using N �t0 .
The space of trajectories, i.e. of stmax

, maps to a space of trajectories for pþn;t defined on an

evolving lattice in belief space. The expected reward in this case is,

�rt ≔ hrjNt ¼ ni ¼ E½YðNtmax
NtÞjNt ¼ n� ð16Þ

¼ maxfpþn;t; 1 � p
þ
n;tg ð17Þ

¼ bt ; ð18Þ
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where the belief of correct report bt ≔ maxfpþn;t; 1 � p
þ
n;tg. The commitment cost

Ccom
t ¼ rmax � �rt, then also evolves on a lattice (see Fig 3B). More generally, �rt ¼ Drbt þ rincorrect

for Δr the difference of correct rcorrect (here 1) and incorrect rincorrect (here 0) rewards. Since

rmax = rcorrect, we have Ccom
t ¼ Drð1 � btÞ. For p = 1/2 and Δr = 1, Ccom

t¼0
¼ 1=2.

The shape of pþn;t is roughly sigmoidal, admitting the approximation,

pþn;t �
1

1þ exp½� ðat þ bÞn�
ð19Þ

where fitting constants a and b depend on tmax. For tmax = 15, a = 0.03725 and b = 0.3557. We

demonstrate the quality of this approximation in S5 Fig. Approximation error is worse at t
near tmax. More than 95% of decisions times in the data we analyzed occur before 12 time

steps, where the approximation error in probability is less than 0.05. A similar approximation

without time dependence was presented in [22]. We nevertheless used the exact expression

Eq 15 in all calculations.

PGD implementation and fitting to relaxation after context switches

We identified the times of the context switches in the data and their type (slow-to-fast and

fast-to-slow). Taking a fixed number of trials before and after each event, we averaged the deci-

sion times over the events to create two sequences of average decision times around context

switches (the result is shown in Fig 4A and 4B). We used a uniformly weighted squared-error

objective, minimized with the standard (Nelder-Mead) simplex routine in python’s scientific

computing library’s optimization package.

Survival probabilities over the action policy

Behavioural analyses typically focus on response time distributions. From the perspective of

reinforcement learning, this is insufficient to fully characterize the behaviour of an agent.

Instead, the full behaviour is given by the action policy. In this setting, a natural representation

of the policy is the probability to report as a function of both the decision time and the envi-

ronmental state (see Fig 5). These are computed from the histograms of (Ntdec, tdec), over trials.

However, the histograms themselves do not reflect the preference of the agent to decide at a

particular state and time because they are biased by the different frequencies with which the

set of trajectories visit each state and time combination. While there are obviously the same

number of trajectories at early and late times, they distribute over many more states at later

times and so each state at later times is visited less on average than states at earlier times. We

can remove this bias by transforming the data ensemble to the ensemble of two random vari-

ables: the state conditioned on time (Nt|t), and the event that t = tdec. Conditioning this ensem-

ble on the state gives P(t = tdec|Nt, t) = p(Nt, t = tdec|t)/p(Nt|t). To reduce estimator variance, we

focus on the corresponding survival function, P(t< tdec|Nt, t). So, P(t< tdec|Nt, t) = 1 when

t = 0 and decays to 0 as t and |Nt| increase. Unlike the unconditioned histograms, these survival

probabilities vary much more smoothly over state and time. This justifies the use of the inter-

polated representations displayed in Fig 5B–5E. Note that to simplify the analysis, we have

binned decision times by the 200 ms time step between token jumps. This is justified by the

small deviations from uniformity of decision times modulo the time step shown in S11 Fig.

Episodic decision-making and dynamic programming solutions of value

iteration

We generalize the mathematical notation and description of an existing AR-RL formulation

and dynamic programming solution of the random dots task [8], a binary perceptual evidence
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accumulation task extensively studied in neuroscience. To align notation with convention in

reinforcement learning theory, exceptionally here s denotes the belief state variable, ie. a repre-

sentation of the task state sufficient to make the decision (e.g. the tokens difference, Nt, in the

case of the tokens task). We connect this extended formulation to account for a dynamic delib-

eration cost. We write it in discrete time, though the continuous time version is equally

tractable.

The problem is defined by a recursive optimality equation for the value function V(s|t) in

which the highest of the action values, Q(s, a|t), is selected. We formalize the non-stationarity

within episodes by conditioning on the trial time, t, where t = 0 is the trial start time. Q(s, a|t) is

the action-value function of average-reward reinforcement learning [15], i.e. the expected sum

of future reward deviations from the average when selecting action a when in state s, at possible

decision time t within a trial, and then following a given action policy π thereafter. The action

set for these binary decision tasks consists of report left (−), report right (+), and wait. When

wait is selected, time increments and beliefs are updated with new evidence. We use a deci-

sion-time conditioned, expected trial reward function, r(s, a|t) with a = ±, that denotes the

reward expected to be received at the end of the trial after having reported ± in state s at time t
during the trial. Note that r(s, a|t) can be defined in terms of a conventional reward function r
(s, a) if the reported action, decision time, and current time are stored as an auxiliary state vari-

able so they can be used to determine the non-zero reward entries at the end of the trial.

The average-reward formulation of Q(s, a|t) naturally narrows the problem onto determin-

ing decisions within only a single episode of the task. To see this, we pull out the contribution

of the current trial,

Qðs; ajtÞ ¼ Ep
XT

t0¼t

Rt � r

�
�
�
�
�
St ¼ s;At ¼ a

" #

þ VðsjT þ 1Þ ð20Þ

where T is the (possibly stochastic) trial end time and V(s|T + 1) is the state value at the start of

the following trial, which does not depend on st and at for independently sampled trials. Fol-

lowing conventional reinforcement learning notation, the expectation Ep
is over all random-

ness conditioned on following the policy, π, which itself could be stochastic [15]. When trials

are identically and independently sampled, the state at the trial start is the same for all trials

and denoted s0 with value V0. Thus, the value at the start of the trial V(s|t = 0) = V(s|T + 1) =

V0 equals that at the start of the next trial and so, by construction, the expected trial return

(total trial rewards minus trial costs) must vanish (we will show this explicitly below). Note

that the value shift invariance of E1 20 can be fixed so that V0 = 0.

The optimality equation for V(s|t) arises from a greedy action policy over Q(s, a|t): it selects

the action of the largest of Q(s, −|t), Q(s, +|t), and Q(s, wait|t). The value expression for the

wait-action is incremental, and so depends on the value at the next time step. In contrast,

expression for the two reporting actions integrates over the remainder of the trial since no fur-

ther decision is made and so depends on the value at the start of the following trial. The result-

ing optimality equation for the value function V(s|t) is then

VðsjtÞ ¼ max
a
Qðs; ajtÞ ;

Qðs;�jtÞ ¼ rðs;�jtÞ �
XT

t0¼tþ1

ct0 þ Vðsjt ¼ T þ 1Þ ;

Qðs;waitjtÞ ¼ � ct þ Estþ1js
½Vðstþ1jt þ 1Þ� ;

Vðsjt ¼ 0Þ ¼ Vðsjt ¼ T þ 1Þ :

ð21Þ
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Here, t = 0, 1, . . ., tmax within the current trial and t = T + 1, T + 2. . . in the following trial,

with tmax the latest possible decision time in a trial, and T = T(t) the decision-time dependent

trial duration. For inter-trial interval TITI, T satisfies TITI� T� tmax + TITI. ct is the cost rate at

time t. The second term in Q(s, wait|t) uses the notation Exjy½z�, i.e. the expectation of z with

respect to p(x|y). The last line in Eq 21 is the self-consistency criterion imposed by the AR-RL

formulation, which demands that the expected value at the beginning of the trial be the

expected value at the beginning of the following trial. The greedy policy then gives a single

decision time for each state trajectory as the first time when Q(s, −|t) > Q(s, wait|t) or Q(s, +|t)
> Q(s, wait|t), with the reporting action determined by which of Q(s, −|t) and Q(s, +|t) is

larger. For given ct, dynamic programming provides a solution to Eq 21 [8] by recursively solv-

ing for V(s|t) by back-iterating in time from the end of the trial. For most relevant tasks, to

never report is always sub-optimal, so the value at t = tmax is set by the best of the two reporting

(±) actions, which do not have a recursive dependence on the value and so can seed the

recursion.

We now interpret this general formulation in terms of opportunity costs. For the choice of

a static opportunity cost rate of time, ct = ρ. This is the AR-RL case. As in [8], a constant auxil-

iary deliberation cost rate, c, incurred only up to decision time can be added, ct = ρ + cΘ(tdec −
t). Of course, ρ is unknown a priori. For this solution method, its value can be found by

exploiting the self-consistency constraint, V(s|t = 0) = V(s|t = T + 1). This dependence can be

seen formally by taking the action value Eq 20, choosing a according to π to obtain the state

value, V(s|t), and evaluating it for t = 0,

Vðsjt ¼ 0Þ ¼ Etdec
XT

t¼0

Rt � r

" #

þ Vðsjt ¼ T þ 1Þ ð22Þ

¼ Etdec ½rðtdecÞ � rTðtdecÞ� þ Vðsjt ¼ T þ 1Þ ð23Þ

¼ �R � r�T þ Vðsjt ¼ T þ 1Þ : ð24Þ

Here, �R ¼ Etdec ½rðtdecÞ� and �T ¼ Etdec ½TðtdecÞ� denotes the expectations over the trial ensemble

that, when given the state sequence, transforms to an average over tdec, the trial decision time,

defined as when V(s|t) achieves its maximum on the state sequence, ðs0; . . . ; stmax
Þ. The

expected trial reward function, r(t)≔maxa2{−,+} r(s, a|t) is the expected trial reward for decid-

ing at t. Imposing the self-consistency constraint on Eq 24 recovers the definition r ¼ �R=�T .

Asymmetric switching cost model

Here, we present the model component that accounts for the asymmetric relaxation timescales

after context switches. The basic assumption is that tracking a signal at a higher temporal reso-

lution should be more cognitively costly. A cost-aware strategy addressing this fact is to adapt

the integration time to smaller values when resolution mismatch costs are higher so the system

lowers this higher cost quickly. For the tokens task, adapting from faster to slower environ-

ments should then happen more quickly than the reverse. We now develop this idea formally

(see S4 Fig).

Let Ttrack and Tsys be the timescale of tracking and of the tracked system, respectively. One

way to interpret the mismatch ratio, Tsys/Ttrack, is via an attentional cost rate, q. This rate

should decay with Ttrack: the slower the timescale of tracking, the lower the cognitive cost. For

simplicity, we set q = 1/Ttrack (S4(A) Fig). Integrating this cost rate over a characteristic time of

the system is then the tracking cost, Q = qTsys = Tsys/Ttrack, which is also the mismatch ratio.
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We propose that Q enters the algorithm via a scale factor on the integration time of the reward

filter for r̂
tcontext
k , τcontext. We redefine τcontext as

tcontext  
tcontext
1þ Qn

; ð25Þ

where ν is a sensitivity parameter that captures the strength of the nonlinear sensitivity of the

speed up (for ν> 1) or slow down (for ν< 1) in adaptation with the tracking cost, Q (S4(A)

Fig shows how this timescale varies over Q for three values of ν). We note that ν captures the

meta-cognitive belief that the subject has about how cognitively effortful is its tracking behav-

iour. A natural choice for Tsys is Tk, the trial duration. For Ttrack, we introduce the filtered esti-

mate of the trial duration, T̂ tcontext
k (computed using the same simple low-pass filter c.f. Eq 8).

Thus, the tracking timescale adapts to the system timescale. As a result of how τcontext is low-

ered by Q for ν> 1, this adaptation is faster in the fast-to-slow transition relative to the slow-

to-fast transition.

Prediction for asymmetric rewards

Given a payoff matrix, R = (rs,a), where rs,a is the reward for reporting a 2 {−, + } in the trial

realization leading to s, here the sign of Ntmax
, and the probability that the rightward choice is

correct, pþn;t , the expected reward for the two reporting actions in a trial is given by the matrix

equation

½ hrja ¼ þ; n; ti hrja ¼ � ; n; ti � ¼ pþn;t 1 � pþn;t
� � rþþ rþ�

r� þ r� �

" #

:

Here, the corresponding reported choice is a� ¼ argmaxa2f� ;þghrja; n; ti. In this paper and in

all existing tokens tasks, R was the identity matrix. In this case, and for all cases where R is a

symmetric matrix, R = R>, an equivalent decision rule is to decide based on the sign of Nt.
When R is not symmetric, however, this is no longer a valid substitute. Asymmetry can be

introduced through the actions and the states.

Using an additional parameter γ, we introduce asymmetry via a bias for + actions that

leaves the total reward unchanged by replacing the payoff matrix with

Rasym ¼
rþþð1þ gÞ rþ� ð1 � gÞ

r� þð1þ gÞ r� � ð1 � gÞ

" #

;

The result for γ = −0.6, 0, and 0.6 is shown in S10 Fig. For γ> 0 the decision boundary for a =

+ shifts up proportional to γ. For γ< 0 the decision boundary for a = − shifts down proportional

to −γ. The explanation is that the components are set and exchange where the decision is

exchanged,Nt = 0 for the symmetric case. This changes toNt/ ±γ for the asymmetric γ 6¼ 0 case.

Comparing reward rates and slopes of urgency

Reference [23] parametrize urgency with the saturation value, u1, and the half-maximum,

τ1/2. The initial slope is given by their ratio. We used the context-conditioned values published

in Table 1 in [23] for the n = 70 (no 90˚ control) dataset. The context-conditioned reward

rates, ρα, are computed as the accuracy hRi|α divided by the average trial time, hTi|α for choice

number α 2 {2, 4} as context. We computed hRi|α=2 = 0.71 and hRi|α=4 = 0.49. The trial time is

the sum of the response time, the added time penalty if incorrect, and the inter-trial interval.

We computed the response times tresponse,α=2 = 0.527 and tresponse,α=4 = 0.725. While the dataset
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contains the response times, it does not have the latter two. The time penalty was on the order

of 1 second, as was the time penalty (A. Churchland. Personal communication). Under those

estimates, the reward rates are ρα=2 = 0.40 and ρα=4 = 0.22. The ratio between slopes is 1.8 and

the ratio of reward rates was 2.3 giving an error of about 20%.

Supporting information

S1 Video. Example simulation of PGD.

(MP4)

S1 Fig. Reward filtering scheme for online computation of within-trial opportunity cost.

With t denoting absolute time, the reward sequence, Rt, is integrated on both a stationary

(τlong) and context (τcontext) filtering timescale to produce estimates of the stationary and con-

text-specific reward rates, respectively. These are large and small, respectively, relative to the

average context switching timescale, Tblock. The estimate of the context-specific offset, ot is

computed by time-integrating the difference of these two estimates. In this filtering, when a

trial terminates, the effective operation is that Cdel
t is set to ot, and the latter is zeroed. Thus, the

opportunity cost starts at this offset and then integrates ρlong, Cdel
t;k ¼ oTk� 1 ;k� 1 þ rlong;k� 1t, where

oTk−1, k−1 = (ρcontext,k−1 − ρlong,k−1)Tk−1. Notes on the computational graph: Arrows pass the

value at each time step (dashed arrows only pass the value when a trial terminates). Links

annotated with ‘−’ multiply the passed quantity by −1.

(PDF)

S2 Fig. PGD agent plays the tokens task with periodic α-dynamics. (A) Trials are grouped

into alternating trial blocks of constant α (fast (orange) and slow (blue) conditions). (B) Here,

trial block durations are constant over the experiment. (C) Decision times over the trials from

(A) distribute widely, but relax after context switches. (D) Block-averaged decision times

remain stationary. Inset shows the context-conditioned trial-averaged reward hRki and trial

duration hTki (orange and blue dots; black is unconditioned average; h�i denotes the trial

ensemble average). Lines pass through the origin (slope given by the respective reward rate).

(E) Distribution of estimates have lower variance than the trial reward rates, ρtrial (gray). The

conditioned averages of r̂
tcontext
k shown as blue and orange. (F) The relative error in estimating

ρ, Et ¼ 1

t

Pt
k jr̂

tlong
k � rj=r, for τlong = 103(circle), 104(square), 105(triangle). Inset shows that

ETexp / ðtlong=TblockÞ
� 1

over a grid of τlong and Tblock as expected (black line).

(PDF)

S3 Fig. Comparison of PGD and NHP in non-stationary α dynamics from [25]: Subject 2.

Same as Fig 5.

(PDF)

S4 Fig. Asymmetric switching cost model. (A) Attentional cost rate, q, is set to be inversely

proportional to tracking timescale, Ttrack. (B) Filtering timescale τcontext is scaled down with

tracking cost, Q = Tsys/Ttrack from a base timescale, here denoted τ0 (shown for three values of

sensitivity ν = 2, 4, 8).

(PDF)

S5 Fig. Sigmoidal approximation to expected reward. (A) the approximation explained in

Methods: State-conditioned expected trial reward, for different decision times. (B) The error

in the approximation for different decision times.

(PDF)
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S6 Fig. Model validation on behavioural statistics from [25]. (a,b) Running average (last

1000 trial) of trial reward rate rtrial
k . (c,d) Histograms of trial reward rate, rtrial

k (C) and trial

duration, Tk (D). (E) Auto-correlation function of trial duration. (F) Data vs. model decision

time (gray-scale is count; white dashed line is perfect correlation; actual Pearson correlation is

shown).

(PDF)

S7 Fig. Comparison of trial-aware and trial-unaware results. (a,b) 1/2-Survival probability

contours for subject 1 (dashed), trial-aware PGD (blue), and trial-unaware PGD (red) for slow

(A) and fast (B) context-conditioned data. (C) Opportunity cost for trial-unaware PGD (com-

pare with Fig 2B). Opportunity cost range adjusted here such that data within standard error

of trial-unaware PGD model prediction for slow block (blue).

(PDF)

S8 Fig. Comparison of PGD and AR-RL learning on a patch leaving task. Performance is

defined as relative regret rate, ðr̂ � r�Þ=r� (PGD (dots); AR-RL (lines)). (A) Performance over

different sizes of the state vector (d = 100 (blue), 200 (orange), 300 (green)). (B) Performance

over different learning rates (parametrized by integration time constant, τ = 1 × 104 (blue),

2 × 104 (orange), 3 × 104 (green)). (parameters: λ = 1/5; rmax sampled uniformily on [0, 1]). A

random state label permutation is made at the time indicated by the black arrow. Values were

initialized at −1.

(PDF)

S9 Fig. Reward rate optimal strategies in (α, c) plane. (A) The reward-rate maximizing policy

interpolates from the wait-for-certainty strategy at weak incentive (low α) and low deliberation

cost (low c), to the one-and-done strategy at strong incentive (high α) and high deliberation

cost (high c). Dashed lines bound a transition regime between the two extreme strategies. Red

line denotes where they have equal performance. (b-e) Slices of the (α, c)-plane. Shown are the

reward rate as a function of α (b,c) and c (d,e) (wait-for-certainty strategy is shown in blue; one-

and-done strategy is shown in orange). N is the magnitude of the token difference.

(PDF)

S10 Fig. Asymmetric action rewards skew survival probability. Here, we plot the half-maxi-

mum of the PGD survival probability for three values of the action reward bias, γ = −0.6, 0, 0.6

(blue, black and orange, respectively). Other model parameters same as in fitted model.

(PDF)

S11 Fig. Decision times relative to token jumps. Here, we plot the histograms of decision

times using their position between token jumps, the step fraction. The data is separated by α
and monkey.

(PDF)
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