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Abstract: To improve phytochemical stability, polyphenolic extracts prepared from Salvia officinalis L.,
which is a valuable source of phytocompounds with health benefits, were embedded into mesopores
of silica, titania, or titania-ceria materials. Ethanolic and hydroalcoholic extracts were prepared by
conventional, microwave- or ultrasound-assisted extraction. The influence of the extraction condi-
tions on chemical profile, radical scavenger activity (RSA), and antimicrobial potential of the extracts
was assessed. The extracts were characterized by spectrophotometric determination of total polyphe-
nols, flavonoids, chlorophyll pigment contents, as well as RSA. A reverse phase HPLC- PDA analysis
was performed for the identification and quantification of extract polyphenols. The extract-loaded
materials exhibited an enhanced RSA compared to the free extract after several months of storage,
resulting in better polyphenol stability over time following embedding into a mesoporous matrix.
Selected extracts free and embedded into mesoporous support were tested against Pseudomonas
aeruginosa ATCC 27853, Escherichia coli ATCC 25922, and Staphylococcus aureus ATCC 25923; the best
antimicrobial activity was obtained for S. aureus. A slight improvement in antimicrobial activity was
observed for the ethanolic extract prepared by ultrasound-assisted extraction following embedding
into the TiO2 matrix compared to MCM-41 silica due to the support contribution.

Keywords: common sage; polyphenolic extract; ultrasound-assisted extraction; encapsulation;
mesoporous titania nanoparticles; titania-ceria composite

1. Introduction

Polyphenols are an important class of micronutrients found in plants, like vegetables,
herbs, fruits, and cereals; they are not synthesized in animal organisms [1,2]. They have
various chemical structures and, depending on the number of aromatic rings in their
chemical formulas, are categorized as flavonoids, phenolic acids, stilbenes, or lignans [3].
Medicinal plants are a good source of the polyphenolic compounds [4,5], and as such, are
widely used in traditional medicine. Their extracts have great potential as antioxidants,
anti-inflammatory and antimicrobials for food, cosmetics, or nutraceuticals [6].

The recovery of natural compounds from medicinal plants can be optimized by
careful consideration of the extraction parameters, such as solvent/plant ratio, temperature,
contact time, type of solvent, microwaves (MW) [7] or ultrasounds irradiation (UAE) [8],
or the use of a high voltage electrical discharge [9–13]. For instance, a higher temperature
decreases the viscosity and surface tension of the extraction medium, helping the solvent
to penetrate the plant matrix and improving the wetting of vegetal material, respectively,
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leading to higher extraction yield [14]. For the extraction of polyphenols from plants,
various solvents, like methanol, ethanol, acetone, water [15], hexane, ethyl-acetate [16]
etc. have been used. The selection of a solvent for the extraction of phenolic compounds
is based on the solute polarity, i.e., a solvent of similar polarity to the solute dissolves
it effectively [17,18]. For instance, to obtain polyphenolic extracts from dried common
sage leaves, Dent et al. used 30%, 50% and 70% aqueous solution of ethanol or acetone
and temperatures of either 60 ◦C or 90 ◦C. They reported the best efficiency for 30%
aqueous solution of ethanol at 60 ◦C [19]. Extraction assisted by high voltage electrical
discharge causes the electroporation of the plant membrane, which increases the release of
polyphenolic compounds; hence, a 2.1 times higher total polyphenols content in sage extract
was obtained compared to conventional extraction [9]. Microwaves-assisted extraction
has led to a more efficient recovery of phenolic compounds from common sage than
conventional methods due to the higher radical scavenger activity (RSA) of the MW
extract compared to the conventional one obtained in the same conditions [7]. Ramic et al.
reported that the extraction of polyphenols from Aronia melanocarpa by-product from
filter-tea was accelerated by sonication, with ultrasonic power being varied from 72 to
216 W and extraction time and temperature in the range of 30–90 min. and 30–70 ◦C,
respectively. Based on a statistical analysis of data, they showed that temperature was the
most influential factor in the extraction. High temperature and time enhanced phenolic,
flavonoid and proanthocyanidin content and reduced anthocyanin amount in the extracts;
this was attributed to the lower resistance to thermal degradation of the latter compared to
other phytocompounds [20].

Salvia officinalis (common sage) from the Lamiaceae family, native to the Mediterranean
region, is a valuable source of phytochemicals with antioxidant, anti-inflammatory, and
antimicrobial properties [21–23]. The health benefits of common sage extracts depend
on their chemical composition. For example, Dal Prá et al. [24] showed that the anti-
inflammatory effect of sage extracts is associated with a large amount of ursolic, rosmarinic,
caffeic, and oleanolic acids, while Veira et al. [22] reported even higher anti-inflammatory
activity of Salvia officinalis extracts than diclofenac or salicylic acid. Studies have supported
the evidence that caffeic acid and its derivatives, i.e., rosmarinic, salvianolic, sagerinic acids,
which are present in many types of Salvia extracts, are effective in hepatoprotection and
protective against heart ischemia-reperfusion [25]. Also, in vitro animal and preliminary
human studies have shown that polyphenols from Salvia plants have promising effects
in terms of the enhancement of cognitive activity and prevention of neurodegenerative
diseases [26].

Despite their health benefits, the instability of polyphenolic compounds limits their
use. To prevent the degradation of phytocompounds during industrial processing, which
depend on pH, temperature, light exposure etc., a solution can be their encapsulation
in different matrices such as chitosan [27], alginate [28], liposomes [29], pristine and
functionalized mesoporous silica [30,31] etc.

The aim of this research was to improve the stability of selected polyphenolic extracts
through encapsulation into mesopores of titania, titania-ceria composite or silica materials.
Also, the influence of the extraction conditions on the chemical profile, radical scavenger ac-
tivity and antimicrobial potential of common sage polyphenolic extracts was assessed. The
radical scavenger activity and antimicrobial potential of the materials containing embedded
extract, as well as the recovery of polyphenols from mesoporous matrices in phosphate
buffer solution, were evaluated. Both mesoporous silica and titania-based materials proved
to be biocompatible, showing no significant toxicity on different cell lines if the dose was
limited [32–34]. These compounds are already used as additives in the pharmaceutical and
cosmetics industry, being considered safe by the US Food and Drug Administration [35,36].
Due to their large pore volume, mesoporous silica and titania are good hosts for phytocom-
pounds. Moreover, titania nanoparticles (TiO2 NPs) exhibit bactericidal activity under UV
irradiation [37]. They are negatively charged in neutral and basic solutions, showing low
bactericidal activity, but in acidic media, TiO2 NPs become positively charged, allowing
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them to penetrate the bacterial membrane inducing their damage [38]. In the case of rare
earth doped titania, the dopant ions are effective in suppressing the recombination of
electrons and holes in TiO2 NPs. Kasinathan et al. reported that cerium doped titania
exhibited bactericidal activity, especially against Gram-positive bacteria, which may be
attributed to its strong oxidation activity and superhydrophilicity [39].

2. Results and Discussion
2.1. Characterization of Common Sage Polyphenolic Extracts by Spectrometric Measurements

Ethanolic and hydroalcoholic (ethanol-water 1/1 v/v) polyphenolic extracts from
Salvia officinalis L. dried leaves were prepared using different plant/solvent weight ratios,
at 80◦ or 50 ◦C by conventional, microwave (So(MW)-2) or ultrasound-assisted (So(US)-1)
extraction in three extraction stages after a maceration step lasting 20 h. The extract yield,
total polyphenol, flavonoid and chlorophyll pigment content, as well as radical scavenger
activity (RSA), determined by spectrochemical methods, of the polyphenolic extracts
prepared in different conditions are presented in Table 1. The use of an ethanol-water
mixture (1:1 v/v) as a solvent yielded superior recovery of phytocompounds from common
sage compared to absolute ethanol. Thus, the highest yield (31.7%) was obtained for the
hydroalcoholic So(Conv)-3 extract prepared at 50 ◦C, followed by the other hydroalcoholic
extracts, So(Conv)-5 (24.5%) and So(MW)-2 (19.9%) obtained at reflux, while the lowest
efficiency was observed for the ethanolic So(Conv)-6 extract (8.2%) prepared at 50 ◦C. It was
observed that the application of low intensity ultrasound (maximum input power of 320 W)
during the extraction process, that usually do not alter the state of the vegetal material
but decrease the time of the extraction, correlated with higher yield (13.0% for So(US)-1)
in natural compounds compared to the conventional method (8.2% for So(Conv)-6). In
agreement with literature data, ultrasound-assisted extraction (UAE) led to enhanced
recovery of natural compounds as a result of the breaking down of plant tissues into the
solvent containing the vegetal material [40].

Table 1. Extraction parameters, yield of the extraction process, total polyphenol, flavonoid, and chlorophyll content, as well
as radical scavenger activity for common sage polyphenolic extracts.

Extract
Solvent, T (◦C),
Plant/Solvent

(w/v)

E
(%wt)

TPC
(mgGAE/

gextract)

TFC
(mgQE/
gextract)

TChC
(mgCh/
gextract)

RSAABTS
(mg TE/
gextract)

RSADPPH
(mg TE/
gextract)

IC50%
(mg/mL)

So(US)-1 ethanol/50 ◦C;
1/30 13.0 192.81 ± 5.43 24.35 ± 0.20 12.86 ± 0.61 245.68 ± 6.28 201.29 ± 16.36 1.35

So(MW)-2 50% ethanol/80 ◦C;
1/50 19.9 168.97 ± 1.57 26.52 ± 0.20 0.53 ± 0.01 232.32 ± 0.73 211.86 ± 4.45 1.28

So(Conv)-3 50% ethanol/50 ◦C;
1/30 31.7 145.40 ± 2.31 25.11 ± 0.49 0.57 ± 0.08 215.20 ± 4.22 298.34 ± 10.42 0.91

So(Conv)-4 ethanol/
80 ◦C; 1/18 14.0 129.20 ± 5.59 36.98 ± 1.22 4.40 ± 0.40 128.89 ± 4.80 249.44 ± 11.55 1.09

So(Conv)-5 50% ethanol/80 ◦C;
1/18 24.5 165.52 ± 2.99 23.62 ± 0.06 4.19 ± 0.15 249.07 ± 6.93 268.11 ± 11.22 1.01

So(Conv)-6 ethanol/50 ◦C;
1/30 8.2 138.11 ± 2.45 15.42 ± 0.11 3.56 ± 0.12 113.36 ± 2.40 98.22 ± 8.72 2.76

E-extract; TPC-total polyphenols content as gallic acid equivalents (GAE); TFC-total flavonoids as quercetin equivalents (QE); TChC–total
chlorophyll pigments content, RSA-radical scavenger activity, TE-Trolox equivalents; IC50%–the extract concentration, which determines
the inhibition of 50% of DPPH• radicals from solution.

The total polyphenol content (TPC) of the prepared common sage extracts deter-
mined through the Folin Ciocalteu method as gallic acid equivalents was in the range
of 129.20–192.81 mg GAE/g extract (11.30–46.11 mg GAE/g plant) (Table 1). The richest
extract in terms of polyphenolic substance content was that obtained by UAE, So(US)-1,
which also had a higher amount of polyphenolic compounds than previously reported for
common sage extracts obtained at reflux in absolute ethanol or 4/1 (v/v) ethanol/water
mixture by either conventional or MW-assisted extraction [7]. The hydroalcoholic extracts
had a higher content of polyphenols than ethanolic extracts, which is in agreement with
literature data [22]. For instance, the hydroalcoholic So(Conv)-3 extract prepared at 50 ◦C
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had the highest total polyphenol content (46.11 mg GAE/g plant), while both hydroal-
coholic So(MW)-2 and So(Conv)-5 obtained at reflux exhibited lower TPC values, i.e.,
33.66 mg GAE/g plant and 40.49 mg GAE/g plant, respectively. The So(Conv)-3 extract
had an even higher content than that reported by Nutrizio et al. (42.13 ± 1.24 mg GAE/g
plant) for the sage hydroalcoholic extract obtained by high voltage electrical discharge-
assisted extraction [9]. Unlike the hydroalcoholic extracts, in the case of the ethanolic
extracts, an increase of the temperature in the extraction process favored the recovery of
polyphenols from Salvia officinalis leaves (18.02 mg GAE/g plant for So(Conv)-4 against
11.30 mg GAE/g plant for So(Conv)-6), though the So(Conv)-6 extract prepared at 50 ◦C
was richer in phenolic compounds (138.11 ± 2.45 mg GAE/g extract) than So(Conv)-4
sample (129.20± 5.59 mg GAE/g extract). The TPC values of these extracts when expressed
per 1 g of vegetal material were lower than those previously reported by us for the Salvia
officinalis extract prepared by conventional extraction at reflux in 4/1 (v/v) ethanol/water
mixture (61.98 mg GAE/g plant) [7]. The TPC values of our Salvia officinalis extracts were
higher than those reported for 70/30 (v/v) ethanol-water extracts prepared either by con-
ventional or ultrasound-assisted extraction (61.3–79.6 mg GAE/g extract) [41], 80% aqueous
methanolic extracts obtained by ultrasounds-assisted extraction (2.80 mg/g plant) [42], and
methanolic extracts (63.9–93.8 mg/g extract) [43], as well as aqueous Salvia officinalis extract
(158.9 ± 38.0 mg GAE/g extract), but only those prepared by nonconventional methods
and the hydroalcoholic So(Conv)-5 extract [5], which presented TPC values lower than
those reported by Veira et al. for hydroalcoholic and ethanolic extracts prepared through
Soxhlet extraction using a 1/10 g plant/mL solvent ratio (685.2 ± 6.6 mg/g extract) [22].

The total flavonoid content (TFC) as quercetin equivalents (QE) determined using the
aluminum chloride colorimetric method was in the range of 15.42–36.98 mg QE/g extract
(1.26–7.96 mg QE/g plant) (Table 2). The ethanolic So(Conv)-4 extract was the richest in
flavonoids when the TFC value was expressed per gram of extract (36.98 ± 1.22 mg QE/g
extract), while the hydroalcoholic extract So(Conv)-3 prepared at 50 ◦C had the highest TFC
value per gram of plant (7.96± 0.16 mg QE/g pant). These TFC values were slightly higher
than those reported by us for the ethanolic and hydroalcoholic (4/1 (v/v) ethanol/water)
Salvia officinalis extracts (13.56–25.03 mg QE/g extract) [7], but close to those obtained
for ethanolic extracts by Duletic-Lausevic et al. (27.30 ± 8.48 mg/g extract) [44]. Inter-
estingly, the extracts prepared at 80 ◦C, either in absolute ethanol or in water-ethanol
mixture, had very similar TFC values (5.16–5.78 mg QE/g plant), while in the case of the
extracts obtained at 50 ◦C, the ethanol-water mixture was a better solvent for flavonoid
release from vegetal material (7.96 mg QE/g plant for So(Conv)-3) in comparison with
ethanol (3.17 ± 0.03 mg QE/g plant and 1.26 ± 0.01 mg QE/g plant for So(US)-1 and
So(Conv)-6, respectively).

Table 2. Quantification of polyphenolic substances identified in the extracts by reverse phase HPLC-PDA.

Concentration in Extract (mg/g Extract)

Compound So(US)-1 So(MW)-2 So(Conv)-3 So(Conv)-4 So(Conv)-5 So(Conv)-6

protocatechuic acid nd 0.571 ± 0.003 0.235 ± 0.007 nd 0.569 ± 0.014 nd
caftaric acid 0.760 ± 0.000 0.587 ± 0.001 nd nd 0.746 ± 0.003 nd

chlorogenic acid 0.330 ± 0.000 0.675 ± 0.000 0.828 ± 0.004 1.028 ± 0001 0.753 ± 0.005 0.094 ± 0.000
caffeic acid 0.552 ± 0.000 2.494 ± 0.019 2.175 ± 0.000 0.874 ± 0.003 2.632 ± 0.000 0.174 ± 0.001

rosmarinic acid 35.335 ± 0.000 14.861 ± 0.008 22.877 ± 0.004 26.618 ± 0.063 20.542 ± 0.009 5.673 ± 0.025

nd–not detected.

The total chlorophyll pigment content (TChC) of the common sage extracts was in
the range of 0.53–12.86 mg Ch/g, with ethanolic extracts having a higher amount than
the hydroalcoholic ones (Table 1), in agreement with previous results [7,45]. The UAE
process favored the recovery of chlorophyll pigments, with the So(US)-1 extract having
a much higher TChC value than even the other ethanolic extracts discussed here, i.e.,
So(Conv)-4 and So(Conv)-5, or the common sage ethanolic extract obtained through MW-
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assisted extraction [7], probably because ultrasound can destroy the cell wall of plants.
Therefore, it was observed that the use of a less polar solvent, i.e., ethanol, as well as
ultrasound-supplementary energy, led to a better recovery of the chlorophyll pigments.

In conclusion, the use of the water-ethanol mixture as solvent favored both polyphenol
and flavonoid extraction. A temperature of 80 ◦C for the extraction process improved the
recovery of phenolic substances from common sage leaves when ethanol was used as the
solvent; this was not the case with the water-alcohol mixture.

2.2. Radical Scavenger Activity of Polyphenolic Extracts

The radical scavenger activity (RSA) against 2,2-diphenyl-1-picrylhydrazyl (DDPH•)
and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS•+) of
polyphenolic compounds derived from dried Salvia officinalis L. leaves in different condi-
tions was assessed and expressed as Trolox equivalents (TE) per gram of extract; see Table 1.
The RSA values for the polyphenolic extracts were in the range of 113.36–249.07 mg TE/g
and 98.22–298.34 mg TE/g extract in the case of the ABTS assay and DPPH method, re-
spectively. Mostly higher RSA values were observed when the ABTS method was applied,
especially for the hydroalcoholic extracts, a phenomenon which may be attributed to their
higher phenolic substances content, in comparison with the ethanolic extracts. Previously,
we showed that the ethanolic extract obtained by MW-assisted extraction exhibited better
antioxidant capacity than the conventional extract prepared under the same conditions
(232.71 ± 8.23 mg TE/g extract against 96.81 ± 3.63 mg TE/g extract) [7]. In this study,
the hydroalcoholic So(MW)-2 presented a slightly lower RSA (232.32 ± 0.73 mg TE/g
extract against ABTS•+ radicals and 211.86 ± 4.45 mg TE/g extract against DPPH•) than
the So(Conv)-5 extract prepared under the same conditions (249.07 ± 6.93 mg TE/g extract-
ABTS and 268.11 ± 11.22 mg TE/g extract-DPPH) in the case of both assays, but a higher
RSA than the hydroalcoholic So(Conv)-3 extract obtained at 50 ◦C (215.20 ± 4.22 mg TE/g
extract) when ABTS assay was used. Regarding the ethanolic So(US)-1 extract, a better
ability to neutralize ABTS•+ radicals (245.68 ± 6.28 mg TE/g extract) than DPPH• radicals
(201.29 ± 16.36 mg TE/g extract) was observed. A temperature of 80 ◦C applied during
the conventional extraction process led to a higher ability to neutralize ABTS•+ radicals of
both hydroalcoholic and ethanolic extracts compared to 50 ◦C, in accordance with the data
reported by Sotiropoulou et al. [46]. The IC50 values (the concentration which determines
the inhibition of 50% of DPPH• radicals from solution) of the polyphenolic extracts deter-
mined by DPPH assay using three concentrations from the linearity domain are listed in
Table 1; the lowest IC50 value was observed for the So(Conv)-3 extract.

2.3. Chemical Profile of Common Sage Extracts

A reverse phase HPLC–PDA analysis led to the identification and quantification of
up to five phenolic compounds from 23 available standards based on their retention time
and the similarity of UV spectra with those of standard substances. Chromatograms of
common sage polyphenolic extracts are presented in Figure 1. All extracts contained
rosmarinic acid (5.673–35.335 mg/g extract) as the most abundant compound, as well as
caffeic acid (0.174–2.494 mg/g extract) and chlorogenic acid (0.094–1.028 mg/g extract),
while protocatechuic acid (0.235–0.571 mg/g extract) was present only in hydroalcoholic
extracts (Figure 1B), and caftaric acid (0.587–0.760 mg/g extract) in the extracts prepared
through nonconventional extraction and So(Conv)-5 (Table 2).

Rosmarinic acid was more efficiently recovered in absolute ethanol than in 50%
aqueous ethanolic solution, especially when UAE was used, with the highest content
(35.335 ± 0.000 mg/g extract) being observed for So(US)-1 extract (Table 2). The extrac-
tion temperature does not seem to influence the content of the polyphenolic extracts in
rosmarinic acid compared to hydroalcoholic So(Conv)-3 (22.877 ± 0.004 mg/g extract)
and So(Conv)-5 (20.542 ± 0.009 mg/g extract). However, the common sage extracts
reported herein had a lower rosmarinic acid content than our previously reported ex-
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tracts obtained by conventional extraction at reflux, in ethanol or 4/1 (v/v) ethanol/water
(41.600–49.975 mg/g extract) [7].
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The extraction of caffeic acid from Salvia officinalis dried leaves favors the use of a
water-ethanol mixture as an extraction solvent, with all hydroalcoholic extracts having
similar contents, i.e., ranging from 2.175 mg/g extract to 2.632 mg/g extract with a slightly
higher yield for the extracts obtained at reflux, So(MW)-2 and So(Conv)-5, compared to the
So(Conv)-3 extract (Table 3).

Table 3. MIC and MBEC for common sage extracts.

Extract MIC (µg/mL) MBEC (µg/mL)

P. aeruginosa E. coli S. aureus P. aeruginosa E. coli

So(US)-1 875 1750 437.5 437.5 437.5
So(Conv)-6 875 1750 875 437.5 437.5

Regarding the chlorogenic acid present in all extracts, the highest amount was iden-
tified in the So(Conv)-4 extract (1.028 ± 0.001 mg/g extract), while the other ethanolic
extracts prepared at 50 ◦C had lower contents (0.094–0.330 mg/g extract) (Table 3). All
hydroalcoholic extracts had a similar quantity of chlorogenic acid (0.0675–0.828 mg/g
extract), with a slightly higher amount being observed in the So(Conv)-3 extract, prepared
at 50 ◦C.

Caftaric acid was detected in the extracts prepared by UAE, ethanolic So(US)-1
(0.760 ± 0.000 mg/g extract), and hydroalcoholic extracts So(MW)-2 (0.587 ± 0.001 mg/g
extract) and So(Conv)-5 (0.753 ± 0.005 mg/g extract) obtained at reflux. Previously, we
observed that the use of an ethanol-water mixture as the extraction solvent favored the
extraction of caftaric acid in comparison with absolute ethanol [7]. Based on these and
previously reported data, the application of UAE or an increase in temperature led to the
enhancement of the caftaric acid recovery.
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2.4. Antibacterial Activity Assessment of Polyphenolic Extracts

The ethanolic So(US)-1 and So(Conv)-6 extracts were chosen for testing on three
standard bacteria: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and
Staphylococcus aureus ATCC 25923, because So(US)-1 had the highest polyphenolic com-
pounds content while So(Conv)-6 presented the lowest amount of phytocompounds. The
minimum inhibitory concentrations (MICs) of the Salvia officinalis L. extracts are presented
in Table 3. Slight better antibacterial activity was noticed against S. aureus ATCC 25923
compared to E. coli ATCC 25922 or P. aeruginosa ATCC 27853 strains. Pseudomonas aeruginosa
and Escherichia coli are common pathogens which are responsible for prolonged infections
because of their ability to form biofilms. It is notable that the minimum biofilm eradication
concentration (MBEC) of the common sage extracts against the two Gram-negative bacteria
is lower than the corresponding MIC, i.e., two and four times lower against P. aeruginosa
and E. coli, respectively. Although the polyphenolic compound contents of the tested
extracts were different, their MIC and MBEC against tested strains were the same, except
in the case of S. aureus. The MIC value against S. aureus was lower for So(US)-1 extract
(437.5 µg/mL) than for So(Conv)-6 (875 µg/mL).

2.5. Characterisation of Mesoporous Supports

To encapsulate the chosen polyphenolic extracts, three inorganic materials, i.e., meso-
porous titania and titania-ceria nanoparticles obtained by original methods based on the
sol-gel technique, as well as commercial MCM-41 silica, were employed. As inorganic
matrices, we chose titania nanoparticles, because they provide a versatile platform for vari-
ous biologically active molecules due to their low toxicity, biocompatibility and chemical
stability. Additionally, when doped or associated with ceria nanoparticles (CeO2 NPs),
enhanced photostability is achieved, making them applicable to radiotherapy image diag-
noses and photodynamic therapy [47]. Recently, CeO2 NPs were described as nanozymes
(nanomaterials with enzyme-like activity) that mimic the behavior of natural antioxidative
enzymes [48]. Thus, CeO2 NPs have been extensively tested as an antioxidant compound
to treat neuronal disorders or autoimmune degenerative diseases. Yu et al. reported a
robust superoxide dismutase and catalase mimetic activities for CeO2 NPs distributed into
a metal organic framework, allowing them to neutralize the damage produced by reactive
oxygen species generated by new-born neutrons [49]. Also, hollow CeO2 NPs functional-
ized with chitosan and ZM241385 have been employed as nanocarriers for pilocarpine in
an ophthalmic nanoformulation to prevent glaucoma progression [48].

The inorganic matrices used for the embedded common sage extracts were investi-
gated by wide-angle powder X-ray diffraction to determine their structure, while FTIR
spectroscopy and thermal analysis were applied to assess the removal of the template agent
used in their synthesis. Additionally, N2 adsorption-desorption isotherms were used to
determine textural features (specific surface area, total pore volume and the average pore
diameter), and SEM and TEM were applied to investigate their morphology.

In the case of the titania material, wide-angle XRD analysis showed the formation of
an anatase phase with tetragonal symmetry (ICDD 21-1272) after solvothermal treatment
performed at 100 ◦C for 24 h, TiO2E (Figure 2A). Because of the strong interactions between
titania nanoparticles and the copolymer, Pluronic P123 (used as a template agent), the
washing step followed by Soxhlet extraction in ethanol for 24 h were not enough to
completely remove the structure directing agent, as revealed by FTIR spectroscopy (see
Supplementary Materials, Figure S1A). Therefore, a calcination step at 400 ◦C for 3 h was
required to obtain pure TiO2 NPs with anatase structure (see Figure 1B–curve black). The
calcination step led to an increase in the crystallite size, as determined by Rigaku’s PDXL
software based on Scherrer’s equation from (1 0 1) Bragg reflection (2θ = 25.29 ◦), from
7 nm for TiO2E to 10 nm for TiO2 calcined at 400 ◦C.
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Figure 2. Titania nanoparticle characterization: wide–angle XRD patterns of TiO2E and TiO2 (A); N2 adsorption–desorption
isotherm recorded at 77 K of TiO2 and inset, the corresponding pore size distribution curve (B); TEM image of TiO2 (C).

The N2 adsorption-desorption isotherm of the titania material, specific for mesoporous
materials, exhibited hysteresis at P/P0 > 0.6 (Figure 2B), which corresponded to a narrow,
unimodal pore size distribution curve (Figure 2B–inset). The textural parameters, the
specific surface area determined by BET method, SBET, total pore volume measured at
P/P0 = 0.99, Vp, and the average pore diameter calculated with Barrett Joyner Halenda
model, dBJH, for TiO2 support are presented in Table 4. The morphology of the TiO2 NPs
was investigated by TEM. The titania sample, prepared by the sol-gel method assisted by
solvothermal treatment, comprised small, uniform sized polyhedral nanoparticles with
average dimension of 10 nm (in agreement with the crystallite size computed by Scherrer’s
equation from the XRD pattern) and forming intergranular pores between nanoparticles
(see Figure 2C). In the FTIR spectrum of TiO2 obtained at 400 ◦C, only the characteristic
vibrations of titania, i.e., 670 cm−1 (νTi-O), 478 cm−1 (νTi-O-Ti) and 3000–3600 cm−1 (νTi-OH),
can be observed, as well as the band of physically adsorbed water molecules, δHOH, at
1645 cm−1 [50] (see Supplementary Materials, Figure S1A). The DTA-TG analysis (see
Supplementary Materials, Figure S1B,C) showed that the thermal treatment at 400 ◦C for
3 h completely removed the copolymer, as no effect was recorded on the DTA curve of the
calcined titania sample (see Supplementary Materials, Figure S1B).

Table 4. Textural parameters of supports and the quantity of embedded extract in each support.

Support dBJH (nm) SBET (m2/g) Vp (cm3/g) Embedded Extract Extract (% wt)

TiO2 7.43 124 0.26
So(US)-1@TiO2 18.4

So(Conv)-3@TiO2 19.3

TiO2-CeO2 13.18 150 0.54
So(US)-1@TiO2-CeO2 20.0

So(Conv)-4@TiO2-CeO2 18.3

MCM-41 2.67 976 0.88
So(US)-1@MCM-41 32.4

So(Conv)-4@MCM-41 37.4
So(Conv)-3@MCM-41 38.4

In the case of the titania-ceria composite, the XRD results showed the formation of a
crystalline material, TiO2-CeO2 precursor (the material recovered after the ageing treatment
of the reaction mixture), with a fluorite phase for ceria and the anatase structure of titania.
Thermal treatment of the TiO2-CeO2 precursor at 450 ◦C for 5 h preserves the anatase
and fluorite phases (Figure 3A). Interestingly, although the calcination temperature in
the case of the titania-ceria composite was higher than that of the TiO2 sample, it led to
a very small increase in the crystallite size determined from the (1 0 1) Bragg reflection
of the anatase phase, i.e., from 7 nm to 8 nm, in contrast to the titania sample. The
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cerium ions suppressed the increase of crystallite size. In the FTIR spectrum, one can
observe very intense bands centered at 667 cm−1 and 484 cm−1, which may be attributed
to the metal-oxide bonds (Supplementary Materials, Figure S2A) that had been shifted,
in comparison with the Ti-O vibrations observed in the case of TiO2 NPs (713 cm−1 and
460 cm−1) (see Supplementary Materials, Figure S1A). The characteristic vibration band
of the physiosorbed water molecules at 1635 cm−1 was more intense for the titania-ceria
composite than in the titania material, probably because of a higher concentration of oxygen
vacancies in the former, favoring the adsorption of water [39].
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The N2 adsorption-desorption isotherm of the titania-ceria material was shown to be
type IV, according to IUPAC classification, with a unimodal pore size distribution curve
centered at a higher pore diameter, (13.18 nm) than for TiO2 (7.43 nm) (see Figure 3B). Usu-
ally, among the textural parameters determined from N2 adsorption-desorption isotherms,
the most important is the total pore volume, which is directly proportional with the amount
of phytocompounds that can be hosted on support mesopores. For the titania-ceria com-
posite material, the specific surface and total pore volume had higher values (150 m2/g and
0.54 cm3/g, respectively) in comparison with the titania support (124 m2/g and 0.26 cm3/g,
respectively) (see Table 4). The SEM investigation of the titania-ceria composite material
revealed the formation of primary nanoparticles which agglomerated in aggregates with
different sizes and shapes (Figure 3C). The Ti/Ce molar ratio of the composite material
was assessed through energy dispersive X-ray analysis coupled with scanning electron mi-
croscopy in five different regions of the sample; the obtained value was 89.8/10.2, i.e., very
close to the theoretical one (90/10), with cerium ions being shown to be evenly distributed
in the material (see Supplementary Materials, Figure S2C).

2.6. Characterization of Extract-Loaded Materials

To preserve the radical scavenger capacity and antimicrobial potential of the common
sage extracts, chosen extracts were embedded into mesoporous inorganic matrices, such
as titania and titania-ceria composite, as well as commercial MCM-41 mesoporous silica.
Two ethanolic extracts, So(US)-1 and So(Conv)-4, as well as the hydroalcoholic So(Conv)-3
extract, were selected (because of their high phytocompound content) for embedding into
mesoporous matrices by incipient wetness impregnation technique followed by vacuum
evaporation of the solvent. The materials containing extract, denoted extract@support,
were characterized by thermal analysis (DTA-TG) to evaluate the content of polyphenolic
substances and FTIR spectroscopy to demonstrate the presence of polyphenols in the
mesoporous matrix. Also, the antioxidant capacity and antibacterial potential of the
materials were assessed.
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The content of phenolic compounds loaded into mesopores of titania or titania-ceria
supports, as determined by DTA-TG analysis (Supplementary Materials, Figure S3), was
in the range of 18.3–20% (wt), while in the case of embedding into MCM-41 mesoporous
silica, it ranged between 32.4 and 38.4% (wt) due to a higher total pore volume of the silica
matrix compared to the titania-based supports (0.88 cm3/g versus 0.26–0.54 cm3/g).

In the FTIR spectra of extract-loaded materials (Figure 4), one can observe the vibra-
tions of both the mesoporous support and the polyphenolic compounds. For instance, in
the case of So(US)-1@MCM-41, the bands at 1076 cm−1, 960 cm−1, 805 cm−1, and 459 cm−1

may be attributed to the silica support. The vibrations specific to the polyphenols are as
follows: symmetric and asymmetric stretching vibrations of C-H bonds in the range of
2830–3000 cm−1; the stretching vibration of C=O bonds of carboxylic groups at 1753 cm−1

and 1728 cm−1 for hydroalcoholic So(Conv)-3 extract and ethanolic So(US)-1 sample, re-
spectively; a band at 1694 cm−1, attributed to C=C bonds in aromatic rings; the intense
vibrations at 1449 cm−1 and 1462 cm−1 for So(Conv)-3 and So(US)-1, respectively, at-
tributed to deformation of the OH phenolic groups and C-O stretching vibrations; and the
bands at 1107 cm−1 and 1047 cm−1 for So(Conv)-3 and So(US)-1, respectively, attributed to
aromatic C-H deformation vibrations. In all extract-loaded samples, vibrations were ob-
served in the range of 2830–3000 cm−1 and 1750–1270 cm−1, which evidenced the presence
of polyphenolic compounds in the mesoporous inorganic matrices, and a large envelope
in the range of 3200–3600 cm−1, attributed to the high content of OH groups in either
phenolic compounds or mesoporous matrices. Also, in all embedded extracts, deformation
vibrations of physically adsorbed water molecules were observed at around 1630 cm−1 [51].
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2.7. Radical Scavenging Activity of Extract-Loaded Materials

The radical scavenger activity of the extract-loaded materials was evaluated through
DPPH assay after 24 h of incubation in DPPH• free radical solution in dark conditions,
in duplicate, on solid samples. The results were compared with those of the free extract
and support in the same quantity as that of the embedded extract using the degradation of
DPPH• solution as control. More details of this method are described elsewhere [30].

The extract-loaded materials exhibited a higher radical scavenger activity after 2–12 months
of storage at 4 ◦C than the free extract (Figure 5), which means higher stability after embed-
ding in a mesoporous support. The inorganic matrices used as supports did not make a
noticeable contribution. However, TiO2-CeO2 material presented low radical scavenging
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activity due to the presence of a ceria phase, but a synergistic effect on the materials con-
taining extract was not observed. For instance, an even lower RSA value was determined
for So(US)-1@TiO2-CeO2 than for So(US)-1@TiO2 (Figure 5A), probably because a low
amount of phenolic compounds was present on the surface of the support, and hence, the
phytocompounds were not well protected. In the case of hydroalcoholic So(Conv)-3 extract
loaded on either TiO2 support or MCM-41 silica matrix, after one month of storage, the
radical scavenger capacity was the same as that of the free extract (Figure 5D). Our results
are in agreement with literature data showing that the encapsulation of polyphenols in a
matrix has the potential to preserve their antioxidant properties. For instance, Haładyn et al.
showed that encapsulation in microspheres containing a combination of sodium alginate
and guar gum significantly enhanced the stability of chokeberry polyphenolic extract, lead-
ing to the preservation of its antioxidant activity [52]. It has also been reported, based on
in vivo tests, that Salvia Officinalis extract-loaded poly-lactic-co-glycolic acid nanoparticles
are more effective than free extract against neurotoxic stress induced by methylmercury;
this was attributed to the more efficient reduction of intracellular reactive oxygen species
by the encapsulated extract compared to the free one [53].
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Figure 5. In vitro radical scavenger capacity of the ethanolic So(US)-1 extract embedded in TiO2 and TiO2-CeO2 mesoporous
matrices (A), the ethanolic So(Conv)-4 extract embedded in MCM-41 silica and TiO2-CeO2 supports (B), So(US)-1@MCM-41
(C) and hydroalcoholic So(Conv)-3 embedded in TiO2 and MCM-41 matrices (D) in comparison with the corresponding
contents of extract and support.
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2.8. Polyphenols Release Profiles from Mesoporous Titania and Silica Supports

To study how the phenolic compounds from common sage hydroalcoholic extract
are delivered from mesoporous titania and MCM-41 silica supports in simulated body
fluid, extract release experiments were performed in PBS pH 5.7. A graph depicting the
cumulative release of polyphenols over time is presented in Figure 6. In the case of both
inorganic supports, a strong burst effect can be noticed in the first half hour, followed
by a low quantity of polyphenol delivery over the next seven hours. A partial recovery
of polyphenols from both supports was observed, with a slightly higher amount being
released from MCM-41, 69.37 ± 1.19% than TiO2, 64.86 ± 2.58% (Figure 6), which showed
slightly stronger interactions between phenolic compounds and the support. Recently, a
combination of chemical and conductometric analysis was used to determine the release
profile of the phytocompounds of five Lamiaceae plant extracts from alginate microbeads in
distilled water at 23 ◦C. The highest values of conductivity were observed after 90 min for
the sage microbeads, which means rapid phytocompounds release [54], in agreement with
the observations reported here.
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2.9. Bactericidal Activity of Extract-Loaded Materials

In order to assess the antibacterial activity of selected materials containing extract
via the disk diffusion method, a gram-negative strain, i.e., Pseudomonas aeruginosa ATCC
27853, and a gram-positive strain, i.e., Staphylococcus aureus ATCC 25923, were chosen.
The corresponding inhibition growth zone diameter, Φ, for each extract-loaded material
in comparison with that of the free extract and the contribution of the corresponding
support is presented in Table 5. The inhibition zone diameters of the materials containing
embedded extract (EM) indicated the preservation of antibacterial activity after loading
into the inorganic mesoporous matrix. Slightly larger inhibition zone diameters were
obtained against S. aureus, probably due to differences between the bacterial cell wall
structures. Also, a small improvement in bactericidal activity was observed for the So(US)-
1 extract when loaded onto TiO2 material, in comparison with MCM-41 silica, because of
the contribution of the support (Table 5). Typically, the encapsulation of plant extracts,
including common sage, in polysaccharide (alginate, chitosan and starch) particles and
liposomes, preserves the antimicrobial activity of bioactive compounds, e.g., against Gram-
positive and Gram-negative bacteria; an improved bactericidal potential could be achieved
only by co-encapsulation of the plant extract and lysozyme [55].

Table 5. Inhibition growth zone diameter for materials containing extract.

Φ, mm

Sample P. aeruginosa ATCC 27853 S. aureus ATCC 25923

E EM S E EM S

So(US)-1@TiO2 14 15 14 16 17 11
So(US)-1@MCM-41 14 14 13 16 16 10

E-extract, EM-material containing embedded extract, S-support.

3. Materials and Methods
3.1. Materials

All substances for spectrometric determinations, i.e., Folin-Ciocalteu reagent (Sigma-
Aldrich Co., Merck Group, Darmstadt, Germany), sodium carbonate (Sigma-Aldrich,
≥99.5%), aluminium chloride hexahydrate (Sigma-Aldrich, 99%), ethanol absolute (≥99.9%
Supelco Inc., Belfonte, Kansas City, MO, USA), 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid (Trolox, Aldrich, 97%, Aldrich Chemical Co Inc., Milwaukee, WI, USA), 2,2-
diphenyl-1-picrylhydrazyl (DPPH, Sigma-Aldrich), 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS, Sigma-Aldrich), and potassium persulphate (K2S2O8; Sigma-
Aldrich, ≥99%), were used without additional purification.

For the high performance liquid chromatography (HPLC) analyses, the following stan-
dard compounds were used: protocatechuic acid (TCI, >98%, HPLC-grade), caftaric acid
(Molekula GmbH, Munich, Germany), caffeic acid (Sigma, 98%, HPLC-grade), chlorogenic
acid (HWI group, primary reference standard), rosmarinic acid (Sigma, >98%, HPLC-grade),
gallic acid (Alfa Aesar, Ward Hill, MA, USA, 98%), catechin hydrate (Sigma, >98%, HPLC-
grade), ellagic acid dihydrate (Tokyo Chemical Industry, Japan, TCI, >98%, HPLC-grade),
chicoric acid (TCI, >98%), trans-ferulic acid (TCI, >98%, GC), vanillic acid (TCI, >98%,
GC-grade), syringic acid (Molekula, >98.5%), (−) epicatechin (TCI, >98%, HPLC-grade),
quercetin (Sigma, >95%, HPLC-grade), rutin hydrate (Sigma, 95%, HPLC-grade), trans-p-
coumaric acid (Sigma Aldrich), myricetin (Sigma, >96%, HPLC-grade), trans-resveratrol
(Sigma Aldrich, certified reference material), kaempferol (Sigma, >97%, HPLC-grade),
cyanidin chloride (Sigma, >95%, HPLC-grade), malvidin chloride (Sigma Aldrich, >95%,
HPLC), pelargonidin chloride (Aldrich) and delphinidin chloride (Sigma Aldrich, ana-
lytical standard), and for mobile phases acetonitrile (ACN, Riedel-de Haën, Honeywell
Riedel-de Haën, Seelzer, Germany), and formic acid (Merck Group, Darmstadt, Germany).
For all aqueous solutions preparation, extraction and analyses, ultrapure water (Millipore
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Direct- Q3 UV product no. C9185, Merck Group, Darmstadt, Germany), obtained via a
water purification system with a Biopack UF cartridge, was used.

For the synthesis of mesoporous titania and titania-ceria composite materials, the
following reagents were used as received: titanium(IV) isopropoxide (>97%, Aldrich),
poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), MW = 5800
(Pluronic, P123, Aldrich), acetic acid (>99.7%, Sigma-Aldrich Co. Merck Group, Darmstadt,
Germany), cerium chloride heptahydrate (≥98%, Sigma-Aldrich), 2-propanol anhydrous
(99.5%, Sigma-Aldrich), ethanol absolute (≥99.9% Supelco), and 25% (wt) ammonia aque-
ous solution (Scharlau). Also, commercial MCM-41 mesoporous silica (Sigma-Aldrich)
was used.

3.2. Preparation and Characterisation of Common Sage Extracts

Dried leaves of Salvia officinalis L., purchased from a local vendor, were chosen as the
plant material. The ethanolic and hydroalcoholic (ethanol-water 1/1 v/v) polyphenolic
extracts from Salvia officinalis L. were prepared at different plant/solvent weight ratios, at
reflux or 50 ◦C, either by the conventional method or by microwave (MW power of 75 W;
Milestone Technologies Neos Essential Oil Systems, CT, USA) or ultrasound (Bandelin
Sonorex Digitec ultrasonic bath, Berlin, Germany)-assisted extraction in three extraction
stages, with separation of the vegetal material after each stage and replacement of the
solvent in the same volume, followed by pooling together of the three extract fractions. For
the preparation of all extracts, a 20 h maceration step in the extraction solvent was applied.
In the case of conventional extraction, each extraction stage lasted 1 h, while for MW or
UAE, these were 15 min. The conditions applied for extract preparation and labeling are
listed in Table 1.

The solvent was evaporated using a rotary vacuum evaporator DLAB RE100-Pro
(DLAB Scientific, Beijing, China) until the extract reached a constant mass. It was redis-
solved to prepare extracts of known concentration.

The prepared polyphenolic extracts were characterized by spectrophotometric meth-
ods (Shimadzu UV-1800, Shimadzu Corporation, Kyoto, Japan) to assess the total polyphe-
nol content using Folin-Ciocalteu reagent based on a calibration curve of gallic acid, total
flavonoid content using aluminum chloride and expressed as quercetin equivalents, and
total chlorophyll pigment content, calculated based on the Ritchie’s equations using so-
lution absorbance values at 665 nm, 649 nm, and 750 nm. All methods applied for these
spectrometric determinations, as well as the assessment of the radical scavenger activity of
polyphenolic extracts by in vitro ABTS and DPPH assays, including the standard curves
and the concentrations domain, have been described elsewhere [5]. The chemical profile
of polyphenolic extracts was evaluated by reversed-phase high performance liquid chro-
matography with a photodiode array detector, i.e., HPLC-PDA (Shimadzu Nexera 2 with
SPD-M30A detector, Shimadzu Corporation, Kyoto, Japan), operating in the 250–600 nm
wavelength range. A Nucleoshell® reversed-phase C18 column 4.6 × 100 mm (2.7 µm)
(Macherey-Nagel GmbH & Co. KG, Düren, Germany), two mobile phases, i.e., 2.5% aque-
ous formic acid solution (mobile phase A) and 90% aqueous acetonitrile with 2.5% formic
acid (mobile phase B), a gradient elution at constant flow of 0.4 mL/min at constant tem-
perature of 20 ◦C, and 1 µL for the injection were used for the chromatographic analysis.
The spectrophotometric methods and HPLC analysis have been described elsewhere [30].
For all experiments, the samples were weighed using a semimicro balance Precisa EP
225SM-DR (±0.01 mg) (Precisa Gravimetrics AG, Dietikon, Switzerland).

3.3. Obtaining Mesoporous Titania and Titania-Ceria Composite Supports

Mesoporous titania and titania-ceria composite materials were synthesized by the
sol-gel method using titanium isopropoxide and cerium chloride heptahydrate as metallic
sources in the presence of a structure directing agent, i.e., triblock copolymer Pluronic
P123. Thus, for titania nanoparticles synthesis, 1.25 g of Pluronic P123 was dissolved in
a mixture of 50 mL of anhydrous 2-propanol and 1.5 mL of glacial acetic acid, followed
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by the addition of 3.76 mL titanium isopropoxide under magnetic stirring. The reaction
mixture was stirred at 40 ◦C for 1 h. Then, for hydrolysis and condensation reactions of
titania species, 1 mL of water was added dropwise. The reaction mixture was first aged
under magnetic stirring at 40 ◦C for 24 h and then solvothermal treated in a Teflon-lined
autoclave under autogenous pressure at 100 ◦C for 24 h. After solvothermal treatment, the
resulting white solid was separated by centrifugation, washed with ethanol and water, and
dried at 100 ◦C. To remove the structure directing agent, Soxhlet extraction was performed
in ethanol for 24 h, followed by a calcining step at 400 ◦C, 3 h with 0.5 ◦C/min heating rate.

The ceria-titania composite was obtained by dissolving Pluronic P123 (1.25 g) in
anhydrous 2-propanol (50 mL) acidified with glacial acetic acid (1.5 mL), adding the
appropriate volume of titanium isopropoxide (3.38 mL) and cerium chloride heptahydrate
previously dissolved in 3 mL ethanol to the solution containing the template agent under
magnetic stirring at room temperature. The reaction mixture was kept under reflux for
20 h, and then 2M aqueous NH3 solution was added dropwise to raise the pH to 9 in order
to precipitate the cerium ions. Next, the reaction mixture was aged under magnetic stirring
for another 24 h at 40 ◦C. The solid was filtered off and intensively washed with water and
ethanol. Next, Soxhlet extraction was performed in ethanol for 24 h to remove most of
the template agent. Finally, the composite material was calcined at 450 ◦C for 5 h with a
heating rate of 0.5 ◦C/min.

3.4. Loading of Salvia Officinalis Extracts into Mesoporous Inorganic Matrices

The materials containing embedded extract were obtained by the incipient wetness
impregnation method using So(US)-1 and So(Conv)-4 extracts and titania, titania-ceria
composite and commercial MCM-41 as supports. Specifically, the mesoporous inorganic
matrix was first dried in vacuum at 110 ◦C for 12 h, and then mixed with the selected
common sage extract (20 mg/mL concentration). The resulting suspension was then
dried in vacuum at room temperature for 12 h in dark conditions. The resulting materials
containing extract were labelled extract@support.

3.5. Characterization of Inorganic Matrices and Materials Containing Extract

The mesoporous titania and titania-ceria composite supports were characterized
by wide-angle X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR),
thermal analysis (DTA-TG), and scanning and transmission electron microscopy. The
FTIR spectra were recorded on a Bruker Tensor 27 spectrophotometer (Bruker Corporation
Optik GmbH, Bremen, Germany) in the 4000–400 cm−1 domain. Wide-angle XRD analyses
were recorded on a Rigaku MiniFlexII diffractometer (Rigaku Corporation, Tokyo, Japan)
using Cu-Kα radiation in the 10◦–70◦ 2θ range with a step of 0.01◦ and a scanning rate of
1◦/min. SEM investigation of mesoporous inorganic materials was performed on a Tescan
Vega 3 LM electron microscope (Tescan, Brno, Czech Republic) equipped with an energy
dispersive X-ray (EDX) detector for chemical composition determination, while TEM
investigation was carried out on a FEI (Hillsboro, Oregon, USA) TECNAI F30 G2 S-TWIN
high resolution transmission electron microscope with a field emission electron gun and a
maximum accelerating voltage of 300 kV. The nitrogen adsorption-desorption isotherms
were recorded on a Quantachrome Autosorb iQ2 gas sorption analyzer (Quantachrome
Instruments, Boynton Beach, FL, USA) at 77 K in order to determine the specific surface
area by Brunauer-Emmett-Teller method in the relative pressure range of 0.05–0.25, the
total pore volume measured at 0.99 relative pressure, and the average pore diameter by
Barrett Joyner Halenda model. Before recording the isotherms, the inorganic supports were
outgassed at 150 ◦C for 12 h. Thermogravimetric analyses were performed in synthetic air
flow with a scan rate of 10 ◦C/min on a Mettler Toledo GA/SDTA851e (Mettler Toledo,
Greifensee, Switzerland).
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3.6. Antibacterial Activity Assessment of S. officinalis Extracts

The antibacterial activity of Salvia officinalis extracts was assessed against Escherichia
coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Staphylococcus aureus ATCC
25923 (Thermo Fisher Scientific-Waltham, MA, USA).

3.6.1. Minimum Inhibitory Concentration (MIC)

The antibacterial properties of the tested polyphenolic extracts were determined by
broth microdilution assay. The So(US)-1 and SO(Conv)-6 extracts were tested against
three bacterial strains: Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853
and Staphylococcus aureus ATCC 25923. The common sage extracts were two-fold diluted
in 96-well plate starting from 7 mg/mL extract concentration using TSB (Tryptic Soy
Broth) medium. Each microtiter well was inoculated with microbial suspension with
1.5 × 108 CFU/mL (0.5 McFarland) density. The minimum inhibitory concentration (MIC)
values were determined after 24 h incubation at 37 ◦C by spectrophotometric evaluation
of the optical density at 620 nm in each well. The solvent was used as control for the
assessment of bacterial growth. Experiments for MIC determination were performed in
duplicate. For each antimicrobial test, a sterility control of the TSB medium and a positive
microbial growth control were used.

3.6.2. Minimum Biofilm Eradication Concentration (MBEC)

The 96-well plates used for MIC assessment were drained and rinsed three times
with sterile saline solution. The biofilm in each well was fixed with cold methanol for
20 min, followed by coloration with 1% violet solution for 15 min. After the removal of the
violet crystal solution, the microplates were washed with water and the microbial biofilm
was resuspended in 33% acetic acid solution. Microbial cell density was determined
spectrophotometrically at 490 nm. The lowest extract concentration that inhibited the
development of the microbial biofilm was considered the minimum biofilm eradication
concentration (MBEC) value [56].

3.7. Antibacterial Activity of Materials Containing Extract through Disk Diffusion Method

Composite materials containing So(US)-1 extract embedded in inorganic carriers
(mesoporous silica and titanium dioxide) were tested against Pseudomonas aeruginosa ATCC
27853 and Staphylococcus aureus ATCC 25923 via the disk diffusion method. Bacterial
suspensions with 0.5 McFarland density were obtained from solid culture and used to
inoculate Petri dishes containing agar medium. Subsequently, the composite materials
were suspended in ethanol to achieve a final extract concentration of 14 mg/mL. A volume
of 10 µL suspension was placed on the surface of the inoculated agar medium, which
was then incubated at 37 ◦C for 18–24 h. The antibacterial activity was determined by
measuring the bacterial growth inhibition zone diameter. The corresponding carrier was
also tested against the chosen bacterial strains. Ethanol was used as control.

3.8. Determination of Polyphenols Release Profiles from Mesoporous Supports

In vitro release experiments of polyphenols from mesoporous supports were per-
formed in 0.2 M phosphate buffer solution (PBS), pH 5.7, under constant magnetic stirring
(200 rpm) at 37 ◦C in dark conditions, with a constant volume of release fluid. Each mate-
rial containing polyphenolic extract (corresponding to 10 mg extract) was suspended in
20 mL PBS. At predetermined time intervals, aliquots of 100 µL were withdrawn from the
release medium, diluted with PBS, and then analyzed by ultraviolet-visible spectrometry at
285 nm, corresponding to the determination of the total polyphenolic index according to a
method described elsewhere [31]. The amount of recovered extract was determined based
on a calibration curve for So (Conv)-3 extract in PBS pH 5.7 (y = 0.0096*x, R2 = 0.9998) in
the concentration domain of 1–100 µg/mL.
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4. Conclusions

To ensure the stability of common sage extracts over time, two inorganic mesoporous
materials, i.e., titania and titania-ceria, were prepared by the sol-gel method via novel
methods and then used for the loading of selected extracts. The efficiency of extract loading
into these two materials was compared with that of commercial mesoporous MCM-41
silica. UAE showed a better efficiency of polyphenol recovery from Salvia officinalis L. dried
leaves than conventional or MW-assisted extraction. The extract-loaded materials exhibited
enhanced radical scavenger activity compared to the free extract after at least two months
of storage at 4 ◦C, which means better stability over time of phenolic compounds following
embedding into a mesoporous matrix. It was also shown that the encapsulation of the
extract into titania nanoparticles slightly improved its antimicrobial activity due to the
contributions of the support material. This approach could be further employed to develop
new formulations for polyphenolic extracts with antibacterial properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14216457/s1, Figure S1. Titania nanoparticles characterization: FTIR spectra of TiO2E
and TiO2 (B); DTA curves of TiO2E and TiO2 (A); thermogravimetric curves of TiO2E and TiO2 (C);
Figure S2. Titania-ceria composite characterization: FTIR spectra of TiO2-CeO2E and TiO2-CeO2 (B);
DTA-TG curves of TiO2-CeO2E (A); DTA-TG analysis of TiO2-CeO2E; EDX elemental mapping image
of TiO2-CeO2 composite material (C); Figure S3. DTA-TG analyses of the So(US)-1 extract embedded
into MCM-41 and TiO2-CeO2 support.
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