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Mouse lipidomics reveals inherent 
flexibility of a mammalian lipidome
Michał A. Surma  1, Mathias J. Gerl  1, Ronny Herzog1, Jussi Helppi  2, Kai Simons  1 & 
Christian Klose  1*

Lipidomics has become an indispensable method for the quantitative assessment of lipid metabolism 
in basic, clinical, and pharmaceutical research. It allows for the generation of information-dense 
datasets in a large variety of experimental setups and model organisms. Previous studies, mostly 
conducted in mice (Mus musculus), have shown a remarkable specificity of the lipid compositions of 
different cell types, tissues, and organs. However, a systematic analysis of the overall variation of the 
mouse lipidome is lacking. To fill this gap, in the present study, the effect of diet, sex, and genotype on 
the lipidomes of mouse tissues, organs, and bodily fluids has been investigated. Baseline quantitative 
lipidomes consisting of 796 individual lipid molecules belonging to 24 lipid classes are provided for 
10 different sample types. Furthermore, the susceptibility of lipidomes to the tested parameters is 
assessed, providing insights into the organ-specific lipidomic plasticity and flexibility. This dataset 
provides a valuable resource for basic and pharmaceutical researchers working with murine models 
and complements existing proteomic and transcriptomic datasets. It will inform experimental design 
and facilitate interpretation of lipidomic datasets.

Lipidomics is the quantitative and comprehensive analysis of lipids in biological samples1,2. By means of auto-
mated sample extraction, state-of-the-art mass spectrometry, sophisticated and validated spectra annotation 
and data analysis processes as well as modern statistical methods (machine learning), biologically relevant 
information can readily and reliably be obtained based on thousands of data points3. Therefore, lipidomics has 
become an indispensable tool for understanding (lipid) metabolism at the molecular level in basic, clinical, and 
pharmaceutical research. In the clinical context, the analysis of human blood samples in large population studies 
have revealed novel lipid signatures for a variety of indications such as: diabetes type 24,5, obesity6,7, cardiovascular 
diseases8–11 and neurological disorders12. Furthermore, in nutritional research lipidomics has proven a powerful 
read-out in dietary intervention studies13.

Lipidomics has successfully been applied to study disease and disease-related mechanisms in many different 
indications. Among these are neurological disorders14,15, liver disease16 and cancer17–19, resulting in the identi-
fication of potential drug targets involved in lipid metabolism20.

A primary model for these studies is the mouse Mus musculus. Typically, lipidomic changes in blood plasma 
and a variety of tissues or organs are assessed to understand disease mechanisms or modes of drug action. Sev-
eral studies have shown that different cells, tissues, and organs exhibit highly specific lipid composition16,21–24. 
However, the systematic knowledge of the natural, biological lipidomic variation of different organs and bodily 
fluids is lacking, hindering interpretation of lipidomic data.

To fill this gap, in the present study, the effect of diet, sex, and genotype on the lipidomes of mouse tissues, 
organs, and bodily fluids has been investigated. Baseline quantitative lipidomes consisting of more than 796 
individual lipid molecules for 10 different sample types (full blood, blood plasma, liver, skeletal muscle, brain, 
kidney, adipose tissue, small intestine, lung, and spleen) are provided. Furthermore, susceptibility of lipid levels 
to the tested parameters is assessed, providing insights into the organ-specific lipidomic plasticity and flexibility 
of a mammalian organism. This dataset provides a valuable resource for basic, pharmaceutical, and clinical 
researchers using mouse as model system and complements existing proteomic and transcriptomic datasets. It 
will inform experimental design and facilitate interpretation of lipidomic datasets.

Results
Study objective and design.  The aim of the present study is to investigate the lipidomes of mouse tis-
sues, organs, and bodily fluids and how they are affected by different diets in mice of different genotype and sex. 
To this end, two standard laboratory mouse strains were selected, representing genetically outbred and inbred 
populations. Parental mice were allowed to breed, and females (already during pregnancy) and the consecutive 
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litter mice were fed with a high protein (18 weight%) or a low protein (14 weight%) diet; both diets representing 
healthy and standard compositions and commonly used in nutrition studies25,26. For each combination of condi-
tions, three mice of each sex were sacrificed, and 10 sample types collected, prepared for lipid extraction, and 
analysed using a quantitative, high-throughput shotgun lipidomics platform. Sample types included: full blood, 
blood plasma, liver, skeletal muscle, brain, kidney, adipose tissue, small intestine, lung, and spleen; in total 240 
samples. For details see Materials & Methods.

The present study design enabled a factorial analysis of the influence of the different conditions (i.e., geno-
type, diet, and sex) on each individual lipid in every sample type. The comprehensive set of sample types allowed 
for a detailed description of mouse organ lipidomes regarding abundances of lipid classes and individual lipid 
molecules, fatty acid saturation/unsaturation, chain length and hydroxylation profiles as well as their suscepti-
bility to differences in the experimental conditions. Furthermore, changes of lipids in different organs or tissues 
across the different conditions could be correlated with changes in blood lipidomes (full blood or blood plasma). 
This allowed to investigate, whether blood lipidomes are useful proxies for various organ and tissue lipidomes.

Method validation and analytical performance.  We have published detailed methods for mass spec-
trometry-based shotgun lipidomics of blood plasma27 and adipose tissue28. We have shown that for these two 
matrices the analytical precision (repeatability) is well below 15% (relative standard deviation, RSD), sensitivity 
is in the nM range and the linear dynamic range spans four orders of magnitude.

To further extend method validation for the present study, liver, brain, and full blood were chosen as repre-
sentative material to assess repeatability, sensitivity, and dynamic range of the analytical method. These sample 
types are the most complex and exemplary regarding lipid composition and quantities to be encountered across 
various tissues, organs, and other samples. More specifically, brain is a very lipid-rich organ29 with high amounts 
of (glyco-)sphingolipids. Liver, as a metabolically highly active organ, is rich in apolar lipids like triglycerides and 
cholesterolesters in addition to polar membrane lipids, making liver an especially complex matrix for lipidomics 
analyses. Full blood represents a lipid-rich liquid sample containing large amounts of membrane lipids (mainly 
derived from erythrocytes) and lipoprotein-derived storage lipids such as triglycerides and cholesterolesters.

The method sensitivity assessed for these sample types was in the nM range and linearity (dynamic range) 
was achieved over four orders of magnitude. Repeatability of the method was 5.6%, 6.3%, and 8.3% RSD for 
liver, brain, and full blood samples, respectively (for details see Supplemental Text). These values were similar to 
the repeatability achieved by shotgun lipidomics for other sample types: plasma30, skin stratum corneum31 and 
adipose tissue28, with 11.3% (mean), 7.4% (median) and 6.8% (median) RSD, respectively. Such concurrence of 
reproducibility values for the representative samples of this study and for other sample types in previously pub-
lished data supports the conclusion that such reproducibility is representative for a shotgun lipidomics method 
and can be expected for other sample types as well. The achieved technical reproducibility placed the measure-
ments well below the 20% RSD threshold that is commonly used for in vitro diagnostic assays32.

The sample set was analyzed in four analytical batches, according to the required extraction and mass spec-
trometry methods (see Materials & Methods). The analytical performance was assessed by including reference 
samples for each analytical batch30. The median RSD for the analytical batches on the level of individual lipid 
(sub)species for plasma was 6.6%, for full blood 15.7%, for adipose tissue 4.9%, and for the remaining tissues 
12.3%. For the study samples, a total of 24 lipid classes comprising a total of 796 lipid species could be quanti-
fied across all sample types (Table 1). Among these, spleen and lung exhibited the broadest coverage (24 lipid 
classes), while in adipose tissue the lowest number (11) of lipid classes could be detected. The reproducibility 
as assessed by the median RSD for lipid (sub)species of the biological triplicates of each organ and combination 
of experimental conditions was between 12.5% and 25.8%. Reproducibility was highest for brain and full blood 
and lowest for kidney and spleen. Note, that these reproducibility values include both technical variation of the 
analytical method and biological variation between the triplicate mice.

Lipidomic characteristics of mouse organs and tissues.  To obtain an overview of the similarities 
between different sample types, a principal component analysis (PCA) was performed based on amounts of lipid 

Table 1.   Lipidome coverage and reproducibility of the measurements. Median RSD is provided for individual 
lipid (sub)species in the biological triplicates.

Sample type Lipid classes Lipid species Median RSD (%)

Adipose tissue 11 150 16.5

Brain 22 363 12.5

Full blood 18 410 12.5

Intestine 23 420 20.2

Kidney 23 521 25.8

Liver 20 405 16.4

Lung 24 442 17.6

Muscle 21 447 21.6

Plasma 17 306 14.1

Spleen 24 531 23.0
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species normalized to total lipid for all experimental conditions (molar fractions expressed as mol%, Fig. 1A). 
Unsurprisingly, almost every sample type forms a separate cluster, indicating a distinct, organ-specific lipid 
composition. Notable exceptions are adipose tissue and muscle, which are not discriminated well in the first 
two principal components of the PCA. This lipidomic similarity of adipose and muscle tissues, despite their 
apparent biological difference, is caused by the fact that both samples contained high ( > 90 mol%) amounts 
of triglycerides (TAG). As this observation is obvious for adipose tissue, for the muscle it is most likely caused 
by not differentiating between muscle tissue and the intermuscular fat during sample collection. Brain appears 
to have the most distinct lipid composition of all organs and tissues analyzed, as its samples are clustered well 
separated from other sample types, in both principal component dimensions (principal components 1 and 2). 
Furthermore, along principal component 1, brain and adipose tissue/muscle are most distant to each other, indi-
cating distinct compositional differences due to the high concentrations of TAG in muscle and adipose tissue, 
which on the other hand is almost entirely absent in brain.

When the storage lipids (cholesterolester (CE), diacylglycerol (DAG), TAG) are excluded from the PCA, 
the tissue-specific clusters are in most cases preserved (Fig. 1B). This is the case for brain, kidney, intestine, 
spleen, and lung. For the remaining tissues, the clusters become even more distinct arguing for a tissue-specific 
composition of the membrane lipids in particular. This effect is most pronounced for adipose and muscle tissue 
which overlap entirely in the presence of storage lipids but form separate clusters based on membrane lipids.

On the lipid class level, brain exhibits high concentrations of cholesterol (ST), phosphatidylserine (PS), and 
most importantly, phosphatidylethanolamine ether (PE O-) and hexosyl ceramide (HexCer) (Fig. 1C). Intestine 
samples form a distinct cluster separated from the other sample types in principal component 2. They show high 
concentrations of phosphatidylcholine ether (PC O-), lyso-phosphatidylcholine (LPC), ceramides (Cer), lyso-
phosphatidylethanolamine (LPE), and other lyso-lipid classes. With around 5 mol%, the LPE concentration in 
the intestine is by far the highest among all tissues and organs. Lung samples form another well-separated cluster. 
They are rich in sterols, sphingomyelin (SM) and in particular phosphatidylglycerol (PG). Like lung, spleen is 
rich in cholesterol (ca. 25 mol%, Fig. 1C). In addition, in spleen there are significant amounts of PE O-, PC O-, 
phosphatidylinositol (PI), PS, and SM. The blood samples (full blood and plasma) obviously share characteristic 
similarities, such as high concentrations of CE and LPC. Full blood differs from plasma because it contains higher 
concentrations of phosphatidylethanolamine (PE), PE O-, PI, and PS, which are contributed by the cellular com-
ponents of blood, mainly erythrocytes. Interestingly, kidney and liver samples are forming partially overlapping 
clusters. Liver and kidney, both share a comparably high concentration of DAG and intermediate concentrations 
of TAG and cholesterol. Furthermore, liver has the highest PI concentration among all sample types.

The tissue-specific lipid (sub-)species composition is based in part on a distinct fatty acid profile of the 
different sample types (Fig. 1D). In general, the three most abundant fatty acids are 16:0 (palmitic acid), 18:1 
(likely oleic acid), and 18:2 (likely linoleic acid). Palmitic acid is most abundant in lung tissue, where it is a 
major component of surfactant lipids. Plasma and full blood samples contain the highest amounts of the poly-
unsaturated fatty acid (PUFA) arachidonic acid (20:4) while brain is rich in docosahexaenoic acid (22:6). Brain 
also contains, together with intestine, comparably high amounts of stearic acid (18:0). Complete lipidomic data 
are provided in Supplemental Table s1.

Qualitative lipid class composition.  Lipidome data can be presented in many ways. This is due to the 
fact, that lipids are built from structural entities that are shared among all lipid classes. This allows for grouping 
the lipidomic data according to different structural features. These structural features can be headgroups, the 
defining characteristic of lipid classes, or fatty acids with varying length (number of carbon atoms in an acyl 
moiety) and number of double bonds (unsaturation). Therefore, the lipid class abundance (as the molar fraction 
of the total measured lipidome, expressed in mol%), the weighted mean of the number of double bonds, and 
the weighted mean of the number of carbon atoms in the fatty acid moiety of the lipids belonging to a given 
lipid class are three lipidomic features that enable a quantitative as well as qualitative description of a given lipid 
class. This results in a reduced number of lipidomic features. For example, the most complex sample type in 
the present study (spleen) contains 531 lipid molecules belonging to 24 lipid classes. By describing a lipid class 
by the three parameters, the number of features (the data granularity) to be analyzed is reduced to 72 (24 lipid 
classes ×3 ), a seven-fold decrease. The advantage of condensing the lipidome data in this way is, that the number 
of features to be analyzed statistically can be decreased without losing the most important biological informa-
tion, conveyed by lipid classes content and their length/saturation indices.

This condensed qualitative view on the lipid class composition can be displayed by plotting the weighted 
mean of the number of double bonds and the weighted mean of the number of carbon atoms in the fatty acid 
moiety of the lipids belonging to a given lipid class against each other (Fig. 2).

Unsurprisingly, for most lipid classes, there is a correlation between the carbon chain length and the degree 
of unsaturation: the longer the fatty acids, the more double bonds are to be found. However, this phenomenon 
is more pronounced in some classes than in others. For phosphatidylcholine (PC) and PG there seems to be a 
perfectly linear relationship between chain length and unsaturation. However, the sphingolipids (ceramide, SM 
and hexosyl ceramide) do not follow this correlation but exhibit rather organ-specific length and unsaturation 
profiles due to the differential expression of ceramide synthases. For example, SM has a very distinct profile in 
intestine samples with short (35–36 carbons) and saturated (1–1.1 double bond) SM species. In plasma however, 
SM is longer (ca. 38 carbons) and more unsaturated (ca. 1.5 double bond).

A striking feature of the lipid class length and unsaturation profiles is that they appear to be more conserved 
in certain organs than in others. For example, especially brain exhibits a very distinct lipid class profile for the 
sphingolipids, PC, PE, PE O-, PI and PS. Similarly, lung shows a very tightly controlled lipid profile in PC and 
PG. Of note, lung PC exhibits the shortest and most saturated profile across all sample types analyzed. Intestine 
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Figure 1.   Lipid composition of mouse organs. (A) Principal component analysis (PCA) based on lipid species 
in mol%. Axis labels indicate principal component 1 and 2, including % variance explained. (B) PCA as in A, 
but excluding storage lipids (DAG, TAG, CE). (C) Lipid class composition. (D) Profiles of fatty acids derived 
from complex lipids. Shown are mean values for all combinations of experimental conditions (biological 
triplicates for all combinations of diet, sex, and genotype; n = 24 ). Error bars indicate standard deviations.
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is another organ with rather specific lipid class profiles: its PI and PS are comparably short and saturated, while 
PE O- in intestine samples shows longer carbon chains (ca. 38) than in any other sample type.

Sphingolipids like ceramide, SM, and hexosyl ceramide show a specific chain length and double bond profile 
in basically every organ. Other lipid classes have a more distinct lipid class composition in some organs but can 
vary broadly in terms of fatty acid chain length and degree of unsaturation in others. A noteworthy example is 
PC, which in brain and lung has a very specific lipid profile, while especially in spleen, but also in plasma, its 
lipid class composition is rather variable. Similar observations can be made for other lipid classes, such as PE, 
PE O-, and PS.

One may generalize these observations and say that across all organs and tested conditions certain lipid classes 
exhibit a greater heterogeneity in their fatty acid composition (profile) than others. For example, PS shows a 
very broad double bond range (from 0 to almost 7) while PI shows a very narrow double bond range (from 3.2 
to 4.1). Similarly, PC O- has a very broad carbon length range (from 32 to almost 38) while PE shows a very 
narrow carbon length range (from 36 to 39).

Plasticity of lipid classes.  To express these observations in a simple parameter, we propose the concept 
of lipidomic plasticity. We define lipidomic plasticity as the ability of a lipid class to undergo changes in the 
composition of its molecular lipid species, that is changes in their features, such as fatty acid length, unsatura-
tion or abundance within the class, in response to varying conditions. For example, a lipid class that is observed 
to assume a very broad range of double bond numbers, carbon chain length, or abundances across a variety of 
experimental conditions, has a high degree of lipidomic plasticity. On the contrary, a lipid class which exhibits 
hardly any variation in abundance, double bond profile or carbon chain length has a low degree of lipidomic 
plasticity. Hence, plasticity is the degree of structural heterogeneity/variation within a given lipid class. There-

Figure 2.   Feature profiles of the major lipid classes. Shown is the weighted mean number of double bonds per 
lipid class in a given sample and the weighted mean number of carbons in the hydrocarbon chain moiety per 
lipid class in a given sample (each dot represents an individual sample). Minor lipid classes (lyso-lipids) are 
omitted for clarity.
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fore, lipidomic plasticity expresses the capability of an organism (such as mouse) or its part (an organ, a tissue, a 
cell), to adopt the amount and/or composition of lipidomic entities (such as lipid classes) in response to internal 
and external stimuli.

The plasticity of a lipid class was estimated as the product of the range of the weighted mean of the number 
of double bonds and the weighted mean of the number of carbon atoms in the hydrocarbon moiety of a lipid 
class (Fig. 3A, for details of the calculation see Materials & Methods). As defined above, a lipid class that exhibits 
a wide range of unsaturation and/or carbon chain length will have a high plasticity, while a lipid class with low 
variability will have a low plasticity. In this way, it is possible to easily compare the capability for adjusting the 
species profile of a lipid class across the different organs. For example, PC has a high plasticity in spleen, while 
very low in intestine (Fig. 3A). This is explained by the fact that PC clusters tightly around 35–35.5 carbons in the 
fatty acid moiety and 2.5 double bonds in intestine, while in spleen the ranges are from ca. 33–34.5 for carbons 
in fatty acids and double bond numbers between 1 and 2 (Fig. 3A). The analysis of lipid class plasticity therefore 
reveals, that in some organs the fatty acid composition of certain classes is more constrained (i.e., less affected 
by diet, sex, genotype) than in others (Fig. 3B). In brain, but also in lung, the lipid class profiles are the least 
plastic. Other organs, like spleen, tend to have more plastic lipid classes profiles. Liver shows a similar tendency 
for many lipid classes, but not for all.

In summary, along the parameters of lipid class abundance, carbon chain length and double bond profile, each 
lipid class exhibits a distinct quantitative and qualitative pattern in every organ. Here we introduce plasticity as 
an additional defining characteristic of each lipid class.

Flexibility of the mouse lipidome.  As shown above, there is significant variation of the organ lipidomes 
across the tested conditions. An analysis of variance based on multiple linear regression with lipid species con-
centrations in mol% as outcome and sex, diet, genotype, and sample type as covariates shows that the major 
source of variance in the dataset is the sample type, accounting for about 60% of overall variance (not shown). 
This confirms the observations in the PCA (Fig. 1). Therefore, organ identity is the most determining factor for 
lipid composition. Diet, sex, and genotype contribute to only about 5% of overall variance each, indicating that, 
in the range tested, their influence is more subtle.

To investigate effects of diet, sex, and genotype on the mouse organ lipidomes, multiple linear regression with 
lipidomic features (i.e., lipid class concentration in mol%, weighted mean of lipid class unsaturation, weighted 
mean of lipid class chain length) as outcome was performed. Out of 68 lipidomic features included in the analysis, 
56 (82%) were significantly affected by any of the tested conditions in at least one of the organs. Those lipidomic 
features that were not affected represent only minor, less abundant, lipid classes, such as lyso-lipids. More spe-
cifically, every organ is affected by diet, sex, and genotype in at least one lipidomic feature. The only exception 
is brain, which is not affected by diet and sex. However, genotype has a highly specific effect on the brain sphin-
golipids and cholesterol (Fig. 4B). Cholesterol, SM, and hexosyl ceramide content is increased in outbred mice, 
while ceramide content is decreased. Moreover, unsaturation and carbon chain length are reduced for ceramides 
and SM in outbred mice, while the degree of unsaturation of hexosyl ceramide is increased. Complete results for 
the regression analysis are provided in Supplemental Table s3.

To summarize the lipidomic changes induced by the experimental conditions and to quantitatively assess 
their impact on the mouse organ lipidomes, we apply the concept of lipidomic flexibility33. We define lipidomic 
flexibility as a quantitative measure for the magnitude of changes in a lipidome (or parts of it) induced by certain 
experimental conditions. It can be calculated as sum of changes on various levels (for example degree of unsatura-
tion, fatty acid chain length or lipid amounts) within an organ or tissue. Highly flexible organs or tissues display 
stronger changes in their lipidomes in different conditions than less flexible organs or tissues.

Here, lipidomic flexibility is calculated by summing the absolute effect sizes ( β coefficients of the linear 
regression) for significantly affected features ( p < 0.01 ) of the different organs (Fig. 4A). In this way, the highly 
specific effect of the genotype on the brain lipidome becomes obvious. Furthermore, genotype and sex exert 

Figure 3.   Lipid class plasticity across all combinations of experimental conditions. (A) Plasticity is calculated 
per class and organ by multiplying the scaled ranges of values of weighted mean number of double bonds and 
the weighted mean number of carbons in the hydrocarbon chain moiety per lipid class. The wider the ranges, 
the higher the plasticity. (B) Lipid class plasticity for the different mouse organs. For details see Materials & 
Methods.
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organ-specific effects. While plasma, full blood and brain are strongly affected by genotype, adipose tissue and 
lung are only weakly affected. Similarly, sex strongly influences the full blood lipidome (Fig. 4B), while brain, 
adipose tissue, but also lung and intestine are hardly affected. Also, the kidney and liver lipidomes exhibit sex-
specific differences. In liver, diet has a significant impact on TAG and cardiolipin (CL) composition (Fig. 4B). Of 
note, full blood and liver usually show the highest flexibility, irrespective of the tested condition. Full blood (and 
in a similar way blood plasma) is strongly affected throughout the entire lipidome. There are significant changes 
not only in the storage lipids TAG and CE, but also in the major phospholipid classes PC, PI, PS as well as in 
the sphingolipid SM and cholesterol (see Supplemental Table s3). Hence, full blood can serve as a rich source of 
information on systemic changes in lipid metabolism.

Genotype‑ and sex‑specific dietary effects on the lipidome.  In this study, mice of each genotype 
and sex were fed two different diets: high (18%) and low (14%) protein (for details see Materials & Methods). 
This factorial design allows for the analysis of differential effects of a given condition depending on the status 
of the other conditions, in particular diet-induced lipidomic changes in dependence of genotype or sex. For 
example, we observed that ceramide levels in kidney samples are increased in inbred mice (female and male) 
fed a high protein diet as compared with low protein diet while they are not affected in kidneys of outbred mice 
(Fig. 5A). Similarly, the degree of unsaturation of PE is negatively affected by high protein diet in inbred mice 
but not significantly affected outbred mice.

We therefore performed in systematic analysis of sex- or genotype-specific effects of diet based on interaction 
terms in a multiple linear regression model. In kidney, differential effects can be observed throughout many 
lipid classes, in particular phospholipids (Fig. 5B). Especially the degree of unsaturation and hydrocarbon chain 
length of ether lipids (PC O- and PE O-) change in opposite directions depending on the genotype. Sex-specific 

Figure 4.   Flexibility of the mouse lipidome. (A) Analysis of lipidomic flexibility in mouse organs based on 
the tested experimental conditions. For details see main text. Mouse plots were created with the R library 
gganatogram (v.2)34. (B) Analysis of lipidomic responses by multiple linear regression. Shown are β coefficients. 
Error bars indicate standard error. Examples shown are: Genotype effects for brain; diet effects for liver; sex 
effects for full blood. Significantly affected features ( p < 0.01 ) are displayed non-transparently.
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diet effects could be mostly detected in intestine and muscle. Of note, in muscle, differential effects could mostly 
be observed for the sphingolipids SM, hexosyl ceramide, and ceramide (Fig. 5C). Genotype-specific diet effects 
could be detected mostly in brain, intestine and kidney. Similar effects could be observed in all organs to different 
degrees (Supplemental Table s3). Therefore, dietary effects in an organ depend on sex and the genetic context.

Correlations with blood lipids.  We wondered whether the full blood (or blood plasma) itself, as an easily 
accessible sample, is a good proxy for lipidomic changes occurring in other tissues and organs. To investigate 
whether lipidomic changes in mouse organs are reflected in blood samples, we performed a correlation analysis 
of amounts of individual lipids in the different organs with the respective lipids in bodily fluids. We consider 
only significant ( p < 0.05 ) positive correlations as indicative for corresponding changes in amounts. To identify 
which organs are best reflected by blood samples, these positive correlations were used as input for hierarchical 
clustering (Fig. 6A). Correlations in blood plasma are used as a reference point. The closer the organs cluster 
with blood plasma, the better their lipid composition is mirrored in the circulation. It appears that positive cor-
relations of amounts of organ lipids with amounts of plasma lipids can be found across the entire lipidome and 
for all organs. Expectedly, full blood clusters closest with blood plasma since they are sharing the storage lipid 
complement (TAG and CE) organized in lipoprotein particles. Interestingly, it is liver that clusters closest with 
blood samples (blood plasma or full blood), followed by adipose tissue and muscle, while the brain and spleen 
lipidomes are most distant. Hence, changes in the liver lipidome are best reflected in blood samples, while lipi-
domic changes in brain are only weakly reflected by the blood lipidome. In liver, mostly changes in PC species 
correlate well with plasma samples. Additionally, changes in liver PI and TAG species are reflected in plasma 
samples. In muscle and adipose tissue, mostly TAG species are reflected in the plasma lipidome. It should be 
noted that organs were not subjected to perfusion after dissection. Therefore, any residual blood in these organs 
could affect correlations of their lipidomes with blood lipidomes. However, this does not seem to be the case, as 
lipidomes of organs well supplied with blood (such as spleen, intestine or lung) do not correlate well with blood 
lipidomes.

Considering correlations based on lipidomic features, TAG appears to be the class that is best reflected in 
the blood lipidome for various organs. For adipose tissue, muscle, liver, and kidney there are significant posi-
tive correlations of TAG unsaturation and chain length indices in both blood plasma and full blood (Fig. 6B). 
Additionally, there are robust correlations for PI features in liver, intestine, and kidney (not shown).

Even though there are numerous organ lipids whose abundance is reflected in blood samples, the blood lipi-
dome is not a comprehensive mirror of lipidomic changes in organs. In most cases, not more than 5% of lipids 
in an organ are positively correlated with their amounts in the circulation. The exception is liver, with ca. 15% of 
lipids correlating with blood. Therefore, organ lipidomes respond in a specific manner to different stimuli and 
the responses are not necessarily reflected in blood.

Figure 5.   (A) Genotype-specific effects of diet on ceramide levels and degree of PE unsaturation in kidney. (B) 
Genotype- and sex-specific (C) and effects of diet based on a multiple linear regression including interaction 
between diet and genotype and diet and sex, respectively. Shown are β coefficients. Error bars indicate standard 
error. Significantly affected features ( p < 0.05 for the interaction term) are displayed non-transparently. 
Lipidomic features are depicted on the y axis (with “_db” denoting the weighted mean double bond number and 
“_c” denoting the weighted mean of the carbon chain length of a lipid class; when neither is specified, the feature 
name refers to lipid class abundance).
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Discussion
Lipidomics has become an indispensable technology in basic, clinical, and pharmaceutical research to investigate 
lipid metabolism quantitatively at the molecular level. Therefore, a thorough characterization of experimental 
model systems is required to provide a reference for future studies, facilitating experimental design and data 
interpretation. Here, we present a comprehensive and quantitative lipidomic atlas of mouse organs, full blood, 
and blood plasma. This study confirms a remarkable specificity of the organ’s lipid composition both at the 
level of lipid classes as well as for the individual lipid molecules. In fact, each organ shows a unique and unam-
biguous lipid fingerprint. Including mice of different genotypic background, sex and feeding of two different 
diets allowed for an analysis of lipidomic flexibility for each organ and lipid class. This analysis reveals that the 
lipidome of certain organs is more susceptible to variation of genotype, sex, and diet while other organs exhibit 
a remarkably robust lipid composition unimpeded by these perturbations. The multi-factorial study design 
further enabled the analysis of genotype- and sex-specific diet effects for each organ. Again, when specificity 
could be demonstrated, it was organ- and lipid class-dependent, highlighting the complexity of an individual’s 
lipid metabolism. Moreover, correlations of organ lipidomes with full blood and plasma lipidomes revealed that 
lipidomic changes in the brain, spleen, and intestine are only poorly mirrored in the circulation, while the liver 
lipidome is well reflected in the blood.

Most importantly, the factorial design of this study enabled the analysis of lipidomic plasticity of the different 
lipid classes in different organs (Fig. 3) and the lipidomic flexibility of different organs in response to diet, sex, 
and genotype (Fig. 4). We define lipidomic plasticity as the degree of structural heterogeneity/variation within a 
given lipid class, i.e., the possible range of the degree of unsaturation (double bond numbers) and hydrocarbon 
chain length. Lipidomic flexibility of an organ, on the other hand, is the magnitude of lipidomic changes induced 
by experimental conditions. Both parameters are characteristic features of lipidomes and specific for organs, 
tissues, and even cell types.

Organ‑specific lipidomes.  The specific lipid composition of organs has been documented in detail 
previously16,21–24. The lipid composition obviously reflects histological and cellular structures, which are the 
foundation of the organ’s functions. For example, adipose tissue with its triglyceride-laden lipid droplets in their 
adipocytes is composed almost exclusively of triglycerides (ca. 99 mol%)28. Lung samples are characterized by 
high amounts of surfactant components, the most prominent being dipalmitoyl PC (PC 16:0/16:0), PG, and 
SM35. Brain samples are rich in PE O-, hexosyl ceramide, ceramide, and cholesterol. PE O-, hexosyl ceramide 
and cholesterol are major components of myelin sheaths, structures insulating the axons in neurons21. High con-
centrations of ceramides likely serve as precursor for the synthesis of complex glycolipids such as sulfatide and 
gangliosides, which are major lipid components of the mammalian brain36. These lipids were not included in our 

Figure 6.   Correlations of organ lipidomes with blood lipidomes. (A) Hierarchical clustering based on 
correlation coefficients for diet effects on individual lipids in different organs with lipids in blood plasma as 
reference point. Colour scale indicates correlation coefficient ρ . Non-significant positive correlations and 
negative correlations are shown in blue. (B) Scatter plots showing correlations for TAG lipidomic features in 
organs with counterparts in blood plasma and full blood. Dashed lines show a linear regression of the data 
(with grey areas indicating the 95% confidence interval). In both panels only significant ( p < 0.05 ) positive 
correlations are shown and correlations were adjusted for sex and genotype.
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analysis. Furthermore, high amounts of CL in both liver and kidney reflect the large numbers of mitochondria 
in these organs.

Compositional specificity not only at the lipid class level, but also at the level of individual lipid molecules, is 
achieved by organ-specific expression of lipid biosynthetic genes. This is best exemplified for ceramide synthases, 
which show highly tissue-specific expression profiles37. In intestine, ceramide synthase 6 is expressed highest with 
a preference for myristic (C14:0) and palmitic (C16:0) acid, resulting in ceramides with a total carbon number 
of 32-34. In brain, ceramide synthase 1 is expressed at the highest levels with a preference for stearic acid (18:0), 
resulting in ceramides with a total carbon number of 36. At the other end of the scale is liver, in which ceramide 
synthase 2 is expressed abundantly38. Ceramide synthase 2 prefers fatty acids with 20 to 26 carbons, giving rise to 
ceramide species with total carbon numbers ranging from 38 to 44. These expression patterns are reflected in the 
ceramide profiles for the various tissues (Fig. 2). Similarly, organ-specific species profiles for other lipid classes 
are achieved by distinct expression and activity profiles of fatty acid desaturases, elongases and acyl transferases39. 
However, there is much to be learned about the molecular mechanisms that give rise to the perplexing complexity 
of lipid metabolism and composition for different organs, tissues, and cell types.

Lipidome plasticity and flexibility and its implications for experimental design and data inter-
pretation.  We propose lipidomic plasticity and flexibility as intrinsic properties of an organ or bodily fluid. 
While lipidomic plasticity is the ability of a lipid class to assume varying degrees of fatty acid unsaturation or 
chain length, lipidomic flexibility provides a quantitative measure for the magnitude of changes in a lipidome 
induced by certain experimental conditions. Lipidomic flexibility of an organ is directly derived from the lipi-
domic plasticity of its lipid constituents. Here, we investigate these parameters at the level of organs and bodily 
fluids. Future studies will likely necessitate the extension of this concept to tissues and even cell types.

The largest variation in the data set is caused by organ-specific differences of the lipidomes. Diet, genotype, 
and sex each contribute to about 5% of overall variance. Nevertheless, for each organ a significant fraction of 
the lipidome is affected by the tested conditions. However, some organs are more responsive than others. For 
example, the brain lipidome is only affected by genotype while diet and sex hardly have any significant effect. 
Therefore, the brain appears to have a very robust lipid composition. This is confirmed by the very low internal 
plasticity of the major brain lipid classes (like for example PC, PE O-, hexosyl ceramide, Fig. 3). Other sample 
types such as liver and full blood are affected by all the tested conditions. One may interpret a low lipidomic 
flexibility as a consequence of a tight coupling of composition, structure, and function. A very specific lipid 
composition (i.e., a low lipidomic plasticity) with particular structural features such as degree of unsaturation 
and fatty acid chain length are required to fulfil a specific function. In brain that would be the formation of the 
myelin sheath40 and in the lung the coating of the alveolar interior with surfactant lipids like dipalmitoyl PC41. 
Liver and full blood on the other hand fulfil rather metabolic than structural functions, which requires/results 
in a greater flexibility to serve as buffer against metabolic perturbations such as the compositional differences 
related to lipids in the diets tested here.

Lipidomic plasticity and flexibility of an organ have important implications for experimental design: If an 
organ with high flexibility (resulting in large effect sizes) is under investigation, lower numbers of biological 
replicates might be sufficient to observe robust phenotypes. Furthermore, changes observed in organs that are 
characterized by low plasticity and/or flexibility might be more meaningful and hint at a severe phenotype. 
Another level of complexity is added by the fact that intervention effects (here simulated by diet) might depend 
on genotype or sex of the animal. This might be generalized to other backgrounds, like for example diet- or 
genotype-specific drug effects in pharmaceutical time-dose studies.

Blood samples (in most cases blood plasma) are usually used to study intervention effects in model systems. 
However, and perhaps not surprisingly, our results suggest that not every organ’s lipid metabolism is reflected in 
the circulation. As the liver plays a central role in lipoprotein metabolism, the liver lipidome correlates strongest 
with blood plasma, confirming previous studies16,42. Lipid metabolism of other organs is not well reflected in 
blood, especially brain, spleen, and intestine. However, more research is obviously needed to understand how the 
blood and plasma lipidome reflects systemic effects on lipid metabolism. Nevertheless, if organ-specific effects 
of interventions are eventually desired or expected, it is recommended to not only rely on an initial screening of 
blood samples as important phenotypes might be missed.

Limitations of the study.  This study presents a complex analysis of mouse organ lipidomes and their 
dependence on different experimental conditions/factors. However, some important organs or bodily fluids 
were not included, such as reproductive organs, pancreas, heart muscle, brown adipose tissue, cerebrospinal 
fluid, or urine. Analysis of additional tissue and cell types from various organs will certainly increase the degree 
of complexity. A higher number of biological replicates ( n > 3 ) would increase statistical power and likely allow 
for the identification of more significant lipidomic changes. Moreover, additional analytical approaches (for 
example based on liquid chromatography coupled to mass spectrometry) would allow for the quantification of 
low abundant signalling lipids such as phosphoinositides, long chain bases or oxylipins. Furthermore, the analy-
sis of complex glycolipids would be insightful, as would the inclusion of additional mouse genotypes. Finally, 
the dietary intervention used here is rather subtle. Treatment with a high fat diet or different drugs might lead to 
more pronounced effects and hence different conclusions regarding organ flexibility and dependence on geno-
type and sex.

Conclusion.  Here we present a systematic analysis of the lipid composition of mouse organs and blood 
samples and an assessment of overall plasticity and flexibility of the mouse lipidome induced by diet, genotype, 
and sex. This dataset provides a valuable resource for basic and pharmaceutical researchers using mouse as a 
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model system and complements existing proteomic and transcriptomic datasets. More basic and quantitative 
characterizations of model systems are required for other omics technologies as they will aid standardization of 
research areas and inform experimental design and facilitate interpretation of lipidomic datasets.

Methods
Mouse handling.  Two standard laboratory mouse wild-type strains were selected: Hsd:ICR (CD-1) and 
C57BL/6JOlaHsd, genetically representing an outbred and inbred population, respectively. The mice were 
allowed to breed within the strains, and once pregnancy was confirmed, the pregnant females were put on two 
standard, healthy diets differing by protein content: Teklad global 14% protein (Envigo #2014S, low protein) and 
Teklad global 18% protein (Envigo #2018S, high protein). The high protein diet delivered 24% of total calories 
from proteins and 18% from fats, whereas the low protein diet delivered 20% of total calories from proteins and 
13% from fats. Qualitatively, the lipid compositions of high and low protein diets are comparable (Supplemental 
Table s2). After birth, mothers were kept at the same diet and the litter mice were introduced to the same diet as 
their mothers after weaning.

At the age of ca. 8.5 weeks, mice were weighted and then sacrificed, to yield three females and three males 
from each strain and each diet ( n = 3 representing the minimal sample number for meaningful statistical analy-
sis). Hsd:ICR (outbred) animals came from different litters. On the contrary, C57BL/6JOlaHsd (inbred) animals 
came from the same litter, that is all six mice (three males and three females) for each diet were siblings.

All protocols were approved by the institutional Animal Welfare Officer of the Max Planck Institute of Molec-
ular Cell Biology and Genetics (Dresden, Germany), and the necessary licenses were obtained by the governmen-
tal veterinary authority, as dictated by the German Welfare Legislation regulating the use of animals for scientific 
purposes. All animal housing, handling and experimental techniques were in accordance with the principles 
set out in the Declaration of Helsinki, as well as in accordance with the ethical standards of the European and 
German Animal Welfare legislation. The study was carried out in compliance with the arrive guidelines.

Sample preparation.  Mice were sacrificed and immediately decapitated, and the full blood (F) samples 
were collected directly from necks into EDTA-tubes (Sarstedt, #41.1395.105). For plasma (P) preparation, tubes 
were centrifuged for 10 minutes at 2000 g and blood plasma was collected within 1 hour after blood collection. 
After diluting full blood and plasma 50× with water, samples were frozen at −80◦ C until lipid extraction.

Organs and tissues were dissected from fresh cadavers after all blood was drained (no perfusion was per-
formed), resulting in the following samples: liver-H (a section of the middle part of the left lateral lobe); skeletal 
muscle-M (left soleus); brain-B (section of left hemisphere); kidney-K (whole left kidney, without fat tissue); 
adipose tissue-A (from the abdominal region); small intestine-I (whole duodenum); lung-L (section of middle 
region of left lung) and spleen-S (whole spleen). These organs and tissues were put into 2 mL microcentrifuge 
tubes, immediately frozen on dry ice, weighed using a Radwag Microbalance Type MYA 5.3Y and stored at 
−80◦ C until homogenization.

Homogenization was performed after samples were thawed on ice and resuspended in 1.5 mL of 4◦ C cold 
150 mM ammonium bicarbonate buffer (except for adipose tissue samples for which ammonium bicarbonate 
buffer was mixed 1:1 with ethanol to facilitate homogenization as described previously28), by shaking in 2 ml 
tubes for 15 min ( 3× 5 minutes with 2 minutes cool down periods on ice) at 4◦ C with several 3.1 mm stainless 
steel beads using a Qiagen TissueLyser II.

Homogenized samples were diluted, and volumes corresponding to the following amounts were used for 
lipid extraction: 80 µ g brain, 100 µ g liver, 270 µ g intestine, 200 µg kidney, 250 µ g lung, 650 µ g muscle, 400 µ g 
spleen, 100 µ g adipose tissue. For blood plasma and full blood, volumes corresponding to 1 µ l of the undiluted 
sample were pipetted from the 50× dilutions.

Analytical process design.  Samples were divided into four separate analytical batches: plasma, adipose 
tissue and two batches for the remaining samples. Each batch was accompanied by a set of blank samples (pure 
buffer) and identical reference samples: human plasma for the plasma batch, full blood for the remaining sample 
types, that were aliquoted to provide identical technical replicates30. These control samples were distributed evenly 
across each batch, extracted, and processed together with study samples to control for background signals, techni-
cal variation, and overall performance of the method. All batches were measured on 4 consecutive days.

Lipid extraction.  Lipid extraction for lipidomic analysis was performed as described for plasma27 and adi-
pose tissue28. For all other types of samples, the procedure was as follows. Lipids were extracted using a two-step 
chloroform/methanol procedure43 with chloroform:methanol 10:1 (V:V) and 2:1 (V:V) in the first and second 
step, respectively44. Prior to extraction, samples were spiked with a sample type-specific internal lipid standard 
mixture (for plasma, full blood, adipose tissue, and the remaining tissue samples; for compositional details see 
Supplemental Table s4). After extraction, part of the organic phase was transferred to an infusion plate and dried 
in a speed vacuum concentrator. For mass spectrometry acquisition, 1st step dry extract was re-suspended in 
7.5 mM ammonium acetate in chloroform/methanol/propanol (1:2:4, V:V:V) and 2nd step dry extract in 33% 
ethanol solution of methylamine in chloroform/methanol (0.003:5:1; V:V:V) by vigorous shaking for 1 minute 
to ensure complete dissolution of extracts. All liquid handling steps were performed using Hamilton Robotics 
STARlet robotic platform with the Anti Droplet Control feature for pipetting organic solvents. All solvents and 
chemicals used were of analytical grade.

Mass spectrometry and data processing.  Mass spectrometry analysis was performed as described 
previously for plasma27 and adipose tissue28. Samples were analyzed by direct infusion on a QExactive mass 
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spectrometer (Thermo Scientific) equipped with a TriVersa NanoMate ion source (Advion Biosciences). Sam-
ples were analyzed in both positive and negative ion modes with a resolution of Rm/z=200 = 280000 for MS 
and Rm/z=200 = 17500 for MSMS experiments, in a single acquisition. MSMS was triggered by an inclusion 
list encompassing corresponding MS mass ranges scanned in 1  Da increments27. Both MS and MSMS data 
were combined to monitor CE, DAG and TAG ions as ammonium adducts; PC, PC O-, as acetate adducts; and 
CL, phosphatidate (PA), PE, PE O-, PG, PI and PS as deprotonated anions. MS only was used to monitor lyso-
phosphatidate  (LPA), LPE, lyso-phosphatidylethanolamine ether  (LPE O-), lyso-phosphatidylglycerol  (LPG), 
lyso-phosphatidylinositol (LPI), and lyso-phosphatidylserine (LPS) as deprotonated anions; Cer, HexCer, SM, 
LPC and lyso-phosphatidylcholine ether (LPC O-) as acetate adducts and cholesterol as ammonium adduct of 
an acetylated derivative45. Data were analyzed with in-house developed lipid identification software based on 
LipidXplorer46,47. Data post-processing and normalization were performed using an in-house developed data 
management system. Only lipid identifications with a signal-to-noise ratio > 5 , and a signal intensity 5-fold 
higher than in corresponding blank samples were considered for further data analysis.

Lipid nomenclature.  Lipid molecules are identified as species or subspecies. Fragmentation of the lipid 
molecules in MSMS mode delivers subspecies information, i.e., the exact acyl chain (e.g., fatty acid) composi-
tion of the lipid molecule. MS only mode, acquiring data without fragmentation, cannot deliver this informa-
tion and provides species information only. In that case, the sum of the carbon atoms and double bonds in the 
hydrocarbon moieties is provided. Lipid species are annotated according to their molecular composition as 
lipid class <sum of carbon atoms>:< sum of double bonds>;< sum of hydroxyl groups>. For example, PI 34:1;0 
denotes phosphatidylinositol with a total length of its fatty acids equal to 34 carbon atoms, total number of 
double bonds in its fatty acids equal to 1 and 0 hydroxylations. In case of sphingolipids, SM  34:1;2 denotes 
a sphingomyelin species with a total of 34 carbon atoms, 1 double bond, and 2 hydroxyl groups in the cera-
mide backbone. Lipid subspecies annotation contains additional information on the exact identity of their acyl 
moieties and their sn-position (if available). For example, PI 18:1;0_16:0;0 denotes phosphatidylinositol with 
octadecenoic (18:1;0) and hexadecanoic (16:0;0) fatty acids, for which the exact position (sn-1 or sn-2) in rela-
tion to the glycerol backbone cannot be discriminated (underline “_” separating the acyl chains). On contrary, 
PC O- 18:1;0/16:0;0 denotes an ether-phosphatidylcholine, in which an alkyl chain with 18 carbon atoms and 
1 double bond (O-18:1;0) is ether-bound to sn-1 position of the glycerol and a hexadecanoic acid (16:0;0) is 
connect via an ester bond to the sn-2 position of the glycerol (slash “/” separating the chains signifies that the sn-
position on the glycerol can be resolved). Lipid identifiers of the SwissLipids database (http://​www.​swiss​lipids.​
org)48 are provided in Supplemental Table s1.

Data analysis.  Data were analyzed with R version 4.0.349 using tidyverse (v.1.2.1) packages50. Data were 
corrected for batch effects and analytical drift based on reference samples. Only lipids with amounts > 1 pmol 
and identified in at least two out of three biological replicates in at least one experimental condition are reported, 
resulting in 796 lipid (sub-)species included in the final dataset (of a total of 1377 identified lipid (sub-)species). 
Molar amount values (in pmol) of individual lipid (sub-)species were normalized to total lipid content per sam-
ple, yielding molar fraction values, expressed in mol%.

A weighted mean length per total fatty acids C̄f  or weighted mean saturation per total fatty acids DBf  per 
lipid classes is calculated51. This returns an estimate of the mean total fatty acid length or mean total number of 
fatty acid double bonds in this lipid class:

where

•	 q̄f  is the weighted mean length/saturation per hydrocarbon moiety,
•	 q = {q1, . . . , qmax} is the feature of a lipid with a list of instances: e.g. total double bonds = {0, 1, 2, . . . , 8} or 

total length = {34, 35, 36, . . . , 42},
•	 nc is the total molar amount of the respective lipid class,
•	 nji is the molar amount of lipid species i with the respective matching the feature instance j and
•	 kj is the number of species within feature instance j.

Principal component analysis (PCA) was performed using the stats::prcomp() function on centered and scaled data.
The internal lipid class plasticity was calculated based on the minimum-maximum range of values for 

weighted mean of lipid class unsaturation and the weighted mean of lipid class carbon chain length. The ranges 
for each feature across different sample types was scaled to assume values between 1 and 10, meaning that the 
class with the widest range across organs receives a value of 10, the class with narrowest range receives a value 
of 1. Features with intermediate ranges receive values between 1 and 10, according to scale. The scaled ranges 
were then used to calculate the internal lipid class plasticity by multiplying the scaled carbon chain length range 
with the scaled double bond number range (Fig. 3). Because of the limited lipid composition, adipose tissue was 
omitted from the plasticity calculations.

Sex, diet and genotype effect sizes ( β coefficients) were determined for centered and scaled lipidomic features 
(z scores for lipid class amount in mol%, weighted mean of lipid class unsaturation and weighted mean of lipid 
class carbon chain length) by linear regression using the stats::lm() function adjusting for the other covariates. 
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For the calculation of sex- and genotype-specific diet effects, the respective interaction terms were included in 
the linear regression. Mouse plots were created with the R library gganatogram (v.2)34.

Diet-dependent Spearman correlation coefficients ( ρ ) between blood and tissue samples were calculated 
using the function RVAideMemoire::pcor.test (v.0.9-78) adjusting for sex and genotype52. Hierarchical cluster-
ing (Euclidian distance, complete linkage) heatmap generation was performed using the pheatmap::pheatmap() 
(v.1.0.12) function, which was also used for heatmap generation53.
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