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Abstract
Background Gastric cancer (GC) is one of the leading causes of cancer deaths with high heterogeneity. There is currently 
a paucity of clinically applicable molecular classification system to guide precise medicine.
Methods A total of 70 Chinese patients with GC were included in this study and whole-exome sequencing was performed. 
Unsupervised clustering was undertaken to identify genomic subgroups, based on mutational signature, copy number varia-
tion, neoantigen, clonality, and essential genomic alterations. Subgroups were characterized by clinicopathological factors, 
molecular features, and prognosis.
Results We identified 32 significantly mutated genes (SMGs), including TP53, ARID1A, PIK3CA, CDH1, and RHOA. Of 
these, PREX2, PIEZO1, and FSIP2 have not been previously reported in GC. Using a novel genome-based classification 
method that integrated multidimensional genomic features, we categorized GC into four subtypes with distinct clinical 
phenotypes and prognosis. Subtype 1, which was predominantly Lauren intestinal type, harbored recurrent TP53 mutation 
and ERBB2 amplification, high tumor mutation burden (TMB)/tumor neoantigen burden (TNB), and intratumoral hetero-
geneity, with a liver metastasis tendency. Subtype 2 tended to occur at an elder age, accompanying with frequent TP53 and 
SYNE1 mutations, high TMB/TNB, and was associated with poor prognosis. Subtype 3 and subtype 4 included patients with 
mainly diffuse/mixed type tumors, high frequency of peritoneal metastasis, and genomical stability, whereas subtype 4 was 
associated with a favorable prognosis.
Conclusions By integrating multidimensional genomic characteristics, we proposed a novel genomic classification system 
of GC associated with clinical phenotypes and provided a new insight to facilitate genome-guided risk stratification and 
disease management.
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Introduction

Gastric cancer (GC) is a common malignancy with high 
rates of morbidity and mortality worldwide, and nearly 
two-thirds of GC cases and deaths occur in Asia [1]. At 
present, China has the largest number of GC patients, in 
which more than 679,000 new GC patients are diagnosed 
and about 498,000 GC-related deaths occur annually [2, 
3]. GC patients are frequently diagnosed at advanced 
stages with a low 5-year survival rate. Peritoneal dissemi-
nation and liver metastasis are the most important causes 
of treatment failure [4]. In addition to surgery, chemother-
apy, and targeted therapies, immunotherapy has recently 
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been considered as one of the promising treatments for 
specific subtypes of GC [4, 5]. However, high heterogene-
ity of GC remains a crucial barrier to optimal treatment 
strategies for a better survival benefit [4, 6].

Next-generation sequencing (NGS) has dramatically 
expanded the knowledge of the molecular basis of tumor 
heterogeneity. Similar to other types of cancer, multiple 
molecular classification systems of GC have been pre-
sented [7–9]. Among these studies, the most acknowledged 
one was The Cancer Genome Atlas (TCGA) classification. 
By integrating sequencing data from six molecular plat-
forms, TCGA classified GC into four molecular subtypes, 
including Epstein–Barr virus (EBV), microsatellite insta-
bility (MSI), chromosomal instability (CIN), and genomi-
cally stable (GS). Notably, genomics was considered as a 
fundamental basis for simplifying multi-omics data in the 
TCGA’s study [7]. Other studies also demonstrated the 
critical role of genomics in precise molecular classifica-
tion for various types of cancer [10, 11]. Different aspects 
of in-depth genome-based analyses, such as mutational 
signature (reflecting the characteristic imprints of muta-
genic processes of human cancer) [12] and clonality (i.e., 
intratumor heterogeneity) [13], have been reported to be 
clinically relevant in multiple types of cancer. Neoantigens 
are mutated peptides derived from somatic mutations and 
represent excellent targets for immunotherapy, due to their 
specific expression in cancer tissue [14]. Recent advances 
in genomics and bioinformatics have facilitated identifi-
cation of neoantigens through cancer genome sequencing 
[15, 16]. Our previous study preliminarily suggested the 
correlation between neoantigen load and clinicopatho-
logical variables of GC [17]. Therefore, it is promising 
to integrate these aspects and develop a novel genome-
based classification of GC with an improved clinical 
significance. In addition, patients of TCGA cohort were 
predominately from Western population, but the epidemio-
logical, histological, and molecular features of GC differ 
between Asian and Western countries [18–20]. Asian GC 
have higher prevalence of intestinal type tumors, lower 
prevalence of MSI GC, and more favorable prognosis. 
Therefore, an Asian-specific genomic classification is 
necessary.

In the present study, we performed whole-exome 
sequencing (WES) of 70 GC samples from Chinese pop-
ulation. With an innovative integration of genomic fea-
tures, such as mutational signature, copy number varia-
tion (CNV), neoantigen, clonality, and essential genomic 
alterations, we divided GC samples into four subtypes 
according to distinct genomic features, clinicopathologi-
cal characteristics, patterns of metastasis, and overall sur-
vival (OS). Besides, we proposed a new clinically relevant 
genome-based classification system for GC and provided 
rationale for genome-guided therapy.

Methods

Patient tissue samples

Primary GC patients who underwent gastrectomy at the 
First Affiliated Hospital of Zhejiang University School of 
Medicine between January 2016 and January 2018 were 
retrospectively procured. Cases were enrolled in this study 
according to the criteria as follows: at least 18 years old; 
pathologically confirmed gastric adenocarcinoma; com-
plete clinicopathological and follow-up data; without auto-
immune disease or other cancer types; without previous 
chemotherapy/radiotherapy. The pathologic diagnoses and 
characteristics were independently determined by at least 
two experienced pathologists (Mei Kong and Xiaodong 
Teng). The tumor-node-metastasis (TNM) Staging was 
according to AJCC 8th edition [21]. The follow-up data 
were obtained by medical record system, phone, and letter 
every 3 to 6 months from the date of surgery. A written 
informed consent was obtained prior to participation for 
each participant. This study was approved by the ethics 
committee of the First Affiliated Hospital of Zhejiang Uni-
versity School of Medicine.

DNA extraction and whole‑exome sequencing

DNA was extracted from 70 GC tumors and paired nor-
mal gastric mucosa. QIAamp DNA Mini Kit (Qiagen) 
was used to isolate genomic DNA from tumor tissues and 
matched normal mucosa according to the manufacturer’s 
instructions. Then we combined the following two steps 
to verify the quality of isolated genomic DNA. First, DNA 
degradation and contamination were monitored on 1% aga-
rose gels. Second, Qubit® DNA Assay Kit in Qubit® 2.0 
Flurometer (Invitrogen, USA) was used to quantify DNA 
concentration.

Whole-exome library construction was generated using 
the Agilent SureSelect Human All Exon V6 Kit (Agilent 
Technologies, Santa Clara, CA, USA). The index-coded 
samples were clustered on a cBot Cluster Generation Sys-
tem using Hiseq PE Cluster Kit (Illumina). Then the DNA 
libraries were sequenced on Illumina Hiseq platform (Illu-
mina, San Diego, California, USA) and 150 bp paired-end 
reads were generated. We first conducted data quality control 
and then performed all downstream bioinformatics analyses 
based on the high-quality clean data, in which reads con-
taining an adapter, reads containing poly-N, and low-qual-
ity reads were removed. The paired-end clean reads were 
aligned to the Human Genome Reference Consortium build 
37 (GRCh37) using BWA v.0.7.8 [22]. Mapped reads were 
then de-duplicated using Sambamba tools (v0.4.7) [23].
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Somatic mutation detection and significantly 
mutated genes identification

Identification of somatic single-nucleotide variants (SNVs) 
was conducted by muTect (v 1.1.4) [24], and the somatic 
InDels were detected by Strelka (v1.0.13) [25]. ANNOVAR 
(ANNOVAR_2015Mar22) [26] was used to annotate vari-
ant call format files. The Mutational Significance in Can-
cer (MuSic, version: Genome-Model-Tools-Music-0.04) 
algorithm [27] was used to identify significantly mutated 
genes (SMGs) from the profiles of somatic SNVs and InDels 
(False discovery rate (FDR) < 0.25).

Mutation signature analysis

Mutational signatures were characterized according to the 
96-substitution classification. Based on the frequency of 96 
mutation types, Nonnegative Matrix Factorization (NMF) 
method (v0.22) was performed to extract mutational sig-
natures and compare them with 30 known signatures ref-
erenced in the Catalogue of Somatic Mutations in Cancer 
(COSMIC) database using SomaticSignatures packages 
(v2.24.0) [28]. The similarity of mutation signatures was 
evaluated with cosnine similarity > 0.9, which suggested 
common signatures. Signatures 1, 6, 17, and 29 were iden-
tified in our samples. Then unsupervised hierarchical clus-
tering was performed to identify the clusters of mutational 
signatures (Sig-cluster) according to the proportional con-
tribution of each signature per sample.

Copy number analysis

Somatic copy number variations (SCNVs) were identified 
using CNVkit [29]. Then GISTIC 2.0 (v 2.0.22) [30] was 
used to identify the genome regions with significant altera-
tions and screen out the recurrent CNV regions (parameters: 
-rx 0 -ext xls -fname ALL -ta 0.1 -td 0.1 -js 4 -qvt 0.25 -cap 
1.5 -board 1-maxseg 2000 -conf 0.99 -genegistic 1 -armpeel 
1 -brlen 0.7 -gcm extreme -savegene 1). In addition, unsu-
pervised hierarchical clustering was performed to identify 
the clusters of copy-number variations (CNV-cluster) based 
on discretized CNVs.

HLA genotyping and neoantigen prediction

The raw data of WES were processed by software TSNAD 
(available on http:// github. com/ jiuji ezz/ TSNAD) [31]. This 
software developed by our research group combines multiple 
algorithms to identify somatic mutations, determine HLA 
genotyping, and predict neoantigens. After identification of 
somatic mutations, TSNAD can determine HLA genotyp-
ing by SOAP-HLA [32]. Subsequently, NetMHCpan [33] 
was invoked to predict mutation-derived neoantigens which 

could bind to class I MHC molecules. Then unsupervised 
hierarchical clustering was conducted to identify the neo-
antigen clusters (NEA-cluster) according to the neoantigen 
number. Since we lack expression data, there might be over-
prediction of neoantigens to some extent.

Analysis of clonal architecture of somatic mutations

The R package SciClone [34] (http:// github. com/ genome/ 
scicl one) was used to infer the clonal and subclonal archi-
tecture of somatic mutations by analyzing the variant allele 
frequencies in an individual sample using the Bayesian 
binomial mixture model. SciClone parameters: minimum-
Depth = 20, maximumClusters = 10, copyNumberMar-
gins = 0.25. Variant allele frequencies were clustered and 
visualized as previously reported [34]. The clusters of clon-
ality (Clonality-cluster) was defined according to the clonal 
patterns.

Integrative clustering

The consensus clustering was used to uncover molecular 
subtypes according to multidimensional genomic features, 
including Sig-cluster, CNV-cluster, NEA-cluster, Clonality-
cluster, essential SMGs, and CNVs. Essential SMGs were 
selected with the overlap between the genes with a mutation 
frequency ≥ 10% in our cohort and the cancer-related genes 
in COSMIC [35] (https:// cancer. sanger. ac. uk/ cosmic/). 
Essential CNVs were selected with the overlap among the 
genes with alteration frequency ≥ 10%, the cancer-related 
genes in COSMIC and the genes involved in the key path-
ways in our cohort. The values of these variables are shown 
in the Table S1. Clustering was then done in R software 
(version 3.6.1) based on Euclidean distance using Ward’s 
method.

Integrated pathway analysis

Geneset of cancer-driving genes from Cancer Gene Cen-
sus (CGC) was accessed from the COSMIC. Subsequently, 
according to the genetic alteration rates of the cancer-driving 
genes in our cohort, we performed KEGG pathway enrich-
ment analysis using DAVID bioinformatics Resource 6.8.

Immunohistochemical staining

In order to evaluate PD-L1 protein expression in gastric 
cancers, formalin-fixed, paraffin-embedded (FFPE) tissue 
sections were retrieved from tumor block of our GC cohort. 
4um paraffin sections were routinely deparaffinized and 
rehydrated. Antigen retrieval was performed and endogenous 
peroxidase, non-specific protein binding sites were blocked 
and subsequently incubated in primary antibodies overnight 
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at 4 ℃. PD-L1 immunohistochemical (IHC) was performed 
using rabbit anti-human PD-L1 (clone MXR003, MXB bio-
technologies, Fujian China), which recognizes an epitope in 
the PD-L1 cytoplasmic domain and reactivity confirms the 
full-length PD-L1 protein expression. PD-L1 staining was 
observed in tumor cells and adjacent immune cells. Com-
bined Positive Score (CPS) methods was introduced in our 
IHC study. Tumor cells, adjacent lymphocytes and phago-
cytes with positive membrane staining were counted as posi-
tive cells, and CPS ≥ 5 was annotated as positive staining 
(representatives were shown in Fig. S1) [36]. Observation 
and scoring was performed by an expert immunopathologist 
(Mei Kong).

Statistical analysis

The statistical analysis was performed by SPSS 21.0 soft-
ware. The differences between categorical variables were 
compared by Pearson’s Chi-square test or Fisher’s exact test. 
The continuous or non-parametric variables were assessed 
by one-way ANOVA or Mann–Whitney test, respectively. 
Survival data were analyzed by Kaplan–Meier curves with 
log-rank test. Univariate and multivariate Cox regression 
analysis were performed to calculate the hazard ratio and 
95% confidence interval. A P value of < 0.05 was considered 
significant.

Results

Patients’ clinicopathological features

Paired fresh-frozen tumor tissue and adjacent normal tissue 
were collected from a cohort of 70 pathologically confirmed 
GC patients (ZJU-GC) (Table S2). Among the patients, 47 
(67.1%) were males and their median age at the time of diag-
nosis was 60 years (range 38–80 years old). The majority 
(61.4%) of the patients were diagnosed with TNM stage III 
or stage IV. Besides, 51.4% of cases were identified as intes-
tinal-type and 57.1% were with poor differentiation. During 
the follow-up, 21.4% of cases developed peritoneal dissemi-
nation and 15.7% of cases developed liver metastasis.

Landscape of somatic mutations of GC

WES was conducted on 70 matched normal-tumor pairs 
from GC patients with a mean depth of 314- and 176-fold, 
respectively (Table S3). A total of 57,580 somatic muta-
tions were identified from all samples (10,506 were of non-
synonymous and 3560 were of synonymous) (Tables S4 and 
S5). In addition, 32 genes were identified as significantly 
mutated genes (SMGs) by the MuSiC algorithm (Fig. 1A). 
Of these, 14 were reported as SMGs in at least one previous 

GC genome sequencing study, such as TP53, ARID1A, 
PIK3CA, CDH1, RHOA, and SMAD4 (Table S6). How-
ever, 18 mutations have not been previously reported in GC 
samples (e.g., PREX2, PIEZO1, and FSIP2). Distribution 
of nonsynonymous somatic TP53 mutations is illustrated 
in Fig. 1B, and 87.2% occurred in a DNA-binding domain. 
The distribution of mutation sites for other three recurrent 
SMGs (CSMD3, LRP1B, and SYNE1) is also presented in 
Fig. S2. The mutational frequencies of the majority of SMGs 
were similar to those in TCGA-GC, whereas ARID1A and 
PIK3CA were mutated at remarkably lower frequencies in 
ZJU-GC (23% vs. 10% and 18% vs. 8%, Fig. 1C, Table S7), 
and the frequency of PIEZO1 mutation in ZJU-GC cohort 
was significantly higher than that in TCGA-GC (12% vs. 0%, 
P < 0.01). Notably, LRP1B was the more frequent mutant 
in intestinal type tumors (P = 0.03, Fig. 1D, Table S8) and 
tended to be less frequent in those with poor differentiation 
(P = 0.052). In addition, mutations of FAT4 were exclusive 
in intestinal type tumors (25% vs. 0%, P = 0.002).

KEGG pathway analysis and targetable genes

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis of somatic mutations and somatic CNV 
revealed altered signaling pathways in GC, including RTK/
RAS/PI(3)K, p53/cell cycle, cell adhesion, and chroma-
tin remodeling (Fig. 2). The RTK/RAS/PI(3)K pathway 
was primarily altered by amplifications of ERBB2 (14%), 
HSP90AB1 (10%), and MYC (6%), as well as PIK3CA 
mutation (7%). P53/cell cycle pathway was frequently 
altered mainly owing to recurrent TP53 mutations (56%) 
and amplifications of cyclin-encoding genes (CCNE1 (10%), 
CCND1 (8%), and CCND3 (8%)). Other frequently altered 
genes included those involved in focal adhesion (RHOA, 
ITGAV), adherens junction (CDH1) or chromatin remodeling 
(ARID1A, SMARCA4, KMT2C, and KMT2D). In addition 
to the well-established target, ERBB2 amplification, other 
alterations, such as PIK3CA mutation and CDK4 amplifica-
tion, could serve as potential therapeutic targets. According 
to the OncoKB database (https:// www. oncokb. org), 31 out 
of 70 patients harbored at least one potentially targetable 
gene alteration (Table S9).

Identification and characterization 
of multidimensional genomic features

Mutational signatures

The predominant somatic mutation types were C:G > T:A 
transitions and C:G > A:T transversions (Fig. S3). A total of 
four independent mutational signatures, COSMIC Signature 
1 (initiated by spontaneous deamination of 5-methylcyto-
sine associating with aging [12]), Signature 6 (associated 

https://www.oncokb.org
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with deficient DNA mismatch repair [12, 37]), Signature 
17 (attributed to oxidative stress [38] and associated with a 
poor prognosis [38]), and Signature 29 (as a tobacco-related 

signature [39]) could be identified (Fig. 3A, Table S10). 
Using unsupervised clustering, GC samples were divided 
into three subtypes (Sig-cluster1, Sig-cluster2, and 

Fig. 1  The landscape of somatic mutations in ZJU-GC cohort. A 
Somatic mutations of 70 paired samples in ZJU-GC cohort. The mid-
dle matrix shows the somatic mutations by gene (row) and by sample 
(column). The top histogram shows the number of non-synonymous 
and synonymous mutations in each individual sample. The top tracks 
show the clinicopathological characteristics, including gender, age, 
Lauren types, differentiation, and TNM stage. The left histogram 
shows the number of somatic mutations accumulated on 70 ZJU-GC 

samples in each gene. The right histogram shows p values of each 
gene calculated from MuSic analysis. B Distribution of non-synon-
ymous TP53 somatic mutations identified. C Comparison of gene 
mutation rate between ZJU-GC cohort and TCGA-GC. Orange or 
blue dots represent the genes with significantly higher or lower muta-
tion rate, respectively. D Comparison of gene mutation rates by clin-
icopathological subtypes
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Sig-cluster3), according to the proportional contribution 
of each signature per sample (Fig. 3B). We further investi-
gated the association between these subtypes and OS. The 
Sig-cluster1 subtype had the longest OS, while Sig-cluster3 
had the shortest (log-rank P < 0.001, Fig. 3C). Subsequently, 
multivariate Cox regression analyses also indicated a sig-
nificant difference in prognosis among those subtypes (Fig. 
S4, Table S11).

Somatic CNVs

Forty-two significant focal CNVs (24 with amplification 
and 18 with deletion) were identified using GISTIC 2.0 

(Fig. 3D, Table S12). The recurrent CNVs with amplifica-
tion included CCNE1 (19q12), ERBB2 (17q12), CCND1 
(11q13.3), MUC4 (3q29), VEGFA (6q21.1), and NOTCH1 
(9q34.3). Significantly deleted CNVs included 1p35.3, 
1p21.1, 3p21.2, 9p21.3, 16q21, 17q12, and 19p13.3, 
encompassing a great number of tumor suppressor genes, 
including ARID1A, MLH1, CDKN2A, CDH1, BRCA1, 
TP53, and SMARCA4. Based on significantly altered 
CNVs per sample, 70 GC patients were clustered into three 
subtypes by unsupervised clustering (CNV-cluster1, CNV-
cluster2, and CNV-cluster3; Fig. 3E). We further observed 
that the three subtypes were significantly interrelated to 
prognosis (P = 0.038, Fig. 3F) and associated with the 

Fig. 2  Genomic alterations of signaling pathways in ZJU-GC cohort. 
Gene somatic mutations and copy number variations are character-
ized in key signaling pathways, including RTK/RAS/PI(3)K pathway, 

cell adhesion pathway, cell cycle pathway, and chromatin remodeling 
pathway. Genes are grouped by the pathways and linked by the line 
and arrows showing molecular interactions
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patients’ age at diagnosis, gender, and the Lauren subtype 
(Table S13).

Predicted neoantigens derived from mutated genes

A total of 4994 predicted neoantigens were identified in 70 
patients (Table S14). The number of predicted neoantigens 
ranged from 0 to 918 (median, 52). Besides, there were 873 
(17.5%) neoantigen affinities to allele HLA-B58:01 (Fig. 3G, 
Table S15). The number of neoantigens was significantly 
correlated with tumor mutational burden (TMB) (R2 = 0.879, 
P < 0.001, Fig. 3H). Neoantigens were frequently derived 
from somatic mutations of TTN (13%), followed by CSMD3 
(10%) (Table S16). Unsupervised clustering according to 
predicted neoantigens categorized GC into two clusters 
(Fig. 3I) with significantly different tumor neoantigen bur-
den (TNB) (P < 0.001, Fig. 3J). The associations between 
these two clusters and clinicopathological characteristics are 
presented in Table S17 and Fig. S5.

Clonal and subclonal architectures

SciClone was applied to specimens to reconstruct the clonal 
and subclonal architectures, reflecting the intratumor hetero-
geneity. Patterns of clonality included monoclonal (a sin-
gle dominant clone with or without one minor subclone), 
biclonal (two major clones), and complex clonal patterns 
(more than two clones (Fig. 3K)). We defined GC with 
monoclonal and biclonal patterns as oligoclonal and those 
with complex clonal pattern as multiclonal (Fig. 3L). Com-
parison of clinicopathological features of these two subtypes 
showed that multiclonality was significantly associated with 
well or moderate differentiation, the Lauren intestinal type, 
and programmed death-ligand 1 (PD-L1) positivity (Fig. 3M 
and Table S18). GC cases with multiclonal features carried 
significantly higher TMB (Fig. 3N).

Integrative genomic classification of GC

To identify genomic classification of GC associated with 
patients’ clinicopathological features and survival outcomes, 
unsupervised clustering was conducted based on subgroups 
derived from mutational signatures, CNVs, predicted neo-
antigens, clonality, as well as essential gene alterations. 
As shown in Fig. 4A, 70 GC cases were divided into four 
subtypes (ZJU-GC subtypes): subtype 1 (n = 22), subtype 2 
(n = 16), subtype 3 (n = 12), and subtype 4 (n = 20). Subse-
quently, we investigated the association of the four subtypes 
with OS (Fig. 4B). We found that subtype 4 had the longest 
OS, while subtype 2 and subtype 3 both had significantly 
the shortest OS than subtype 4, and subtype 1 had a moder-
ate OS. Thereafter, associations between the four subtypes 
and TCGA molecular subtypes or Lauren histological types 

were further explored. We observed that 90.9% of tumors in 
subtype 1 were classified into CIN subtype, whereas subtype 
2 contained 50.0% CIN type and 50.0% GS type (Fig. 4C, 
Table S19). The majority of tumors in subtype 3 (83.3%) and 
subtype 4 (75.0%) were classified into GS type. Notably, GC 
tumors in subtype 1 and subtype 2 had a significantly higher 
proportion of intestinal histology compared with subtype 3 
and subtype 4 (P < 0.01, Fig. 4D). Furthermore, when exam-
ining the first site of metastasis, we found that subtype 1 har-
bored the highest rate of liver metastasis in comparison with 
other subtypes (P < 0.01), whereas subtype 3 and subtype 4 
developed significantly higher rate of peritoneal metastasis 
in comparison with other subtypes (P < 0.05) (Fig. 4E, Fig. 
S6). In addition, those in subtype 1 and subtype 2 harbored 
higher TMB compared with those in the other two subtypes, 
as well as higher TNB than that in subtype 4 (Fig. 4F). To 
further explore the prognostic value of the proposed clas-
sification system, multivariate Cox regression analysis was 
undertaken, and it was found that the classification system 
was an independent prognostic factor after adjusting for 
TNM stage and TMB (Fig. 4G). Four subtypes displayed 
distinct molecular features (Fig. 4H, Table S20). Subtype 
1 harbored recurrent mutations in TP53 (81.8%), as well as 
amplification of ERBB2 (31.8%) and HSP90AB1 (27.3%). 
Subtype 2 was enriched in frequent mutations of TP53 
(87.5%), LRP1B (56.3%), and SYNE1 (56.3%). Subtype 3 
and subtype 4 both exhibited frequent deletion of ARID1A 
(subtype 3, 16.7%; subtype 4, 20.0%).

In summary, we proposed a new genomic classifica-
tion system, including four subtypes associated with dis-
tinct metastatic patterns and prognosis (Fig. 5). Subtype 1, 
which is predominantly Lauren intestinal type, harbored 
recurrent TP53 mutation and ERBB2 amplification, TMB/ 
TNB, intratumoral heterogeneity, and has a liver metastasis 
tendency. Subtype 2 tends to occur at an elder age, accom-
panying with high TP53 and SYNE1 mutations, high TMB/
TNB, and is associated with poor prognosis. Subtype 3 and 
subtype 4 include GC patients with mainly diffuse/mixed 
type tumors, high frequency of peritoneal metastasis, and 
genomical/chromosomal stability, whereas subtype 4 is asso-
ciated with a favorable prognosis.

Independent cohort validation of the genomic 
classification

In order to increase the clinical applicability of our genomic 
classification system, we performed dimensionality reduc-
tion analysis, and five features (Sig-cluster, CNV-cluster, 
FAT4 mutation, LRP1B mutation, and CCNE1 CNV) were 
selected. Then we constructed a simplified genomic clas-
sification model to predict subtypes based on naive Bayes 
algorithm (details were shown in supplementary methods 
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and Fig. S7). Tenfold cross-validation of this prediction 
model was performed and internal validation accuracy was 
up to 95.7%.

WES was performed in 23 GC tumors and paired nor-
mal gastric mucosa from an independent cohort (supple-
mentary methods and Table S21–22). After genomic clas-
sification prediction using the model based on five selected 
genomic features, we achieved predicted ZJU-GC subtype 
for each sample in the validation cohort (Table S22). 23 
GC cases were divided into four subtypes: subtype 1 
(n = 10), subtype 2 (n = 5), subtype 3 (n = 3), and subtype 
4 (n = 5). Similar to ZJU-GC cohort, the genomic subtype 
showed significant association with metastasis pattern in 
the validation cohort that subtype 1 harbored the high-
est rate of liver metastasis while subtype 3 and subtype 
4 showed higher rate of peritoneal metastasis (Fig. S8A-
B). Further analysis revealed that GC cases of subtype 1 
had higher prevalence of Lauren intestinal histology and 
those of subtype 3 and subtype 4 were enriched in diffuse/
mixed type (Fig. S8C). In addition, subtype 1 and subtype 
2 harbored higher TMB and SYNE1 mutation compared 
with the other two subtypes. Subtype 1 was enriched in 
TP53 mutation and ERBB2 amplification (Fig. S8D–E). 
Therefore, our validation suggested that the molecular 
classification had good expansibility and robustness and 

confirmed the relevance between genomic subtypes and 
clinicopathological features.

Discussion

In the current study, we characterized the landscape of 
genomic alterations in Chinese GC patients. Based on 
mutational signature, CNV, predicted neoantigen, clonality 
analysis, and essential genomic alterations, we presented 
four subtypes of GC associated with different clinical phe-
notypes. The current study added further layers of infor-
mation about the genomic characteristics and molecular 
classification of GC and could lead to improvement in 
patient stratification, prognostication, and genome-guided 
therapy.

Based on the results of WES, we identified the SMGs in 
the current cohort. Among 32 SMGs identified, 14 (e.g., 
TP53, SPTA1) were reported as SMGs in at least one of 9 
previous GC-based studies [40–48], while 18 genes, such 
as PREX2, PIEZO1, TRHDE, FSIP2, and FAT3, have not 
been previously reported. Among them, the most fre-
quently mutated gene was TP53 in the current study, which 
encoded the tumor suppressor and transcription factor p53. 
Previous genomic-based studies confirmed the high fre-
quency of TP53 mutations in GC samples (40–50%) [8, 
40], which is consistent with the present study (56%). To 
date, no drug abrogating the oncogenic functions of p53 
mutant has been approved for the treatment of cancer [49]. 
A recent study suggested the potential of arsenic trioxide 
in treating p53-mutated cancer patients [50]. Importantly, 
in the current research, 2 ZJU-GC subtypes (subtypes 
1 and 2) were enriched for TP53 mutations (81.8% and 
87.5%, respectively, Fig. S9), suggesting that they may 
benefit from TP53-targeted therapy. Spectrin Alpha, 
Erythrocytic 1 (SPTA1) encodes a member of a family of 
molecular scaffold proteins, linking the plasma membrane 
to the actin cytoskeleton. SPTA1 mutation is associated 
with a variety of hereditary red blood cell disorders, such 
as hereditary elliptocytosis and hereditary spherocytosis 
[51]. In the present study, SPTA1 was identified as a SMG 
for GC, which was consistent with two previous genomic-
based studies [42, 45]. In addition, in a recent study on 
Mongolians with hepatocellular carcinoma, SPTA1 was 
reported as a potential driver gene [52]. However, whether 
SPTA1 is a driver gene in GC and how SPTA1 mutation 
mechanistically contributes to tumorigenesis remained 
elusive. Phosphatidylinositol-3,4,5-Trisphosphate Depend-
ent Rac Exchange factor 2 (PREX2) belongs to PREX fam-
ily and is an important regulator of Purkinje cell morpho-
genesis and motor coordination [53]. Although PREX2 
was not reported as a SMG or a driver gene in previous 
GC-based studies, it was reported as a SMG in a study on 

Fig. 3  Characterization and identification of genomic features includ-
ing mutational signatures (A–C), copy number variations (D–F), 
predicted neoantigen (G–J), and clonality (K–N) in ZJU-GC cohort. 
A Mutational signatures are characterized according to the 96-sub-
stitution classification, with horizontal axis showing mutation types 
of 96 substitutions and vertical axis showing the estimated muta-
tions of each mutation type. B Unsupervised clustering of mutational 
signatures for 70 GC samples. C Association between three clusters 
of mutational signatures and OS in ZJU-GC cohort. D GISTIC 2.0 
significant CNVs with amplifications on left and deletions on right. 
E Unsupervised clustering of CNVs for 70 GC samples. F Associa-
tion between three clusters of CNVs and OS. G Predicted combin-
ing site of neoantigen. H Correlation between TMB and TNB in 
ZJU-GC cohort. I Unsupervised clustering of predicted neoantigens 
and somatic mutations in 70 ZJU-GC samples. The middle matrix 
shows the predicted neoantigens and somatic mutations by gene (row) 
and by sample (column). The top histograms show TNB and TMB. 
The right histogram shows the number of predicted neoantigens and 
somatic mutations accumulated on 70 GC samples in each gene. 
According to the status of predicted neoantigens, 70 samples are 
divided into two clusters. J Comparison of TNB between NEA-clus-
ter 1 and NEA-cluster 2. K Identification of tumor clonality. L Classi-
fication of tumor clonality in ZJU-GC. According to the clonal status, 
70 samples are divided into two clonality groups: oligoclonal group 
and multiclonal group. M Comparison of histological characteristics 
between oligoclonal group and multiclonal group, including differ-
entiations, Lauren type, and PD-L1 status. N Comparison of TMB 
between oligoclonal group and multiclonal group. Sig-cluster: muta-
tional signature cluster; CNV-cluster: copy number variation clus-
ter; NEA-cluster: neoantigen cluster; TMB: tumor mutation burden; 
TNB: tumor neoantigen burden; OS: overall survival. ***P < 0.001, 
**** P <0.0001
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melanoma [54], as well as being a candidate driver gene 
of pancreatic carcinogenesis [55]. A recent study on 46 
patients with advanced GC who received anti-programmed 

cell death protein 1 (PD-1) antibody revealed that PREX2 
mutation was correlated with a poor progression-free sur-
vival [56]. Understanding the role of key mutations in GC 
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tumorigenesis and progression are promising aspects in 
future research.

In the decision tree of TCGA classification derived from 
analysis of six molecular platforms, DNA-level features, 
such as EBV, MSI, and the degree of SCNVs could sub-
stantially differentiate into four distinct subgroups [7]. Li 
et al. identified two molecular subtypes of non-hypermutated 
GC that correlated with prognosis by SMG analysis [57]. To 
the best of our knowledge, we first proposed an integrated 
genome-based classification system, including mutational 
signature, clonality, and neoantigen features. Mutational 
signatures have been attributed to specific carcinogenic fac-
tors with clinical relevance in multiple types of cancer [12, 
58–60]. Clonality, which reflects intratumor heterogeneity, is 
associated with cancer aggressiveness, treatment resistance, 
and patient prognosis [13, 44]. Tumor-specific neoantigen, 
derived from accumulation of somatic mutations, has been 
proposed as a predictive indicator for response to immune 
checkpoint inhibitors [61–64].

We proposed a novel genome-based classification system 
with significant clinical relevance and prognostic value. Sub-
type 4 was found to be associated with significantly longer 
OS than the other subtypes, whereas subtype 2 and subtype 
3 showed a relatively poorer prognosis, and subtype 1 had 
a moderate prognosis. In the TCGA classification system, 
studies showed that EBV and MSI had a better prognosis 
[65, 66], while the difference in OS between GS and CIN 
subtypes was found inconsistent in different cohorts [8, 67]. 
Compared with the original prognosis trend of our classifi-
cation system, classifying ZJU-GC cohort using the TCGA 
genomic scheme yielded a weaker association with the prog-
nosis, where GS and CIN subtypes showed no significant 
difference in OS (Fig. S10), which is similar to the result of 
ACRG cohort [8]. Tumors in subtype 1 were mainly grouped 
into CIN type, while those in subtype 3 and subtype 4 were 

grouped into GS subtype. Notably, subtype 3 and subtype 4 
showed a remarkable difference in OS in the present analy-
sis; similar result was found between patients with perito-
neal metastasis in the two subgroups (Fig. S11). In molecu-
lar level, the distinction of these two subtypes was mainly 
attributed to the distribution of mutational signatures, i.e., 
enrichment of signature 1 (known as clock-like mutational 
process) in subtype 4. Signature 1 is commonly found in 
various types of cancer and is associated with patients’ age 
at diagnosis [68], and it has been reported to be a nega-
tive prognostic factor in triple-negative breast cancer [69], 
while its clinical relevance in GC has not been reported yet. 
Multiple difference has also been found significant CNV 
between subtypes 3 and 4, and subtype 4 harbored signifi-
cant amplifications in more regions than subtype 3 (Fig. 
S12, Table S23). The proportion of GS tumors in our cohort 
(49%) and another GC cohort in Asia (45%) [8] was higher 
than that in TCGA (24%). Differentiation of subtype 3 and 
subtype 4 could be clinically informative as it reflects hetero-
geneity within GS subtype in Chinese patients, though vali-
dation in larger cohort is required. Multiomic analysis might 
further suggest the underlying mechanism of the prognosis 
difference. The immunity features of the four subtypes were 
also described in the current study. Subtype 1 and subtype 
2 harbored higher TMB/TNB, PD-L1 expression, as well as 
more frequently LRP1B and SYNE1 mutations. These find-
ings indicated that the two mentioned subtypes may have 
a better response to immune checkpoint inhibitors [62, 64, 
70–72]. Nevertheless, further studies with larger sample size 
need to be carried out to confirm our findings.

Another key finding of this study is that we identified GC 
subtypes associated with patterns of metastasis in synchro-
nous or metachronous metastatic GC, and this relevance was 
reproduced in the validation cohort. Peritoneal dissemina-
tion and liver metastasis are the major metastatic patterns of 
GC. To our knowledge, information on metastasis pattern 
has not been reported by TCGA-GC classification. In the 
present research, we examined the first site of metastasis 
regardless of surgical resection, and observed a significant 
tendency of liver metastasis in subtype 1, as well as a ten-
dency of peritoneal metastasis in subtype 3 and subtype 4. 
Lee et al. reported that diffuse/mixed type was associated 
with a peritoneal recurrence, and the Lauren intestinal type 
was associated with hematogenous metastasis [73]. In the 
current study, in both ZJU-GC cohort and the validation 
cohort, subtype 1 was enriched in the Lauren intestinal type, 
and subtype 3 and subtype 4 were enriched in diffuse/mixed 
type. Among Koreans, the ACRG research also indicated 
the existence of subtypes with different metastatic tendency 
based on transcriptomic analysis [8]. The current study, for 
the first time, proposed a genomic classification that differ-
entiates molecular subtypes associated with tendency to liver 
or peritoneal metastasis. On the molecular basis, subtype 

Fig. 4  Integrated genomic classification of gastric cancer in asso-
ciation with clinicopathological features and patient outcomes. A 
Unsupervised clustering of integrated genomic features (Sig-cluster, 
CNV-cluster, NEA-cluster, clonality-cluster), frequent mutated genes, 
and copy number variations. 70 GC samples are divided into four 
ZJU-GC subtypes: subtype 1 (blue), subtype 2 (brown), subtype 3 
(rose red), and subtype 4 (green). Clinicopathological and molecu-
lar characteristics are depicted at the bottom. B Association between 
ZJU-GC subtypes and OS. C Sankey diagram showing the associa-
tion between ZJU-GC subtypes and TCGA subtypes. D Association 
between ZJU-GC subtypes and Lauren types. E Comparison of first-
metastasis site among ZJU-GC subtypes. F Comparison of TMB and 
TNB among ZJU-GC subtypes. G Forest plot showing univariate and 
multivariate Cox regression analysis for the association between ZJU-
GC subtype and OS. H Molecular characteristics of four ZJU-GC 
subtypes. Sig-cluster: mutational signature cluster; CNV-cluster: copy 
number variation cluster; NEA-cluster: neoantigen cluster; TMB: 
tumor mutation burden; TNB: tumor neoantigen burden; OS: over-
all survival; CIN: chromosomal instability; EBV: Epstein-Barr virus; 
MSI: microsatellite instability; GS: genomically stable. * P < 0.05
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1 had the highest prevalence of HSP90AB1 and ERBB2 
amplifications among the four subtypes. HSP90AB1 was 
previously found to promote epithelial-mesenchymal transi-
tion via Wnt/β-catenin signaling pathway in GC progression 
[74]. A large-scale prospective study reported that ERBB2 
positivity was significantly correlated to liver metastasis and 
absence of peritoneal metastasis [75]. Additionally, dele-
tion of ARID1A was commonly found in subtype 3 and sub-
type 4, and it was revealed that reduced expression of the 
chromatin remodeling gene could promote migration and 
invasion of GC cells by downregulating E-cadherin expres-
sion [76]. Collectively, the proposed classification system 
can be informative to guide studies on molecular oncology. 
Nevertheless, the underlying mechanism of different site-
specific patterns of metastasis among ZJU-GC subtypes 
requires further investigation through in vitro and in vivo 
experiments. Furthermore, our classification could also 
guide site-specific recurrence monitoring and treatments in 

clinical scenario. For instance, an evidence suggested that 
addition of pre-emptive intraperitoneal chemotherapy to 
gastrectomy reduces the risk of peritoneal recurrence for 
GC patients who are at high-risk of peritoneal metastasis 
[77, 78]. Moreover, an ongoing phase III trial is currently 
recruiting GC patients at high risk of peritoneal metastasis 
(T3/4, irrespective of nodal or peritoneal cytology status) 
[79]. The combination of clinicopathological factors and the 
proposed genomic classification system may lead to a better 
risk stratification of peritoneal metastasis.

There are some limitations in the current study that 
should be clearly declared. This is a single-center, retrospec-
tive study and the sample size is relatively limited. In addi-
tion, in spite of an obvious clinical significance of the newly 
proposed genomic classification, little is known about its 
underlying mechanism. Therefore, future prospective, multi-
center, and large cohort studies are warranted to confirm our 
findings and to search for the molecular basis of the different 

Fig. 5  Summary of key features of gastric cancer in four genomic subtypes. The schematic shows the salient characteristics associated with each 
of four ZJU-GC subtypes
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clinical phenotypes (e.g., metastatic pattern). Although the 
proposed classification system is clinically significant, there 
are still obstacles towards broad clinical application due to 
the lack of large cohort validation. Further optimization of 
the classification algorithm and large cohort validation will 
be the next directions.

In summary, the present study revealed the genomic char-
acteristics of Chinese GC patients and proposed a unique 
genomic classification system with significant clinical rel-
evance. Through interpretation of genomic information, 
this study provided a rationale for research on GC and for 
molecular classification of multiple types of cancer to guide 
precision medicine.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10120- 021- 01201-9.
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