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Activity-dependent plasticity as a result of reorganization of neural circuits is a fundamental characteristic of the central nervous
system that occurs simultaneously in multiple sites. In this study, we established the effects of subthreshold transcranial magnetic
stimulation (TMS) over the primarymotor cortex region on the tibialis anterior (TA) long-latency �exion re�ex.Neurophysiological
tests were conducted before and aer robotic gait training in one person with a motor incomplete spinal cord injury (SCI) while
at rest and during robotic-assisted stepping. e TA �exion re�ex was evoked following nonnociceptive sural nerve stimulation
and was conditioned by TMS at 0.9 TA motor evoked potential resting threshold at conditioning-test intervals that ranged from
70 to 130ms. Subthreshold TMS induced a signi�cant facilitation on the TA �exion re�ex before training, which was reversed
to depression aer training with the subject seated at rest. During stepping, corticospinal facilitation of the �exion re�ex at early
and midstance phases before training was replaced with depression at early and midswing followed by facilitation at late swing
aer training. ese results constitute the �rst neurophysiologic evidence that locomotor training reorganizes the cortical control
of spinal interneuronal circuits that generate patterned motor activity, modifying spinal re�ex function, in the chronic lesioned
human spinal cord.

1. Introduction

A plethora of studies have shown that the isolated mam-
malian spinal cord can generate muscle activation patterns
suited for locomotion in absence of inputs from the brain
[1, 2]. is work led to the notion that neural drive from
the brain is needed mostly when environmental constraints
increase such as stepping over an obstacle or on an uneven
surface [3–5]. However, corticospinal neurons are active
during simple locomotion and exhibit a profound step-
related modulation in the cat [6–8]. Similarly, corticospinal
pathways to leg muscles are activated in a phase-dependent
manner during simple treadmill walking in humans, long-
latency re�exes of the tibialis anterior (TA) muscle are partly
mediated by a transcortical pathway, and impaired transmis-
sion in the corticospinal tract is related to gait disability of

individuals with a spinal cord injury (SCI) [9–11].ese �nd-
ings support the notion of a substantial cortical involvement
in human walking.

Because of motor incomplete SCI, the spinal cord is not
completely severed and thus some descending �ber tracts
and segmental spinal cord circuits remain intact; it is logical
to hypothesize that cortical control of spinal neural circuits
is reorganized aer locomotor training. is hypothesis is
supported by the fact that activity-dependent neuroplasticity
takes place simultaneously in multiple sites of the central
nervous system due to training [12, 13]. Improvements in
walking ability have been achieved with locomotor training
post-SCI, and changes have been reported in walking speed,
step length, and step symmetry [14]. e reported changes
are likely the result of task-speci�c sensorimotor feed-
back that reorganizes corticospinal and spinal pathways in
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a functional manner [15, 16]. For example, in 4 people with
SCI, functionalmagnetic resonance imaging showed a greater
activation in sensorimotor cortical and cerebellar regions
aer 36 sessions of body weight supported (BWS) robotic
gait training [17]. In individuals with incomplete SCI, 3 to 5
months of daily locomotor training increased the size of the
motor evoked potentials (MEPs) in 9 out of 13muscles tested,
increased the maximal MEP, and changed the slope of the
MEP input-output curve [18]. e changes in MEP size were
signi�cantly correlated to the degree of locomotor recovery,
suggesting that corticospinal plasticity was involved, at least
in part, in the recovery of walking ability aer training [18].

Collectively, we hypothesized that locomotor training
reorganizes the cortical control of spinal interneuronal path-
ways that generate patterned motor activity during locomo-
tion. We tested our hypothesis by establishing the effects of
subthreshold transcranial magnetic stimulation (TMS) over
the primary motor cortex region on the spinal polysynaptic
�exion re�ex before and aer BWS robotic gait training
in one person with motor incomplete paraplegia while at
rest and during robotic-assisted stepping. We selected this
re�ex because the interneuronal circuits that generate the
�exion re�ex also participate in pattern generation during
locomotion, and this re�ex is susceptible to descending
control [19].

2. Materials andMethods

2.1. Subject. A 52-year-old woman, 11-year post-SCI, at the
level of thoracic 7 due to fall, participated in this study
following written consent to the experimental procedures
approved by the Northwestern University (Chicago, IL,
USA) Institutional Review Board committee and conducted
in accordance with the Declaration of Helsinki. Based on
neurological examination according to the American Spinal
Injury Association guidelines, the subject had an AIS grade
D impairment scale at the time of admission to the study.
e subject received 35 training sessions (1 hour/day, 5
days/week) with a robotic exoskeleton (Lokomat, Hocoma,
Switzerland). Before and aer training, electromyographic
(EMG) activity was recorded from medial gastrocnemius
(MG), peroneus longus (PL), gracilis (GRC) and medial
hamstrings (MH) of the right leg, and tibialis anterior (TA)
and soleus (SOL) from both legs with bipolar differential
electrodes of �xed interelectrode distance (Motion Lab Sys-
tems, Baton Rouge, LA, USA). EMG and foot switches data
were collected at 2000Hz with custom-written acquisition
soware (Labview, National Instruments, Austin, TX, USA).
Results of clinical evaluation tests and treadmill parameters
before and aer training are summarized in Table 1.

2.2. Neurophysiological Tests Conducted before and aer
Training. With the subject seated at rest, the sural nerve
of the le leg was stimulated with a pulse train of 30ms
duration once every 10 s with a constant current stimulator
(DS7A, Digitimer, Hertfordshire, UK) [20, 21]. Stimulation
was delivered by twodisposable pregelledAg-AgCl electrodes

(Conmed Corporation, NY, USA) placed on the lateral
malleolus andmaintained in place via an athletic wrap. Re�ex
responses were recorded from the ipsilateral TAmuscle. Sural
nerve stimulation during testing was delivered at 1.3 times
the re�ex threshold. No limb movement or pain was present
upon stimulation.

Single TMS pulses over the right primary motor cor-
tex (M1) were delivered with a Magstim 200 stimulator
(Magstim, Whitland, UK). e double-coned coil was ori-
ented on the skull to produce an induced current in the
posterior-to-anterior direction. e optimal position for
TMS was determined by varying the position of the coil
from the vertex with gradually increasing intensities, until
an MEP in the contralateral (le) TA muscle was observed
at the lowest stimulation intensities with the subject seated
at rest. MEP resting threshold was de�ned as the stimulus
intensity at which three MEPs of at least 100𝜇𝜇V of peak-
to-peak amplitude were evoked following �ve consecutive
stimuli with the subject at rest.

Aer cortical and sural nerve stimulation siteswere estab-
lished, the effects of TMS delivered at 0.9 TA MEP resting
threshold on the TA �exion re�ex at the conditioning-test
(C-T) intervals of 70, 90, 110, and 130ms were determined
with the seated subject. Ten �exion re�exes, each evoked
once every 10 s, were recorded under control conditions
and following subthreshold TMS. en, the subject was
transferred to standing at 50% BWS, and the TA �exion re�ex
and MEP thresholds were reestablished. During robotic-
assisted stepping, the �exion re�ex was conditioned by TMS
at 0.9 × TA MEP resting threshold at the C-T intervals
of 70ms and 110ms before and aer training. e subject
stepped at 50%BWS and at 1.8 Km/h treadmill speed for both
data collection sessions. Stimulation was triggered every 3
steps, based on the signal from the le-foot switch, which was
sent randomly across different phases of a step cycle that was
divided into 16 equal time windows or bins [21, 22].

2.3. Data Analysis. EMG signals during BWS-assisted step-
ping from the steps before sural nerve and transcranial
magnetic stimulation were full-wave recti�ed, high-pass
�ltered at 20Hz, and low-pass �ltered at 500Hz. Aer full-
wave recti�cation, linear envelopes were obtained at 20Hz
low-pass �lter, and the mean EMG amplitude across all
steps was determined. Integrated EMG was de�ned as the
area under the linear envelope. is analysis was conducted
separately for each muscle during BWS-assisted stepping for
both sessions.e overall average of the EMG linear envelope
(including all bins) from each muscle was also estimated and
compared before and aer training with a paired t-test.

Flexion re�exes were measured as the area under the full-
wave recti�ed EMG response. e conditioned TA �exion
re�ex (𝑛𝑛 𝑛 𝑛𝑛) recorded at each C-T interval before and aer
training with the seated subject was expressed as a percentage
of the mean size of the associated control �exion re�ex.
Statistically signi�cant differences between the conditioned
�exion re�exes recorded at different C-T intervals before and
aer training were established with a multiple ANOVA at
2 × 4 levels (2: pre-/post-training, 4: C-T intervals) along
with Holm-Sidak tests for repeated measures. At each bin of
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T 1: Treadmill walking parameters and functional outcomes1.

BWS (%) Speed
(Km/h)

R and L
foot liers

Guidance force by
the Robot (%) Clonus Extensor spasticity

(SCATS)
Manual muscle

testing 6min walk
30 sec

chair-stand
test

Time up
and go

Before robotic gait training

50 1.8 None 100 1L/0R 0L/0R R leg = 24/25
L leg = 16/25

269m
using quad

cane
12 reps

11.3 sec
using quad

can
Aer robotic gait training

15 3.2 None 15 1L/0R 0L/0R R leg = 24/25
L leg = 17/25

335m
using quad

cane
21 reps

9.1 sec
using quad

cane
1
BWS: body weight support; extensor spasticity grade is based on the spinal cord assessment tool for spasticity (SCATS): where subjects are positioned supine,
the lower limb is rapidly moved into passive extension, and the severity of quadriceps contraction is scored; R: right, L: le; 0: no reaction to stimulus; 1: mild
quadriceps contraction between 1–3 seconds.

the step cycle, the full-wave recti�ed area of the TA �exion
re�ex response was calculated and averaged separately for
steps with and without sural nerve stimulation and TMS
[22]. e average of TA EMGs of non-stimulated steps was
subtracted from the average of EMGs of stimulated steps
(conditioned re�ex) at identical time windows for each bin
andwas expressed as a percentage of the control �exion re�ex
recorded with the seated subject. Statistically signi�cant
di�erences between the conditioned �exion re�exes recorded
at each bin of the step cycle before and aer training were
established with a two-way ANOVA at 2 × 16 levels (2:
pre-/post- training, 16: bins of the step cycle) along with
Holm-Sidak tests for repeated measures. is analysis was
conducted separately for �exion re�exes at the C-T intervals
of 70 and 110ms. Alpha was set at 95% for all statistical tests.

3. Results

e latency of the TA �exion re�ex following sural nerve
stimulation measured from the onset of the pulse train was
160ms,while the latency of theTAMEPwas 40msbefore and
aer training. e EMG activation patterns as a function of
the step cycle changed signi�cantly aer robotic gait training.
Speci�cally, the SOL EMG burst duration was prolonged
during the stance phase (Figure 1(a)), MG displayed an EMG
burst during the stance and late swing phases (Figure 1(b));
while the PL EMGburst was enhanced throughout the stance
phase (Figure 1(f)). e EMG activation pro�les of SOL,
MG, PL, and MH muscles are similar to those observed
in control subjects during robotic-assisted stepping, but an
absent TA activity is noted at early stance and late swing
phases when compared to the TA EMG pro�le observed
commonly in control subjects (see Figure 1(b) in [23]). e
most pronounced change noted is in theTAmuscle inwhich a
burst of activity was present at late stance phase (Figure 1(c)),
while before training a clear TA EMG activity was absent. An
increase in the overall EMGs amplitude computed across all
bins of the step cycle was noted in all leg muscles (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃;
Figure 1(g)).

In Figure 2(a), full-wave recti�ed waveform averages of
the TA �exion re�ex recorded under control conditions (grey
line) and followingTMSat 0.9×MEPresting threshold (black
lines) are indicated for recordings taken before and aer
training. In Figure 2(b), the amplitude of the conditioned
TA �exion re�ex as a percentage of the control �exion re�ex
before and aer training is indicated. A MANOVA showed
that the conditioned long-latency TA �exion re�ex was
statistically signi�cantly di�erent before and aer training
(𝐹𝐹1,8 = 81.7, 𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃), and that the amplitude of the condi-
tioned �exion re�ex did not vary across C-T intervals tested
for recordings taken before and aer training (𝐹𝐹3,24 = 1.4,𝑃𝑃 𝑃
𝑃𝑃𝑃𝑃).

e changes observed aer training during robotic-
assisted stepping were more complex compared to the uni-
form �exion re�ex depression observed with the seated sub-
ject. In Figure 3, the mean amplitude of the long-latency TA
�exion re�ex following TMS at 0.9 ×MEP resting threshold
at the C-T intervals of 70ms and 110ms as a function of
the step cycle is indicated. A two-way ANOVA at 2 × 16
levels (2: pre/post training, 16: bins of the step cycle) showed
that the TA �exion re�ex at the C-T interval of 70ms was
statistically signi�cantly di�erent across bins (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃1).
Pairwise multiple comparisons (Holm-Sidak tests) showed
that the conditioned �exion re�ex at bins 1, 2, 5, 6, 7, 9,
11, 12, 13, 15, and 16 was statistically signi�cantly di�erent
before and aer training (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃). ese results suggest
that aer training, the conditioned TA �exion re�ex at the
C-T interval of 70ms was signi�cantly enhanced during the
stance phase, followed by a depression from early swing until
midswing (bins 9–13) when compared to the conditioned
�exion re�ex recorded before training (Figure 3(a)). A two-
way ANOVA at 2 × 16 levels (2: pre-/post- training, 16:
bins of the step cycle) showed that the TA �exion re�ex
at the C-T interval of 110mswas statistically signi�cantly dif-
ferent across bins (𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃1). Pairwise Holm-Sidak tests
for multiple comparisons showed that the conditioned �ex-
ion re�ex throughout the stance phase (bins 2–8) was
facilitated, followed by a signi�cant depression at early swing
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F 1: EMG activity during robotic-assisted stepping before and aer training. (a)–(f) EMG activity of the right side muscles during
robotic-assisted stepping at 50% BWS and at 1.8 Km/h before and aer training as a function of the step cycle. (g) Mean EMG amplitude for
stepping before (black squares) and aer (red squares) 35 sessions of robotic gait training. EMG: electromyography; SOL: soleus; MG:medial
gastrocnemius; TA: tibialis anterior; PL: peroneus longus; MH:medial hamstrings; GRC: gracilis.
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F 2: E�ects of subthreshold TMS on the TA �exion re�ex while seated before and a�er B�S robotic gait training. (a) Full-wave recti�ed
waveform averages (𝑛𝑛 𝑛 𝑛𝑛) of the control tibialis anterior (TA) �exion re�ex (grey line) and the conditioned �exion re�ex following single
pulse transcranial magnetic stimulation (TMS) of the right primarymotor cortex at 0.9 TAmotor evoked potentials (MEPs) resting threshold.
(b) Mean amplitude of the conditioned TA �exion re�exes recorded before and a�er B�S robotic gait training with the seated subject. e
conditioning-test interval is denoted on the abscissa. Asterisks indicate statistically signi�cant di�erences between the conditioned TA �exion
re�exes recorded before and a�er training. Error bars denote the SEM.

phase (bins 11, 12) and a signi�cant facilitation at swing-to-
stance transition phase (bins 15, 16) (𝑃𝑃 𝑃 𝑛𝑃𝑛𝑃) (Figure 3(b)).

4. Discussion

Locomotor training with a robotic exoskeleton reorganized
the cortical control of spinal interneuronal circuits and
modi�ed the �exion re�ex function at rest and during assisted
stepping in a person with a chronic motor incomplete SCI.
Before training and with the seated subject, subthreshold
TMS resulted in facilitation of the long-latency TA �exion
re�ex, but a�er training a pronounced re�ex depression was
evident. Corticospinal actions on the �exion re�ex changed

in a more complex pattern during robotic-assisted stepping.
A�er training, corticospinal facilitation of the �exion re�ex
at early and midstance was replaced with depression at early
and midswing followed by facilitation at late swing. Two
possible explanations for these changes are that the residual
intact supraspinal connections were reorganized or that new
supraspinal connections with spinal networks were formed
with locomotor training as a result of activity-dependent
mechanisms driven by task-speci�c sensory cues �12, 13,
24]. ese sensory cues included load alternation and leg
positioning with kinematics of the hips, knees, and ankles
timed to the step cycle in a physiologic pattern predetermined
by the robotic exoskeleton system.
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F 3: Changes in cortical control of the �exion re�ex aer 30 sessions of BWS robotic gait training during robotic-assisted stepping.e
mean normalized long-latency tibialis anterior (TA) �exion re�ex following single pulse transcranial magnetic stimulation (TMS) of the right
primary motor cortex at 0.9 × TAmotor evoked potentials (MEPs) at the conditioning-test interval of 70 (a) and 110 (b) ms is indicated as a
function of the step cycle. Asterisks indicate suppressive and�or facilitatory conditioned �exion re�exes aer locomotor training compared to
those observed before training based on the𝑃𝑃 value computed frompairwisemultiple comparisons (two-wayANOVAalongwithHolm-Sidak
tests). Grey squares denote the stance phase. Error bars denote the SEM.

Activity-dependent plasticity involves both physiological
and structural changes that alter the anatomical connectivity
of neurons [24–26].We are not able to effectively assess which
anatomical connections exist aer the injury and which
change with training. Nonetheless, the neuronal pathways
and circuits that may have changed due to training are
intracortical and interhemispheric inhibitory circuits, corti-
cospinal monosynaptic connections with TA alphamotoneu-
rons, and oligo- or polysynaptic cortical connections with
�exion re�ex afferent (FRA) interneurons. e rationale
for proposing these neuronal pathways is based on the
demonstrated effects of subthreshold TMS on the spinal
motoneurons through intracortical and interhemispheric
inhibitory circuits [27–30], and on the fact that TMS deliv-
ered 0.9 × MEP resting threshold, it may have produced
corticospinal motor volleys that affected the excitability state
of FRA interneurons and TA alpha motoneurons. Because
of the long latency of the �exion re�ex as well as that
the conditioning re�ex effects were observed at long C-T
intervals, it is likely that monosynaptic excitation of TA alpha
motoneurons by corticospinal volleys was absent and that
corticospinal descending volleys affected FRA interneurons
aer a polysynaptic relay [30].

Sural nerve stimulation largely excited A𝛽𝛽 (or group
II) sensory afferents mediating tactile information. e
conduction velocity of these afferents ranges from 30 to
70m s−1 while during contraction is 45m s−1 [31]. Further,
the conduction velocity of the early D (or direct) wave aer
scalp stimulation recorded with epidural electrodes at the
thoracic 5 ranges from 62 to 70m s−1 [32]. is means
that impulses from A𝛽𝛽 �bers reached the spinal cord about
14–30ms aer the �rst pulse of the re�ex stimulus pulse
train, while corticospinal motor volleys reached the spinal

cord approximately 10ms following TMS. Because changes
in motoneuronal excitation following M1 excitation can last
as long as 80 to 100ms, it is apparent that at the C-T
intervals used in this study, there was ample time for TMS to
affect the excitability state of FRA interneurons that produce
polysynaptic re�ex actions on 𝛼𝛼-motoneurons.

Our �nding—that corticospinal control of spinal cord
neural circuits was reorganized aer locomotor training—is
important and constitutes the �rst proof of principle for this
therapeutic strategy based on neurophysiological evidence.
e changes in the corticospinal pathways we observed
here may be linked to improvements of walking ability and
balance. Aer locomotor training, the person was able to
walk 335m within 6min compared to 269m before training,
while signi�cant improvements were noted on balance-
related motor tasks and speed of walking (Table 1). Clinical
studies have demonstrated that locomotor training improves
walking ability and cardiovascular function in people with
motor incomplete SCI [33, 34]. Taken together, we propose
that recovery of walking ability is mediated through reor-
ganization of corticospinal actions on spinal interneuronal
circuits modifying re�ex function during walking.

At this point, it should be noted that a key limitation
of this study is that data was collected from one patient,
and thus generalization to a speci�c SCI population should
be cautioned. Further, the subject received only 35 sessions
of robotic gait training. Rehabilitation of these patients to
achieve restoration of movement and walking is a long-term
process, while reorganization of corticospinal control of
spinal re�ex circuits may differ aer 60 or 90 training
sessions. us, the corticospinal reorganization we observed
here, evident by the modulation pattern of the �exion
re�ex following TMS with the seated subject and during
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robotic-assisted stepping, may re�ect a speci�c stage of the
task-dependent plasticity of corticospinal neural circuits [35].
It is apparent that further research is needed to outline the
neurophysiological changes associated with corticospinal
reorganization due to locomotor training and the role of
corticospinal neural plasticity in restoration ofwalking ability
aer SCI.

5. Conclusion

We demonstrate in this study, for the �rst time, that cortical
actions on spinal interneuronal circuits are reorganized aer
locomotor training in one person with chronic motor incom-
plete SCI. is neural reorganization may be the result of
newly formed supraspinal connections with spinal networks
or potentiation of inactive residual intact supraspinal con-
nections due to training. Further research is needed to link
reorganization of corticospinal neural pathways to locomotor
training-mediated restoration of walking ability as well as
phases of neuroplasticity over time.
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