
Naima Hammoudi 1,2 , Kausar Begam Riaz Ahmed 1,2 , Celia Garcia鄄  Prieto 3 and Peng Huang 1,2 

Abstract 
Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the 

metabolic differences between cancer and normal cells and the underlying mechanisms will not only 
advance our understanding of fundamental cancer cell biology but also provide an important basis for the 
development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by 
targeting their unique metabolism. This article reviews several important metabolic alterations in cancer 
cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and 
discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic 
alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and 
potential therapeutic strategies and agents that target cancer metabolism are also discussed. 
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Cancer cells have long been known to exhibit 
profound alterations in their metabolism, as exemplified 
by the Warburg effect, a phenomenon of cancer cells 
with elevated aerobic glycolysis [1­3] . Reprogramming of 
the cellular energy metabolism constitutes an emerging 
hallmark of cancer and may serve as a biochemical 
basis for new therapeutic intervention [4] . Tremendous 
efforts in recent years have been devoted to unveiling 
the underlying mechanisms for metabolic alterations in 
cancer, thus triggering considerable research interest in 
mitochondria, bioenergetics, and redox regulation in 
normal and malignant cells. Both glucose and glutamine 
are key metabolic substrates in cancer cells and are 
critical for cancer development, invasion, and metastases 
[5­9] . Glutamine is an abundant amino acid in human 
plasma and is present at high concentrations in the 
medium used for  cell culture. Several oncogenes, 

including c­  and  , have been identified to 
promote the expression of metabolic enzymes and 
regulators that lead to preferential use of glycolysis over 
mitochondrial oxidative phosphorylation (OXPHOS). Loss 
of tumor suppressors, such as p53, fumarate hydratase 
(FH), and succinate dehydrogenase (SDH), also results 
in significant changes in energy metabolism and may 
contribute to activation of hypoxia­inducible factor (HIF)­ 
1琢  ­dependent pathways and adaptation to tumor 
hypoxia [10,11] . 

Mitochondria are critical cellular organelles in 
which many key metabolic pathways converge. Whether 
metabolic alterations drive tumorigenesis or are a 
consequence of malignant transformation is still a matter 
of debate. Mitochondrial dysfunction has been directly 
linked to alterations in gene expression profiles and 
significantly affects cancer development. An impaired 
mitochondrial respiratory chain (MRC) may significantly 
alter the expression of important genes such as forkhead 
box O family (  ) and apoptosis signal­regulating 
kinase 1 (  ), leading to changes in cell cycle 
progression [12] . Mutations in mitochondrial DNA and nuclear 
DNA­encoded genes can also modulate cancer cell 
metabolism. Aberrant expression of specific molecules 
such as the serine/threonine protein kinase AKT and the 
mammalian target of rapamycin (mTOR) promotes 
increased glucose metabolism in cancer cells. In fact, 
AKT alone is sufficient to produce a glycolytic phenotype 
and glucose dependence in cancers [ 13 ] . Furthermore, 
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mTOR, a downstream target of AKT, seems to function 
as an energy sensor that is sensitive to alterations in 
nutrients and amino acids [14­16]  and is deregulated in many 
cancer types [17] . The tumor suppressor AMP­activated 
protein kinase (AMPK) is activated in response to stress 
signals, such as hypoxia and low cellular ATP levels, 
and regulates various critical cellular processes, 
including proliferation, cell cycle progression, autophagy, 
and cellular senescence, through its effects on key 
molecules such as mTORC1, p53, p27, FOXO3, and 
others [18,19] . In addition, metabolic reprogramming is linked 
to oncogenes such as  and  and tumor 
suppressors such as  that are important players in 
mediating energetic pathways [20­22] . A high dependency on 
glycolysis in cancers is also associated with altered 
glucose transporters and glycolytic enzymes such as 
hexokinase II (HKII) and lactate dehydrogenase (LDH) [23,24] . 
Therefore, many of these key molecules that are critical 
for maintaining cancer metabolism may be considered 
as potential targets for metabolic intervention in cancer 
treatment. The following sections provide an overview of 
several key metabolic alterations in cancers, their potential 
links to oncogenes and tumor suppressors, and the 
biochemical and molecular basis for targeting altered 
metabolism in cancers. 

Metabolic Alterations in Cancers 

Glycolysis and the Warburg effect 

Warburg observed in early 1920s that tumor cells 
exhibited significant alterations in energy metabolism and 
mitochondrial respiration compared to normal cells [2,25] . 
He showed that cancer cells actively used glycolysis for 
ATP generation, even in the presence of an abundant 
supply of oxygen, a phenomenon known as the Warburg 
effect [1,25] . Warburg further postulated that the metabolic 
shift from OXPHOS to glycolysis in neoplastic cells might 
be due to a respiratory injury (mitochondrial dysfunction) 
leading to increased aerobic fermentation, a critical event 
that was considered as the 野origin of cancer cells冶 [1] . 
Although whether metabolic alterations drive 
tumorigenesis or are an effect of transformation is still 
under debate, subsequent studies showed that increased 
dependence on glycolysis is observed in the majority of 
tumors and that glycolysis provides ATP as well as the 
metabolic intermediates essential for cancer cell 
proliferation and tumor development [8,26,27] . 

Aerobic conversion of glucose to lactate represents a 
major feature of cancer cell metabolism (Figure 1). The 
high flux of glycolysis results in an increased output of 
pyruvate, which may either be converted to lactate by 
LDH in the cytosol or to acetyl­CoA by pyruvate 
dehydrogenase (PDH) in the mitochondria. Acetyl­CoA is 

further metabolized through the Kreb爷s cycle and the 
MRC to generate ATP. The tumor hypoxic environment 
and/or oncogenes such as  ,  , and  stabilize 

, leading to up­regulation of pyruvate 
dehydrogenase kinase­1 (  ), in turn inactivating 

and thereby preventing the conversion of pyruvate 
to acetyl­CoA. Pyruvate is subsequently converted to 
lactate by  with a simultaneous oxidation of 
nicotinamide adenine dinucleotide (  ) to  + , 
which is important for the glycolytic reaction at the step 
catalyzed by glyceraldehyde­3­phosphate dehydrogenase 
(  ).  is up­regulated not only by  but 
also by other oncogenes such as  , thus ensuring 
sufficient  +  is available for glycolysis in cancer cells. 

The high rate of aerobic glycolysis confers several 
advantages to cancer cells. In the hypoxic 
microenvironment of tumor tissues, active glycolysis 
provides sufficient ATP for tumor cells when 
mitochondrial OXPHOS is limited. This seems 
particularly important for actively proliferating cancer 
cells [1,28] . Secondly, the metabolic intermediates generated 
during glycolysis provide important building blocks or 
precursors for the synthesis of DNA and fatty acids and 
for redox regulation [29,30] . For instance, glucose­6­phosphate, 
the product of the first glycolytic reaction, can be 
channeled to the pentose phosphate pathway (PPP) to 
generate ribose­5­phosphate and nicotinamide adenine 
dinucleotide phosphate (NADPH), which are important 
for nucleic acid metabolism and redox homeostasis, 
respectively. NADPH and 3­carbon metabolic 
intermediates are also important for lipid biosynthesis. 
Finally, the high levels of lactic acid produced during 
glycolysis may activate metalloproteinases and matrix 
remodeling enzymes, thus contributing to cancer 
invasion and metastasis  [29,31] . It should be noted, 
however, although most cancer cells are highly active in 
glycolysis, an increase in mitochondrial OXPHOS has 
also been observed in some tumors. 

Glutamine in cancer metabolism 

Another important metabolic substrate and energy 
source for tumor cells is glutamine [32] . This amino acid is 
highly abundant in blood, and once it enters the cells, it 
may serve as an energy source through catabolism or as 
a building block via anabolism (Figure 1). In addition to 
its direct involvement in metabolism, glutamine seems 
able to affect amino acid transport and autophagy 
through activation of mTOR complex 1 (mTORC1)  [33] . 
Conversion of glutamine to glutamate and its channeling 
into the tricarboxylic acid (TCA) cycle via 琢  ­ketoglutarate 
seem essential for the oncogenic  ­induced tumor 
growth in colon cancer cells [5] . Studies using tumor 
xenograft models have shown that the expression of 
glutaminase, an enzyme that converts glutamine to 
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Figure 1. Glucose and glutamine are transported through cell membranes by their respective 
transporters (GLUT鄄  1, 鄄  3 and 鄄  4 for glucose; SLC5A1 and SLC7A1 for glutamine). Glucose is metabolized in the cytosol to pyruvate, which can 
be either converted to lactate or transported into the mitochondria for further catabolism through the tricarboxylic acid (TCA) cycle coupled with 
respiration through the electron transport chain (ETC). In many cancer cells, glucose is mainly used for the glycolytic pathway, leading to a 
generation of lactate and important metablic intermediates such as glucose鄄  6鄄  phosphate for the pentose phosphate pathway (PPP) that generates 
NADPH and ribose for maintaining redox balance and synthesis of nucleic acids. The flow of glucose into mitochondria in the form of pyruvate is 
relatively low in cancer cells. Glutamine is actively metabolized in cancer cells, both in the cytosol and in the mitochondria, where it is catalyzed 
by glutaminase to generate glutamate, which is further converted to 琢  鄄  ketoglutarate for utilization through the TCA cycle. Both glycolysis and the 
TCA cycle provide important metabolic intermediates that serve as substrates for other pathways including the synthesis of nucleic acids, fatty 
acids, amino acids, and glutathione. The highly active pathways in cancer cells are indicated with bold arrows, whereas the less active metabolic 
flows are shown with thin arrows. Some of the important enzymes involved in cancer metabolism are indicated. HKII, hexokinase鄄  2; PKM2, 
pyruvate kinase M2 isoform; LDH, lactate dehydrogenase; PDH, pyruvate dehydrogenase; PDK鄄  1, pyruvate dehydrogenase kinase鄄  1; GLS, 
glutaminase; IDH, isocitrate dehydrogenase. 
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glutamate, correlates with tumor growth, and that 
inhibition of glutaminase in cells led to suppression of 
tumorigenicity and tumor growth [7,34] . A metabolic study 
using nuclear megnetic resonance (NMR) spectroscopic 
analysis in glioblastoma cells cultured with isotope­labeled 
glucose and glutamine demonstrated that glutamine 
supplied the majority of aneplerotic carbon for the TCA 
cycle in cancer cells [35] . The same study also showed that 
conversion of glutamate to 琢  ­ketoglutarate is the chief 
source of malate, oxaloacetate, and NADPH for fatty 
acid biosynthesis in tumors [35] . In fact, active glutaminolysis, 
the process of glutamine catabolism, is considered as a 
major metabolic feature of certain tumor cells [36,37] . Recent 
studies have shown that glutamine metabolism is 

regulated by the oncogene c­  , which directly 
stimulates the expression of the glutamine transporters 

and  and indirectly promotes the 
expression of glutaminase 1 (GLS1) by repressing the 
expression of  and  [38,39] . 

Glutamine also contributes to the maintenance of the 
antioxidant pool in cancer cells. The glutamine­derived 
malate from the TCA cycle serves as a substrate for 
malic enzyme 1 to produce NADPH. In glioblastoma 
cells, the high level of NADPH has been shown to 
contribute to the active synthesis of glutathione (GSH), 
which is essential for combating reactive oxygen species 
(ROS)­induced stress in cancer cells and maintaining 
redox balance [35] . Interestingly, glutamine also seems to 
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play a role in cancer metastasis. Seyfried  . [6]  recently 
showed that inhibition of glutamine metabolism in a 
mouse breast cancer model suppressed tumor 
metastasis . Although suppression of the mitochondrial 
glutaminase activity can inhibit oncogenic transformation [40] , 
the exact roles of glutamine in tumorigenesis remain to 
be elucidated. The role of glutamine metabolism in 
affecting tumor growth and cancer progression in 
patients has not also been definitely established. Further 
research is required to understand the mechanisms 
underlying the 野glutamine addiction冶 characteristics of 
cancer cells. 

Alterations of metabolic enzymes in cancers 

The mitochondrial membrane­bound HKII has been 
shown to promote the high glycolytic tumor phenotype 
and to inhibit Bax­induced cytochrome  ­mediated 
apoptosis in HeLa cells [41,42] . The pyruvate kinase isoform 
M2 (PKM2) seems to confer a tumorigenic advantage to 
cancer cells by slowing glycolysis and channeling the 
glycolytic intermediates to the PPP to produce NADPH 
and other metabolic substrates [43] . Elevated levels of 
PKM2 have been observed in various tumor samples [44,45] , 
consistent with the potential oncogenic role of this 
enzyme. The co­factor NADPH not only fuels 
macromolecular biosynthesis but also functions as a 
major antioxidant in cells. It maintains the redox balance 
during cell proliferation and is a reducing agent required 
for the GSH and thioderoxin antioxidant systems that 
play a major role in quenching ROS [46] . 

Gain­of­function mutations in isocitrate dehydro鄄  
genase I and II (  and  ) have been identified in 
several types of human cancers, especially in certain 
gliomas and acute myelogenous leukemia [47­49] . While the 
wild­type  and  catalyze the conversion of 
isocitrate to 琢  ­ketoglutarate, mutated IDH (  , 

,  ) produces 2­hydroxyglutarate (2­HG), a 
metabolite that seems to have oncogenic properties due 
to its ability to affect DNA methylation [50­52] . 2­HG, which is 
present at low concentrations in normal cells, may reach 
abnormally high concentrations in glioma samples and 
the serum of AML patients [49,51] . It has been reported to 
decrease OXPHOS, thus potentiating the cellular 
glycolysis capacity. IDH1 overexpression has been 
observed in over 95% of advanced gliomas, suggesting 
that it might have prognostic value in gliomas [53] . 
Nevertheless, further study is needed to understand why 
IDH mutations have preferential distribution in certain 
cancers, as well as to specifically evaluate the 
mechanistic role of these mutations in cancer 
development and test its value as a potential therapeutic 
target.

Further, deactivating mutations in FH and SDH, first 
identified in head and neck paragangliomas, have also 

been reported in hereditary leiomyomatosis, renal cell 
carcinoma, and certain gastrointestinal tumors [54­56] . The 
succinate dehydrogenase subunit D (SDHD) protein is 
one of the four subunits composing the SDH complex 
(complex II). Mutations in SDHD and FH alter the 
function of mitochondrial complex II, which affects the 
electron flow involving flavine adenine dinucleotide 
(FADH2). These mutations seem to compromise 
mitochondrial respiratory function and may contribute to 
the Warburg effect. Loss of FH and SDH activity leads 
to accumulation of their substrates fumarate and 
succinate, possibly interfering with the function of the 
琢  ­ketoglutarate­dependent dioxygenases, including prolyl 
hydroxylases and HIF­1琢  , which catalyze a host of 
biochemical reactions [11,29,57,58] . 

Metabolic alterations in cancer stem cells 

The study of cancer stem cells, a rare subpopulation 
of malignant cells with long­term self­renewal capacity 
and high tumorigenic potential, has become an important 
and intensive research area in recent years. Owing to 
their special biological properties, cancer stem cells are 
thought to play key roles in tumor initiation, resistance to 
chemotherapy and radiotherapy, and disease recurrence [59] . 
Although extensive information on the biological 
properties of cancer stem cells, specifically with respect 
to self­renewal, tumorigenesis, maintenance of 
stemness, differentiation, and regulatory mechanisms, 
has been generated during the past decade, our 
understanding of the metabolic properties of cancer stem 
cells is rather limited. This is due in part to limited 
availability of proper cancer stem cell models for 
metabolic study. The low number of cancer stem cells 
that can be isolated from primary tumors also limit the 
scope of metabolic study in this subpopulation of cells. 

Notably, certain regulatory pathways known to play 
important roles in governing cell metabolism and energy 
sensing have been shown to be involved in maintaining 
the self­renewal property of cancer stem cells. For 
instance, the tumor suppressor  negatively 
regulates the AKT pathway, thus affecting cellular uptake 
and use of glucose.  blockage has been shown to 
increase self­renewal capacity and promote clonogenicity 
of glioblastoma stem cells [60] . Interestingly, the tumor 
suppressor  is also involved in metabolic regulation 
through its effects on mitochondrial respiratory activity [22] . 
Inhibition of  increased the self­renewal capacity of 
glioma stem cells, whereas activation of  promoted 
cell differentiation [61] . The energy censor mTOR has been 
shown to play an essential role in maintaining the 
hematopoietic stem cells at undifferentiated stage by 
down­regulating mitochondrial respiration [62] . The 
transcription factor HIFs are often up­regulated in cancer 
cells and have been shown to promote the maintenance 
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of cancer stem cells in an undifferentiated state [63,64] . 
Interestingly, glioma stem cells seem to be confined in 
the tissue niches in the brain where the oxygen 
concentration is restricted [65] . Such a hypoxic 
microenvironment would favor the stabilization of HIF­1琢  . 

Aldehyde dehydrogenase 1 (ALDH1) is a metabolic 
enzyme involved in detoxification of certain toxic 
compounds and in the metabolism of biomolecules, such 
as the conversion of vitamin A (retinol) to retinoic acid. 
ALDH1 is often expressed in cancer stem cells and has 
been used as a functional marker for isolating cancer 
stem cells [66] . The retinoic acid signaling is believed to be 
important in determining the cell fate. ALDH1 has been 
used as a marker in detection of breast cancer stem 
cells  [67­69]  and, more recently, in lung cancer [70] . In 
hematopoetic stem cells, inhibition of ALDH1 activity 
leads to an increase in the population [71] . Interestingly, 
the PI3K/AKT pathway seems to play a major role in 
maintaining the ALDH1­positive population of breast 
cancer [72] . 

In several studies, the metabolic function in cancer 
stem cells has been directly assessed. Zhou  . [73] 
reported that the stem­like glioma cells with enriched 
CD133 +  cells showed increased tumorigenic capacity, 
low mitochondrial respiration, and high glycolytic activity. 
Furthermore, these metabolic properties seemed to 
confer cancer stem cells the ability to survive and 
proliferate in a hypoxic microenvironment and render 
them highly sensitive to glycolytic inhibition [73] . Consistently, 
a recent study in human pluripotent stem cells and their 
differentiated counterparts showed that the stem cells 
expressed high levels of glycolytic enzymes and relied 
mostly on glycolysis to meet their energy demands [74] . In 
hypoxia­adapted Bcr­Abl (+) cells that exhibited stem 
cell­like characteristics, the expression of glyoxalase­I, 
an enzyme that detoxifies methylglyoxal (a toxic 
metabolite of glycolysis) was high, and these cells were 
much more sensitive to glyoxalase­I inhibitors [75] . These 
studies together suggest that cancer stem cells may 
have unique metabolic properties that can serve as 
potential targets for anticancer therapy. As cancer stem 
cells are more resistant to conventional therapeutic 
agents and play a major role in therapeutic failure and 
cancer recurrence, the development of novel agents that 
effectively kill cancer stem cells based on their unique 
metabolic properties will have major therapeutic 
implications. 

Metabolic Alterations and Drug Resis鄄  
tance

Defects in the mitochondrial respiration and 
mutations in mitochondrial DNA (mtDNA) have been 
implicated to affect drug sensitivity. Several groups have 

used respiration­deficient 籽  0 cells to investigate the role 
of mitochondrial respiration in drug resistance. Singh 
. [76]  showed that the 籽  0 cells were resistant to 

photodynamic therapy and adriamycin but remained 
sensitive to DNA alkylating agents and 酌  ­radiation. Cai 

. [77]  reported that although staurosporine treatment 
induced release of cytochrome  and activation of 
caspases in both 籽  0 and 籽  + cells, the redox homeostasis 
remained unchanged in 籽  0 cells upon induction of 
apoptosis, suggesting that apoptosis and bioenergetics 
are two separate events. In another study using SK­Hep1 
hepatoma cells, deprivation of mtDNA resulted in 籽  0 
cells with elevated expression of the antioxidant enzymes 
manganese superoxide dismutase and glutathione 
peroxidase. These cells were relatively resistant to H 2 O 2 
and ROS­inducing agents such as doxorubicin, paraquat, 
and menadione, suggesting a significant role of 
mitochondrial respiration in drug sensitivity [78] . Furthermore, 
respiration­defective 籽  0 prostate cancer cells were 
resistant to the cytotoxic effects of the synthetic retinoid 
4HPR, implying that OXPHOS may be critical to mediate 
the effects of 4HPR in transformed human prostate 
cells [79] . Thus, a defect in mitochondrial respiration 
function may positively or negatively impact drug 
sensitivity, depending on the mechanisms of actions of 
the compounds. Ironically, the mtDNA­depleted HeLa 
cells (EB8 cells) lost their ability to form colonies in the 
anchorage­independent colony formation assay and to 
form tumors in nude mice, although both features were 
restored upon introduction of normal mtDNA into the 
cells [80] . It appears that a complete loss of mitochondrial 
respiration may compromise the cell爷s ability to survive 
and proliferate in the  tissue environment. 

Apart from mtDNA mutations and respiratory 
dysfunction, ROS and cellular redox homeostasis also 
play a critical role in determining and modulating cellular 
sensitivity to drugs. ROS can cause DNA mutations that 
may contribute to the development of a drug­resistant 
phenotype. However, an increase in ROS beyond a 
certain cellular threshold may lead to cell death through 
various mechanisms, such as activation of the 
JNK/p38­mediated signaling pathway, direct damage to 
the mitochondrial membrane, and release of cytochrome 

[81­84] . Interestingly, malignant cells in advanced stage 
cancers may develop resistance to ROS stress by 
up­regulation of their antioxidant capacity. For instance, 
resistance to arsenic trioxide in leukemia cells has been 
correlated with high cellular GSH levels and elevated 
expression of superoxide dismutase 1 [85,86] . Similarly, 
resistance to paclitaxel and cisplatin has been 
associated with increased antioxidant levels [87­89] . Thus, 
abrogation of the cancer cell antioxidant defense 
mechanism, such as depletion of GSH using 
pharmacological agents, seems to be an effective 
strategy to overcome such drug resistance [90,91] . For drug 
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resistance associated with mitochondrial respiration 
defects and increased glycolysis, the use of glycolytic 
inhibitors is an effective strategy [92] . 

Mechanisms Underlying Metabolic 
Alterations 

After his initial observation of increased glycolysis in 
cancer cells [2] , Warburg later attributed this metabolic 
alteration to 野respiratory injury冶 and considered this as 
the main cause of cancer [1] . This theory was immediately 
challenged by Weinhouse, who contended that 
mitochondrial respiration was functioning in cancer cells 
and that active glycolysis and OXPHOS together would 
result in a generation of excess ATP, thus creating a 
metabolic imbalance in cancer cells [93] . More recently, 
Moreno­Sanchez  . [94]  suggested that cancer cells are 
heterogeneous in their energy metabolic profiles, with 
some primarily using glycolysis whereas others use 
OXPHOS. Since mitochondria are the powerhouses of 
the cell and serve as the converging points of multiple 
metabolic pathways, mitochondrial dysfunction has long 
been suspected to play a key role in metabolic 
alterations in cancers. Interestingly, a recent study by 
Compton  . [95]  demonstrated that mitochondrial 
respiratory state can profoundly affect p53 expression 
and, thus, might play a role in tumorigenesis. Alterations 
in cancer cell metabolism have been attributed to 
dysfunctional mitochondria resulting in part from mtDNA 
mutations, and metabolic reprogramming may be linked 
to oncogenes and tumor suppressors that either affect 
mitochondrial function or regulate important molecules 
involved in the energetic pathways. 

Mitochondria mutations in cancers 

A major role of mitochondria is to generate energy in 
the form of ATP through OXPHOS, which is carried out 
through the electron transport chain (ETC) associated 
with the mitochondrial inner membranes [96] . The ETC 
consists of four respiratory complexes (I­IV), each with 
multiple protein components or subunits. Electrons are 
carried through these complexes to molecular oxygen 
with a simultaneous pumping of protons across the inner 
membranes to generate an electrochemical gradient, 
which is then used as the energy source to drive ATP 
synthesis at complex V. Each ETC complex contains 
subunits that are encoded by both mtDNA and nuclear 
DNA, with an exception of complex II, whose subunits 
are all encoded by nuclear DNA. Mammalian 
mitochondria contain a genome of 16.5 kb of double­ 
stranded circular DNA encompassing 37 genes, of which 
13 are components of respiratory chain complexes [96­98] . 
The lack of histone protection as well as the close 
physical proximity of the mitochondrial genome to the 

source of ROS generation makes mtDNA highly prone to 
mutations [99] . 

Accumulating evidence suggests that mtDNA 
mutations occur at higher frequency in cancer cells than 
in normal cells, perhaps due in part to the increased 
ROS generation in the cancer cell mitochondria  [100] . 
Because each cell harbors numerous mitochondria with 
multiple copies of mtDNA, mutations at mtDNA can be 
heteroplasmic (variably mutated mtDNA copies co­exist 
in the same cells) or homoplasmic (all mtDNA copies 
carry the same mutations). For the heteroplasmic 
mutations to have a significant effect on the cells, it is 
estimated that such mutations should be predominant 
and reach a minimal threshold of 60% of the 
mitochondrial copies [101,102] . However, due to 
selection of mutations that confer advantage for cell 
survival and proliferation, the heteroplasmic mutations 
with functional consequences may eventually become 
homoplasmic or eliminated (disadvantage mutations). 
This may explain why the majority of mutations detected 
in human cancers are homoplasmic [103,104] . Figure 2 shows 
a summary of mtDNA mutations in the coding region of 
respiratory chain components detected in various types 
of cancer tissues. Mutations can occur in any part of 
mtDNA, although there may be certain 野hot spots冶 
where mutations are more concentrated. Many mutations 
have also been detected in the non­coding region 
(D­loop), where the origin of replication and the 
transcription promoter sequences are located. Mutations 
of D­loop do not directly affect the structure and function 
of any particular protein encoded by mtDNA but may 
affect mtDNA replication and transcription. 

Extensive mtDNA sequencing in breast cancer 
conducted by Tan  . [105]  revealed that 74% of patient 
samples had mutations at 27 different sites, most of 
which were situated in the D­loop region. Parella  . [106] 
detected mtDNA mutations in 61% of fine­needle 
aspirates of breast cancer tissues, with the majority of 
mutations again located in the D­loop region. Single base 
substitutions and deletions seem to be the most 
common mutations found in breast cancer mtDNA. In a 
colorectal cancer study, Polyak  . [107]  reported the 
occurrence of mutations in colon cancer cell lines as well 
as the original tumors from which the cells were derived. 
The mutations occurred in the coding regions including 
the NADH dehydrogenase 1 (ND1), ND4L, ND5, 
cytochrome  , and 12S and 16S RNA genes. Mutations 
in the D­loop region in colorectal cancer have also been 
reported [108] . Another interesting finding was the presence 
of mutations in the normal colonic crypt stem cells, 
suggesting that mutations may occur before the 
development of colon cancer and contribute to 
carcinogenesis, although this functional role has not 
been experimentally demonstrated [109] . In gastric cancer, 
the D­loop region harbored mutations in 48% of the 
carcinoma samples sequen ced by Wu  .  [110] . 
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Additionally, mtDNA mutations have been detected in 
ovarian [111] , hepatocellular [112,113] , pancreatic [114] , prostate [115] , 
thyroid [116] , brain [117] , and lung cancers [118] . 

Role of oncogenes and tumor suppressor genes 
in alterations of cancer cell metabolism 

Emerging evidence suggests that metabolic 
deregulations play a crucial role in supporting cancer cell 
survival, proliferation, and tumor growth and that certain 
oncogenes may orchestrate the activation of enzymes 
that are important for the glycolytic pathway and thus 
contribute to the Warburg effect. On the other hand, 
certain metabolic pathways may lead to production of 
metabolites that promote silencing of tumor suppressors 

and activation of certain oncogenes. 

The serine/threonine kinase AKT, a downstream 
effector of the insulin signaling, plays a major role in cell 
survival and proliferation and is an important promoter of 
glysolysis [119] . In the majority of tumor cells, Akt is 
hyperactive and seems to drive addiction to glucose 
metabolism for survival and proliferation  [13] . The Akt 
glycolytic enhancer role is driven by stimulation of 
glucose uptake in response to insulin [13] . Akt up­regulates 
GLUT1 by enhancing its expression at transcription level. 
Moreover the AKT signaling enhances glucose 
metabolism within the cell by stimulating the association 
of HKII with the mitochondrial outer membrane, thus 
positioning it to phosphorylate glucose to 

Figure 2. The human mitochondrial genome is a 16.5 
kb double鄄  stranded circular DNA, which contains 37 genes: 13 polypeptides that are components of the electron transport complexes (ETC), 22 
tRNAs, and 2 ribosomal RNAs. Mutations at the 13 ETC鄄  encoding genes may cause alterations of the respiratory chain activity and thus affect 
metabolism. Each box linked to a particular mitochondrial gene region contains a partial list of mutations that have been identified in that specific 
mtDNA in human cancers, with the specific cancer types indicated. The numbers represent the locations of the mutated bases (C, cytosine; G, 
guanine; T, thymine; A, Adenine). Note that the two adjacent genes for ATPase6 and ATPase8 are shown in a single box. 
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glucose­6­phosphate for use in glycolysis and other 
metabolic pathways  [120] . Akt爷s ability to promote 
metabolism via glycolysis is also partly due to induced 
expression of glycolytic enzymes through the mTOR and 
HIF­1 signaling [16,121] . 

mTOR is an energy censor that promotes 
nutrient uptake and glycolysis. Deregulation of mTOR 
pathway is often found in cancer cells [17] . Under nutrient 
deprivation, mTOR forms a stable complex with raptor, 
leading to an inhibition of mTOR kinase activity [122] . Akt 
regulates mTOR through the inactivation of the protein 
tuberous sclerosis­2 (TSC2). TSC2 and TSC1 associate 
and form a complex that suppresses mTOR activity [123] . 
Activated AKT phosphorylates TSC2, thus affecting its 
interaction with the small G protein Rheb, which when 
loaded with GTP, activates mTORC1 [122,124] . The activation 
of mTORC1 increases glycolysis by increasing the 
translation of the mRNA encoding HIF­1琢  , thus 
stimulating the expression of glycolytic enzymes  [125] . 
Importantly, mTOR is regulated by liver kinase B1 
(LKB1) and AMPK  [126] . The mTOR energy sensor 
function is conferred in part by AMPK, a heterotrimeric 
serine/threonine kinase consisting of a catalytic subumit 
(琢  ) and two regulatory subunits (茁 and 酌  ) [127] . Nutrient 
depravation causes cellular stress, leading to an 
increase of the AMP/ATP ratio, which promotes the 
binding of AMP to the 酌  ­regulatory subunit and triggers 
AMPK activation  [128] . AMPK activation in turn induces 
TSC2 phosphorylation, leading to suppression of mTOR 
activity and inhibition of protein translation. The 
serine/threonine kinase LKB1 activates AMPK under low 
ATP conditions [129] . Therefore, the LKB1/AMPK/mTOR 
axis serves as an important energy sensor that links 
energy status and the metabolic signaling pathways [130] . 

Hypoxia inducible factor­1, a heterodimer 
protein complex that consists of HIF­1琢 and HIF­1茁  , has 
been implicated in the induction of key genes involved in 
cell proliferation, oxygen and nutrient delivery, and 
anaerobic energy metabolism  [131] . HIF­1 regulation is 
achieved by protein degradation of the HIF­1琢 subunit in 
response to oxygen levels in the microenvironment. 
Oxygen promotes prolyl hydroxylation, which stimulates 
the association of HIF­1琢  with the von Hippel­Linau 
(VHL) tumor suppressor, thereby targeting HIF­1琢  for 
ubiquitination and proteosomal degradation. Hypoxia 
suppresses prolyl hydroxylation through a process 
involving mitochondria­generated ROS [132,133] . As such, 
HIF­1 is considered as the master sensor that 
orchestrates cellular responses to changes in oxygen 
homeostasis. In fact, HIF­1 has been found to be highly 
expressed within hypoxic tumors and at low levels within 
normal tissue [134] . 

HIF­1 up­regulates 9 of the 10 genes involved in 
glycolysis and, thus, plays a key role in switching 

glucose metabolism from OXPHOS to glycolysis when 
cells are in a hypoxic environment [134,135] . For instance, 
HIF promotes glucose uptake by up­regulating the 
expression of the GLUT1 and glucose metabolism by 
up­regulating hexokinase, the enzyme responsible for 
catalyzing the first glycolytic reaction. HIF­1 also 
promotes the expression of LDH­A at the transcription 
level [136,137] . Furthermore, HIF­1 enhances glycolysis by 
preventing the use of pyruvate by the mitochondria 
through the up­regulation of PDK1, which phosphorylates 
PDH1 and inhibits its ability to convert pyruvate to 
acetyl­CoA as the fuel for the TCA cycle [138] . 

In addition to response to environmental oxygen 
fluctuation, HIF­1 can also be regulated by molecules 
such as FH and SDH. Loss of function mutations of FH 
and SH lead to the accumulation of the TCA cycle 
intermediates furmate and succinate, resulting in 
inhibition of the 琢  ­ketoglutarate­dependent prolyl 
hydroxylase, thereby stabilizing HIF­1 [139] . 

is an oncogene that affects many 
cellular functions including energy metabolism [20] . 
overexpression is estimated to be associated with at 
least 40% of all cancers [140] . Similar to HIF­1, 
promotes glycolysis mainly through up­regulation of 
glycolytic molecules including GLUT1, HKII, 
phosphofructokinase (PFK), enolase, and LDH [21] . It is 
important to note that  also plays a major role in 
promoting glutamine use in cancer cells through 
up­regulating the expression of glutamine transporters 

and  and enhancing the expression of 
GLS1 by repressing the expression of  and 

thus releasing the suppressive effect of these 
miRNAs on GLS1 expression [38,39] . 

The tumor suppressor  is a stress sensor 
and cell cycle checkpoint regulator in mammalian cells 
that plays essential roles in cell cycle regulation, 
apoptosis, and genome stability [141] . The role of  in 
energy metabolism was recognized by Matoba  . [22] , 
who found that loss of  diminishes the synthesis of 
cytochrome  oxidase (  ), a nuclear DNA­encoding 
gene whose product is necessary for the assembly of 
mitochondrial respiratory complex IV . Thus, this study 
directly links  to OXPHOS. The loss of  shifted 
the cellular ATP production from mitochondrial 
respiration to glycolysis. Moreover,  53 protein represses 
the expression of the GLUT1 and GLUT4 transporters. 
Thus, the loss of  enhances the expression of 
glucose transporters and further promotes glycolysis. 
Interestingly, Benssad  . [21]  identified a  target 
gene known as TP53­induced glycolysis and apoptosis 
regulator (  ), which is a potent glycolysis regulator. 
Expression of  decreases the intracellular level of 
fructose­2,6­bis­phosphate, which otherwise suppresses 
glycolysis by shunting glucose to the PPP [142] . In addition, 
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HK, hexokinase; VDAC, voltage­dependent anion channel; LDH, lactate dehydrogenase; PDK, pyruvate dehydrogenase kinase; 
AMPK, AMP­activated protein kinase; HDAC, histone deacetylase; SAHA, suberoylanilide hydroxamic acid; AICAR, 
5­aminoimidazole­4­carboxamide ribonucleotide; HIF­1: hypoxia­inducible factor­1; mTOR: mammalian target of rapamycin. 

Therapeutic approach 

Inhibition of glycolysis 

Interfering glutamine 
metabolism 

Targeting energy 
sensors & regulators 

Metabolic target 

HK 
HK鄄  VDAC complex 
LDH & lactate transport 
PDK 
Glucose transporter 
Phosphofructokinase 
Pyruvate Kinase 
Glutamine (analogs) 
Glutamine 
Glutamine transport 
Glutaminase 
Transaminase 
AMPK 
HDAC 
HIF鄄  1 
AKT 
PI3K 
mTOR 

Agent 

2鄄  Deoxyglucose, 3鄄  bromopyruvate Lonidamine 
Methyl jasmonate 
Oxamate, shRNAs, 琢  鄄  cyano鄄  4鄄  hydroxy cinnamic acid 
Dichloroacetate 
Phloretin 
PFKFB3鄄  3(3鄄  pyridinyl)鄄  1鄄  (4鄄  pyridinyl)鄄  2鄄  p, 3PO, Clotrimazole 
CAP鄄  232/TLN鄄  232 
6鄄  Diazo鄄  5鄄  oxo鄄  L鄄  norleucine, azaserine, acivicin 
L鄄  Asparaginase, phenylbutyrate, 
L鄄  酌  鄄  glutamyl鄄  p鄄  nitroanilide (GPNA), 
Compound 968, 6鄄  diazo鄄  5oxo鄄  norleucine 
Amino鄄  oxyacetic acid 
Metformin thiazolidinediones, AICAR 
Romidepsin, SAHA 
Romidepsin, 
NSC 644221, 
RX鄄  0047 
Genistein, celecoxib, perifosine, GST鄄  anti鄄  Akt1鄄  MTS 
LY294002, wortmannin 
Rapamycin, Temsirolimus (CCI鄄  779), Everolimus (RAD鄄  001) 
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also affects energy metabolism by regulating AMPK, 
mTOR, PTEN, and IGF­binding protein­3 [143] . 

mutations are found in approximately 30% 
of all human cancers [144]  and are important in promoting 
cancer initiation and progression [145] .  , the most 
commonly mutated oncogenic  in pancreatic cancer, 
has been shown to affect the shape and function of the 
mitochondria during fibroblast transformation [146] . Further 
studies showed that fibroblasts transformed by activated 

attenuated OXPHOS by suppressing the activity 
of respiratory complex I, with a corresponding decrease 
in the expression level of complex I proteins [147] . Similarly, 

transformed mouse fibroblasts exhibited low 
mitochondrial respiration, an increased dependency on 
glycolysis, a sensitivity to glycolytic inhibitors, and an 
insensitivity to OXPHOS inhibitors [148] . However, a recent 
study showed that  may affect the synthesis of the 
mitochondrial phospholipid cardiolipin and that the 
absence of  led to increased respiration [149] , 
suggesting that the effect of  on mitochondrial 
respiration is likely complex and requires further study. 

Therap eutic approaches targeting cancer cell 
metabolism 

Although metabolic alterations in cancer cells are 

highly complex and the detailed underlying mechanisms 
remain to be elucidated, the unique metabolic profiles in 
cancer cells may serve as a biochemical basis for 
developing new therapeutic strategies to effectively kill 
the malignant cells with high selectivity. For cancer cells 
that are highly dependent on glycolysis, inhibiting 
glycolysis seems to be a logical therapeutic strategy. 
Similarly, interference with glutamine metabolism may 
significantly impact cancer cells that depend on 
glutamine for survival and proliferation. Due to the 
metabolic adaptability of cancer cells, it may be 
necessary to combine agents that target different 
metabolic pathways to achieve high therapeutic activity. 
The following sections describe several therapeutic 
strategies that target various metabolic pathways 
important for cancer cells. The representative 
compounds are listed in Table 1. 

Inhibition of the glycolytic pathway 

HKII has been shown to be elevated in cancers and 
possibly up­regulated by HIF­1 [150­152] . 2­Deoxyglucose 
(2­DG), a non­metabolically active glucose analog that 
inhibits HKII and represses tumor growth, is currently in 
clinical trials for cancer treatment [153,154] . 2­DG preferentially 
kills cancer cell exhibiting mitochondrial defects or under 
hypoxia [155­157] . Combination of 2­DG with cisplatin has 
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been shown to increase cytotoxicit y through oxidative 
stress in human head and neck cancer cells  [153] . 
Increased cytotoxic effects were also observed when 
2­DG was combined with adriamycin and paclitaxel in 
mice bearing human osteosarcoma and in the MV522 
non­small cell lung cancer xenograft model [158] . 

3­Bromopyruvate (3­BrPA), another inhibitor of HKII, 
has been shown to be effective in killing lymphoma and 
colon cancer cells as well as other cancer cells with 
mitochondrial defects [92] . Consistent with its ability to 
inhibit glycolysis, 3­BrPA is particularly effective against 
cancer cells under hypoxia, a condition where cells 
become highly dependent on glycolysis. Interestingly, 
Chen  . [159]  reported that 3­BrPA triggered leukemia 
cell death by disrupting the association between HKII 
and apoptosis­inducing factor in the mitochondria. 
Similarly, the plant­derived methyl jasmonate or the HKII 
amino terminus­derived peptide TAT­HK can also disrupt 
the association between hexokinase and the 
voltage­dependent anion channel (VDAC), a 
phenomenon observed more in cancer cells compared to 
normal counterparts  [120,160,161] . In a recent study, methyl 
jasmonate was found to activate the PI3K/Akt pathway in 
sarcoma cell lines, whereas its combination with 
2­deoxy­D­ glucose to inhibit glycolysis resulted in a 
synergistic cytotoxic effect [162] . 

Lonidamine, a derivative of indazole­3­carboxylic 
acid, was shown to inhibit tumor growth through inhibition 
of HKII, depletion of ATP, reduction of oxygen 
consumption, and lactate production [163­165] . Combination 
of lonidamine with chemotherapeutic drugs such as 
doxorubicin and cisplatin have been tested in clinical 
trials in breast cancer, ovarian cancer, glioblastoma, and 
non­small cell lung cancer [166­169] . In addition to its 
applications in cancer treatment, lonidamine was 
developed by Threshold Pharmaceuticals as TH­070 to 
treat benign prostatic hyperplasia (BPH). Unfortunately, 
clinical trials of TH­070 in patients with BPH did not 
show a significant therapeutic effect, and the 
development of TH­070 was discontinued in 2006. It 
should be noted, however, that the ability of lonidamine 
to inhibit glycolysis and its potent effect against cancer 
cells suggest that this compound may still have potential 
value in cancer treatment, especially for the highly 
glycolytic cancer types. 

A logical approach to target glycolysis is to inhibit 
LDH, which is an NADH­dependent enzyme that 
converts pyruvate to lactate and has been shown to be 
elevated in certain cancer cells [3,170] . Inhibition of LDH has 
been demonstrated by use of oxamate, resulting in 
reduced glycolytic rate, decreased glucose uptake, and 
suppressed growth of HeLa cells [171] . Combination of LDH 
inhibition with doxorubicin resulted in enhanced ATP 

depletion and overall cyto toxicity  [172] . Additionally, 
琢  ­cyano­4­hyroxycinnamic acid is an agent that inhibits 
lactate transport and, thus, can affect lactate metabolism 
and potentially interfere with glycolysis in cancer 
cells [173,174] . 

Another strategy for inhibiting the glycolytic process 
is targeting PDK. PDK phosphorylates PDH, resulting in 
inhibition of PDH activity [170] . Dichloroacetate inhibits PDK 
and indirectly increases production of acetyl­CoA, which 
can then enter the TCA cycle, thereby switching cellular 
energy metabolism from glycolysis to mitochondrial 
OXPHOS. This compound has been previously used in 
treating lactic acidosis and seems to be well tolerated in 
young children  [175] . Bonnet  .  [176]  showed that 
dichloroacetate reduced tumor cell proliferation and 
increased apoptosis by activating the expression of the 
K +  (Kv1.5) channel through nuclear factor of activated T 
cells and by reducing the mitochondrial membrane 
potential in tumor cells . The therapeutic activity of 
dichloroacetate for cancer remains to be evaluated in 
clinical trials. 

Additionally, as glycolysis is dependent on glucose 
uptake, inhibiting glucose transporters is an alternate 
method to repress active glycolysis often observed in 
cancer cells. Phloretin is a glucose transporter inhibitor 
reported to induce apoptosis and overcome drug 
resistance in hypoxic conditions [177] . Moreover, since PFK 
is an important regulatory enzyme in glycolysis, it is 
considered a high­impact target for antitumor drugs [178] . 
PFKFB3­3(3­pyridinyl)­1­(4­pyridinyl)­2­propen­1­one(3PO), 
a small­molecule inhibitor, was shown to inhibit PFK 
activity, reduce glucose uptake, and suppress tumor 
growth in several human malignant hematopoietic and 
adenocarcinoma cell lines [179] . 

Although many cancer cells are highly dependent on 
the glycolytic pathway, certain tumor cells, including 
those of the lung, mammary glands, skin, and cervix, 
are active in OXPHOS [94] . Therefore, it must be noted 
that the metabolic profiles of tumor cells are dependent 
on the cancer type, microenvironment, differentiation, 
and cancer stage. Further, inhibiting glycolysis may not 
be a universal strategy to target cancer metabolism. 

Inhibition of glutamine metabolism 

The dependency of certain cancer cells on 
exogenous glutamine for survival has been referred to as 
野glutamine addiction冶, which renders cancer cells highly 
sensitive to glutamine starvation [180,181] . Early studies have 
shown that glutamine analogues, such as 6­diazo­5­oxo­ 
L­norleucine (L­DON), azaserine, and acivicin, exhibited 
potential anticancer activity, but the efforts to develop 
these compounds as therapeutic drugs were hampered 
due in part to potential neurotoxicity, gastrointestinal 
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toxicity, and myelosuppression [182­184] . Interestingly, a 
recent study showed that inhibition of glutamine metabol 
ism using L­DON suppressed cancer metastasis in a 
mouse model of breast cancer [6] . 

Another approach to inhibit glutamine metabolism is 
to lower the glutamine levels in blood using agents such 
as L­asparaginase and phenylbutyrate. L­asparaginase, 
an enzyme that hydrolyzes asparagine to aspartic acid, 
has been used successfully in treating pediatric acute 
lymphoblastic leukemia [185] , as these particular leukemia 
cells are unable to synthesize asparagines. 
L­asparaginase can also hydrolyze glutamine to glutamic 
acid and ammonia, thereby depleting glutamine in the 
blood  [181,186] . Phenylbutyrate, also known as Buphenyl 
(Ucyclyd Pharma) or Ammonaps (Swedish Ophan 
International), is an FDA­approved agent for the 
treatment of hyperammonemia. This compound is 
metabolized in the human body to phenylacetate, which 
is then conjugated with glutamine to form 
phenylacetylglutamine for excretion by the kidneys. As 
such, phenylbutyrate is able to deplete plasma glutamine 
levels. Phenylacetate has also been used in patients with 
various cancers and other medical conditions [187­189] . 

Glutamine transporters such as SLC1A5 (ASCT2) 
and SLC1A7 are up­regulated in cancers, making them 
attractive targets for the suppression of glutamine 
uptake [38,39,190] . Recent studies also suggest that glutamine 
levels affect activation of mTORC [191] . IL­酌  ­glutamyl­p­ 
nitroanilide (GPNA) is a SLC1A5 inhibitor shown to 
inhibit glutamine uptake and attenuate 
glutamine­dependant mTOR activation, leading to 
induction of autophagy in cancer cells [33,192] . 

Cancer cells display increased activity in 
glutaminase, an enzyme responsible for hydrolyzing 
glutamine to glutamate and ammonia. This enzyme 
seems to play an important role in energy metabolism 
and survival of certain cancer cells, thus providing a 
therapeutic window through its inhibition [193] . Human B­cell 
lymphoma and prostate cancer cells show increased 
glutaminase expression, and the oncogene  plays 
a major role in promoting glutaminase expression 
through down­regulation of  [39] . Similarly, breast 
cancer cell line MDA­MB231 showed a higher expression 
of glutaminase when compared to normal mammary 
epithelial cells [40] . A small molecule known as compound 
968 has been shown to inhibit glutaminase and suppress 
oncogenic transformation  [40] . Conversion of glutamine to 
琢  ­ketoglutarate as a metabolic intermediate for the TCA 
cycle was demonstrated as essential for activating 
various pathways involving  that promote 
tumorgenesis. As the main route through which 
glutamine enters the TCA cycle is transamination, the 
transaminase inhibitor amino­oxyacetic acid (AOA) has 
been suggested as potential therapeutic agent for 
cancer [194] . AOA exerts a cytotoxic effect on glutamine­ 

dependent Myc­amplified glioblastoma cells and inhibits 
breast cancer cell growth in a mouse xenograft 
model [33,195] . This compound has also been shown to 
sensitize melanoma cells to TRAIL­mediated killing by 
interfering with glutamine metabolism [196] . 

Targeting the energy sensors and regulators 

AMPK, an 
evolutionarily conserved enzyme that plays a pivotal role 
in maintaining cellular energy homeostasis [197] , is activated 
by an elevated ratio of AMP/ATP under various stress 
conditions, such as hypoxia, glucose deprivation, and 
oxidative stress. As described earlier, activated AMPK 
has an effect on various molecules that are involved in 
cancer­related cellular processes. A recent study 
examined the role of AMPK in breast cancer progression 
and showed that reduced expression of AMPK in breast 
cancer specimens was inversely correlated with axillary 
node metastasis and histological grade, suggesting an 
important role of AMPK signaling in cancer progression 
and metastasis [198] . These observations also imply that 
activation of AMPK might have therapeutic potential in 
cancer treatment. Biguanides and thiazolidinediones, two 
classes of compounds used in treating diabetes, can 
activate AMPK. A clinical study that involved treating 
diabetic breast cancer patients with or without the AMPK 
activator metformin (biguadine) showed that patients in 
the metformin treatment arm exhibited complete 
pathologic responses  [199] . The antitumor effect of 
troglitazone (thiazolidinedione) has been demonstrated in 
various cancer cells involving activation of PPAR­酌  [200,201] . 
Similarly, 5­aminoimidazole­4­carboxamide ribonucleoside 
reversed the sensitivity of Akt­expressing glioblastoma 
cells to glucose deprivation by activation of AMPK [202] . 
Another metabolic therapeutic approach involves the use 
of histone deacetylase (HDAC) inhibitors. AMPK 
activation promotes the phosphorylation of mitochondrial 
acetyl­CoA carboxylase, leading to fatty acid and 
cholesterol synthesis, while acetyl­CoA is necessary for 
histone acetylation [203] . Therefore, epigenetic regulation 
can be modulated by metabolic factors with therapeutic 
potential in cancer [204] . The HDAC inhibitor suberoylanilide 
hydroxamic acid was found to induce oxidative stress, 
autophagy, and apoptosis in imatinib­resistant chronic 
myelogenous leukemia [205] . Romidepsin, another HDAC 
inhibitor, is in clinical phase II trials for the treatment of 
refractory myeloma and has been shown to inhibit the 
HIF­1 pathway [206] . 

The PI3K/AKT/ 
mTOR signaling pathway plays a key role in energy 
metabolism and regulates cell growth and proliferation in 
a variety of tumor cells, thereby serving as a critical 
target for cancer therapy. Genistein, celecoxib, and 
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perifosine are pharmacologic agents that target  and 
have been tested for treating prostate cancer [207] . A cell 
permeable  antibody that blocks the catalytic site of 
AKT is effective in triggering cell death in various cancer 
cell lines  [208] . The PI3K inhibitors LY294002 and 
wortmannin and other derivatives have been investigated 
in various types of cancer  [209] . The mTOR pathway can 
activate the transcription factor HIF­1 and enhance 
angiogenesis and glycolysis while down­regulating 
OXPHOS, rendering tumor cells more glycolytic and 
aggressive [210] . Rapamycin has been shown to have an 
anticancer effect, and other mTOR inhibitors such as 
temsirolimus (CCI­779) and everolimus (RAD­001) are 
currently in clinical trials for cancer treatment  [211­213] . 
Inhibition of mTOR leads to profound change in cellular 
metabolism and attenuation of protein synthesis. 

The  oncogene contributes to cancer development 
by encoding a transcription factor c­Myc, which plays a 
key role in cellular metabolism to carcinogenesis [20] . 
affects metabolism through its ability to regulate various 
genes involved in glucose and glutamine metabolism, 
including GLUT1, HKII, PFKM, enolase, LDH­A, and 
glutaminase. Similarly, HIF­1 also plays a major role in 
sensing changes in microenvironment and promotes 
glycolysis through regulation of glycolytic enzymes. 
Various strategies are currently being explored to target 
these important regulatory molecules and their 
downstream effectors for potential use in cancer 
treatment [214­220] . 

Concluding Remarks 
An increase in aerobic glycolysis, first reported by 

Otto Warburg more than 80 years ago, represents the 
most prominent metabolic alteration observed in cancer 
cells. Other important metabolic changes, such as 
glutamine addiction and active OXPHOS in certain tumor 
cells, were subsequently discovered. The differences 

between cancer cells and normal cells in their energy 
metabolism provide a biochemical basis for developing 
new therapeutic strategies to preferentially kill cancer 
cells with selectivity using metabolism­targeted 
compounds. Inhibiting glycolysis and interfering 
glutamine metabolism are two possible metabolic 
intervention approaches. Additionally, emerging 
metabolic profiling of cancer stem cells will also provide 
new therapeutic opportunities. Mitochondrial 
dysfunctions, activation of oncogenes, loss of tumor 
suppressors, and tumor tissue microenvironment 
conditions are known to profoundly affect the metabolism 
of cancer cells, rendering heterogeneous metabolic 
profiles among different cancer types. As such, it is 
important to determine the specific metabolic alterations 
in each particular cancer type so that effective cancer 
type­specific metabolic intervention strategies can be 
developed. Furthermore, a combination of conventional 
chemotherapeutic agents and metabolic modulators may 
enhance therapeutic activity and should be further 
evaluated. It should be cautioned, however, that as 
energy metabolism and its regulatory machinery are 
evolutionarily conserved and shared by various normal 
cells, metabolic inhibitors are likely to affect normal cells 
to various degrees. Despite a number of pharmacologic 
agents that show promising results in preclinical studies, 
whether the metabolic alterations in cancer cells can be 
targeted efficiently and safely in the clinic has yet to be 
determined. Thus, it is vitally important to identify the 
metabolic steps that are altered and critical in cancer 
cells but dispensable in normal cells as the valid 
therapeutic targets, which will enable the development of 
effective agents to improve cancer treatment outcomes. 
A comprehensive understanding of the metabolic 
differences between cancer and normal cells through 
detail investigation will pave the way to achieve this goal. 

Received: 2011­06­27; revised: 2011­07­14; 
accepted: 2011­07­14. 
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