
Heliyon 10 (2024) e29486

Available online 11 April 2024
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Review article 

SGLT-2 inhibitors as novel treatments of multiple organ fibrosis 

Junpei Hu a, Jianhui Teng b, Shan Hui a, Lihui Liang a,* 

a Department of Geriatrics, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, China 
b Department of Geriatrics, Hunan Provincial People’s Hospital, China   

A R T I C L E  I N F O   

Keywords: 
SGLT-2 inhibitors 
Fibrosis 
Treatment strategies 
Mechanism 
Anti-fibrotic effects 

A B S T R A C T   

Fibrosis, a significant health issue linked to chronic inflammatory diseases, affects various organs 
and can lead to serious damage and loss of function. Despite the availability of some treatments, 
their limitations necessitate the development of new therapeutic options. Sodium-glucose 
cotransporter 2 inhibitors (SGLT2i), known for their glucose-lowering ability, have shown 
promise in offering protective effects against fibrosis in multiple organs through glucose- 
independent mechanisms. This review explores the anti-fibrotic potential of SGLT2i across 
different tissues, providing insights into their underlying mechanisms and highlighting recent 
research advancements. The evidence positions SGLT2i as a potential future treatments for 
fibrotic diseases.   

1. Introduction 

Fibrosis is a widespread pathological condition that transforms healthy cells and tissues in organs into fibrous tissue under certain 
diseases, leading to structural and functional disruptions and potentially complete organ failure [1–3]. This process is not limited to a 
single organ but affects multiple ones, including the heart, liver, kidneys, lungs, and peritoneum [4–8]. Though the pathogenic triggers 
differ by organ, common factors like chronic infections, autoimmune reactions, oxidative stress, and cellular death are frequently 
involved in fibrogenesis [2,9,10] (Fig. 1). The impact of fibrosis on clinical outcomes is profound, contributing to organ dysfunction 
and significantly increasing mortality [11], with nearly 45 % of disease-related deaths in developed nations linked to fibrotic con-
ditions. This prevalence is likely even higher in developing countries, exacerbated by aging populations, environmental pollutants, and 
widespread epidemics, making fibrosis an increasingly common issue [12,13]. 

Despite advances in understanding fibrosis mechanisms and treatments, only a few therapies are available that marginally 
decelerate fibrosis progression [14,15]. The adverse effects (such as nausea and gastrointestinal discomfort) and the high cost of these 
treatments often hinder patient compliance, underscoring the urgent need for new therapeutic strategies targeting novel mechanisms 
and pathways in fibrosis [16]. Within the realm of anti-fibrotic research, sodium-glucose cotransporter 2 inhibitors (SGLT2i) have 
emerged as effective, affordable, and widely used in treating hyperglycemia, with a growing body of evidence supporting their po-
tential as antifibrotic agents, marking them as a promising class for future fibrosis therapies. 

2. SGLT-2 inhibitor 

SGLT2 inhibitors (SGLT2i), which are taken orally and have been the focus of significant interest in recent years, have their roots in 
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research dating back to the 1930s, beginning with the discovery of non-specific SGLT inhibition effects from extracts of apple tree root 
bark. With progress in medical technology, the original compound, phlorizin, has been chemically altered to create a variety of new 
compounds, collectively known as SGLT2i [3]. The key players in renal glucose reabsorption, Sodium-glucose cotransporter 1 (SGLT-1) 
and Sodium-glucose cotransporter 2 (SGLT-2) are located in the epithelial cells of the renal tubules. Typically, glucose that has been 
filtered through the glomerulus is reabsorbed in the renal tubules via SGLT-1 and SGLT-2, with SGLT-2 playing a dominant role in the 
S1 and S2 segments of the tubules, accounting for 90 % of glucose reabsorption. SGLT-1, while primarily found in the kidneys and 
gastrointestinal tract, plays a smaller role in glucose reabsorption in the gastrointestinal tract [17]. By competitively binding to 
glucose-binding sites on SGLT-2 proteins in the renal tubules, SGLT2i reduce the reabsorption of glucose by these tubules, leading to an 
increase in the excretion of glucose, sodium, and water in the urine, thus lowering blood glucose levels and reducing volume load 
[18–20]. The FDA has approved four specific SGLT2i for use: empagliflozin (EMPA), canagliflozin (CANA), dapagliflozin (DAPA), and 
ertugliflozin, all of which are highly selective for SGLT-2 inhibition, while sotagliflozin inhibits both SGLT-1 and SGLT-2 transport 
proteins (Table 1). 

SGLT-2 inhibitors also offer organ-protective benefits beyond glucose management, including benefits for the cardiovascular 
system and kidneys [21–23]. These benefits stem from their ability to promote glucose excretion, reduce glucose toxicity, delay the 
onset of diabetic complications, aid in weight loss, decrease the risk of hypertension, enhance glucose metabolism, and improve insulin 
sensitivity [24]. The non-glucose-lowering protective effects of SGLT-2i, including antioxidant stress [25,26], anti-inflammatory ac-
tions [27], anti-aging [28], enhancement of mitochondrial function [29,30], metabolic regulation [31] and anti-fibrotic properties 
(Fig. 2), have become increasingly acknowledged. While extensive research has been conducted on the role of SGLT2i in organ fibrosis, 
particularly in the heart and kidneys, a comprehensive summary and synthesis of these mechanisms remain outstanding. Thus, our 
objective is to methodically review the actions of SGLT2i in fibrosis across various organs, assess their future therapeutic potential, and 
offer insights and guidance for the development of novel antifibrotic medications. 

Fig. 1. The primary causes of organ fibrosis. Various factors can lead to the occurrence and progression of fibrosis in different organs. 
Abbreviation: CVH,Chronic viral hepatitis; NAFLD,Non-alcoholic fatty liver disease; AILD, Autoimmune liver disease; HTN,Hypertension; CMP, 
Cardiomyopathy; MI,Myocardial infarction; MC,Myocarditis; DM,Diabetes; CKD, Chronic kidney disease; AD,Autoimmune diseases; （Created with 
bioRender.com）. 
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3. SGLT-2 inhibitors and organ fibrosis 

3.1. Liver fibrosis 

Liver fibrosis represents a pathological and physiological response involving the excessive growth of connective tissue within the 
liver, triggered by a variety of harmful factors [32]. It stands as the common endpoint of all chronic liver diseases, marked by the 
overproduction of extracellular matrix (ECM) proteins. This overproduction results in damage to liver cells and the creation of fibrotic 
scars [33,34]. Without the removal of these causative factors, fibrosis can progress to cirrhosis, the most advanced stage of liver 
disease. Cirrhosis is among the leading causes of morbidity and mortality worldwide [35]. Consequently, the prevention and reversal 
of liver fibrosis are critical objectives in the management of chronic liver conditions and the fight against cirrhosis. Despite its sig-
nificance, current therapeutic options for liver fibrosis are limited to the elimination of causative factors or liver transplantation, with 
no other effective treatments available. 

3.1.1. The effects of SGLT-2 inhibitors on liver fibrosis 
SGLT2i have been identified as highly promising agents in combating liver fibrosis, according to various studies [36]. Research led 

by Professor Goto demonstrated that SGLT2i could decelerate the progression of liver fibrosis in bluegill fish through the reduction of 
blood glucose levels [37]. Similarly, studies in rat models have shown that SGLT2i may mitigate the development of liver fibrosis by 

Table 1 
SGLT2 inhibitors.  

Agent SGLT2 selectivity Company Brand Dose mg/day Route of excretion 

Dapagliflozin High AstraZeneca* Farxiga 5, 10 Urine 
Canagliflozin moderate Janssen, Napp Ilnvokana 100,300 Urine, feces 
Empagliflozin High Boehringer Jardiance 10,25 Urine, feces 
Ertugliflozin High Merck Sharp & Dohme, Pfizer Steglatro 5, 15 Urine, feces 
Sotagliflozin low Lexicon Zynquista 200 Urine, feces 
Ipragliflozin High Astellas Suglat 25,50 Urine, feces 
Luseogliflozin High Taisho Lusefi 2.5,5 Urine, feces 
Tofogliflozin High Chugai, Kowa Apleway 20,40 Urine, feces 

SGLT2i is a sodium-glucose cotransporter 2 inhibitor; SGLT stands for sodium-glucose cotransporter. High selectivity is defined as SGLT2/SGLT1 >
1,000, moderate selectivity as 250 < SGLT2/SGLT1 < 500, and low selectivity as SGLT2/SGLT1 < 20. 

Fig. 2. SGLT2 inhibitor exerts pleiotropic effects on multiple organ systems. 
（Created with bioRender.com）. 
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enhancing insulin sensitivity (IR) [38]. Beyond their glucose-lowering capabilities, SGLT2i also exert beneficial effects on liver fibrosis 
via glycemic-independent mechanisms, including the modulation of liver metabolism, protection against hepatocyte apoptosis, the 
suppression of autophagy, and anti-inflammatory and antioxidant actions. For instance, in rats on a choline-deficient L-amino acid 
(CDAA) diet, SGLT2i demonstrated an ability to ameliorate liver fibrosis by altering hepatic metabolism [39]. These drugs also 
counteract liver fibrosis by preventing hepatocyte death [40] and by inhibiting the activation of autophagy-related to O-GlcNAcylation 
processes in the liver [41]. Through their hypoglycemic, antioxidative, and anti-inflammatory properties, SGLT2i lower the levels of 
inflammatory cytokines like Tumor Necrosis Factor-alpha (TNF-α), Interleukin 6 (IL-6), and C–C Motif Ligand 2 (CCL2), and reduce 
oxidative stress, contributing to their anti-fibrotic effects in the liver [40,42–44]. 

Clinical research further supports the efficacy of SGLT2i against liver fibrosis. Liver stiffness measurement (LSM), Fibrosis-4 (FIB-4) 
index and Non-alcoholic fatty liver disease (NAFLD) fibrosis scores are crucial tools in evaluating the severity of liver fibrosis and have 
been widely used to assess the impact of treatment in patients. Clinical trials focusing on individuals with NAFLD have evidenced that 
SGLT2i significantly lowers LSM, FIB-4, and NAFLD fibrosis scores [44–50] (Table 3). Additionally, a clinical investigation by Professor 
Takeshita and his team on the effects of SGLT-2i on NAFLD in patients with type 2 diabetes (T2DM) reported improvements in liver 
fibrosis, as measured by pathological scores [51,52](Table 3). 

3.2. Renal fibrosis 

Chronic kidney disease (CKD) represents a significant worldwide public health challenge, impacting approximately 15 % of the 
adult population globally. The issue is becoming more acute with the rise in the aging population, positioning it as a growing global 
concern [53]. Renal fibrosis is identified as the universal concluding pathway for the progression of CKD from various origins, 
including ischemic events, infections, autoimmune conditions, toxicity or drug-related injuries, diabetes, and genetic disorders. It is 
established as the most reliable indicator for the advancement of CKD to end-stage renal disease, which necessitates interventions such 
as dialysis or kidney transplantation [54]. Despite its critical importance, effective treatments to halt the progression of renal fibrosis 
remain elusive [55]. 

3.2.1. The effects of SGLT-2 inhibitors on renal fibrosis 
SGLT-2i have been recognized for their renal protective effects in chronic kidney disease (CKD), particularly in environments of 

high glucose that contribute to renal fibrosis through mechanisms like enhanced matrix protein synthesis, activation of fibrosis-related 
pathways, and alterations in extracellular matrix management [56,57]. SGLT-2i are known to alleviate renal fibrosis by lowering blood 
glucose levels [19,58,59]. Beyond glucose reduction, evidence from preclinical studies suggests SGLT-2i addresses renal fibrosis 
through various mechanisms, including ameliorating hypoxia and oxidative stress, reducing inflammatory responses, promoting 
autophagy, regulating metabolism, and capillary protection. 

Hypoxia is a well-established catalyst for renal fibrosis [60]. Research led by Professor Judit Hodrea demonstrated that DAPA could 
modify the renal tubules’ response to hypoxia, thus diminishing tubulointerstitial fibrosis [61]. In experiments with human proximal 
tubular (HK-2) cells, EMPA was found to reduce renal fibrosis by decreasing the expression of hypoxia-inducible factor-1α (HIF-1α) 
[62]. Oxidative stress, another key player in renal fibrosis, is mitigated by SGLT-2i, as several studies have shown their capacity to 
manage oxidative stress to lessen renal fibrosis [63–65]. The anti-inflammatory properties of SGLT-2i also contribute to their renal 
benefits, where, for example, dapagliflozin inhibits the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome in 
ischemia-reperfusion injury (IRI) models, protecting against fibrosis [66]. Additionally, SGLT-2i reduces the infiltration of inflam-
matory cells, such as macrophages [67–69], and regulates autophagy, which is another path through which these drugs combat renal 
fibrosis. CANA modulates autophagy via the signal transducer and activator of the transcription 6 (STAT6) pathway [70], while EMPA 
affects mitochondrial autophagy to improve renal function [68]. Addressing metabolism and lipid toxicity, SGLT-2i has been found to 
reduce renal fibrosis by minimizing lipid buildup in renal tubular cells, as shown in studies by Professor Zhang and colleagues [71]. 
Their ability to protect capillaries, preventing endothelial loss and subsequent fibrosis after kidney injury via a glucose transporter 2 
(GLUT2)-dependent mechanism, further underscores the comprehensive anti-fibrotic actions of SGLT-2i [72]. 

Transforming growth factor β-1(TGF-β1) is a crucial fibrotic cytokine. A clinical study by Professor Tian and colleagues demon-
strated that SGLT2i enhances the secretion of TGF-β1 via renal pathways and improves the progression of renal fibrosis [73]. Despite 
promising preclinical data indicating the potential of SGLT2i to lessen renal fibrosis, the clinical evidence remains sparse, partly due to 
the challenges of direct fibrosis measurement, such as requiring kidney biopsies. Hence, there’s a call for more comprehensive clinical 
trials to confirm the ability of SGLT2i to reduce renal fibrosis, offering hope for a new avenue in the treatment of CKD. 

3.3. Cardiac fibrosis 

Myocardial fibrosis involves the development of a collagen network within the heart’s interstitial space, a condition often triggered 
by inadequate blood flow, systemic illnesses, medication effects, or other detrimental factors impacting the cardiovascular system or 
the heart directly. This alteration in the heart muscle not only changes its structural integrity but also exacerbates cardiac dysfunction, 
potentially leading to arrhythmias and significantly influencing the progression and outcomes of heart failure in patients [74,75]. 
Despite considerable research efforts, the precise processes underlying cardiac fibrosis remain incompletely understood. There is a 
pressing need for more effective, evidence-based treatment options to address cardiac fibrosis [76]. 
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3.3.1. The effects of SGLT-2 inhibitors on cardiac fibrosis 
SGLT2i has shown significant benefits in managing heart failure and lowering the risk of cardiovascular mortality [77,78]. Recent 

findings highlight that SGLT-2i can ameliorate cardiac fibrosis through diverse mechanisms, offering cardioprotective benefits. The 
toxic effects of prolonged high blood sugar levels can lead to the overproduction of cytokines, activation, and growth of cardiac fi-
broblasts, increased extracellular matrix synthesis, and accumulation in the myocardial interstitium and around blood vessels. This 
results in reduced elasticity of the heart muscle and compromised cardiac function. SGLT-2i addresses myocardial fibrosis caused by 
hyperglycemia by improving blood sugar control [79,80]. Moreover, SGLT-2i combats myocardial fibrosis through non-glycemic 
pathways, including anti-inflammatory actions, reduction of oxidative stress, suppression of autophagy, and metabolic adjustments. 
Specifically, SGLT-2i mitigate myocardial fibrosis and inflammation by affecting signaling pathways such as Hypoxia-inducible factor 
2α (HIF-2α) [81], Signal transducer and activator of transcription 3 (STAT3) [82], Nlrp3/Apoptosis-associated speck-like protein 
(ASC) inflammasome [83], Serum and glucocorticoid regulated kinase 1 (SGK1) signaling [84], NLRP3, and Myeloid differentiation 
primary response 88 (MyD88)-related pathways [85]. Additionally, these inhibitors curb myocardial fibrosis and oxidative stress via 
mechanisms including the Nuclear factor erythroid 2-related factor 2 (Nrf2)/Antioxidant response elements (ARE) [86], Janus kin-
ase/Activator of transcription (Jak/STAT) [87], and Phosphoinositide 3-kinase (PI3K)/Protein kinase B (AKT)/Nrf2 signaling path-
ways [88]. SGLT-2i also affects fibroblast activation and autophagy regulation to improve myocardial fibrosis through pathways like 
TGF-β/Smad [86,89,90] and Sodium-hydrogen exchangers (NHE) signaling [91–94]. A 2022 study demonstrated that SGLT-2i reduced 
ventricular fibrosis in mice by targeting the mTOR pathway, suggesting a new avenue for addressing myocardial fibrosis [95]. 

Clinical investigations have also underscored the noteworthy contribution of SGLT-2 inhibitors (SGLT-2i) in addressing myocardial 
fibrosis. The extracellular volume fraction (ECV) emerges as a pivotal clinical indicator for identifying myocardial fibrosis (MF). In 
Professor Mason’s recent study, the influence of empagliflozin on cardiac ECV among patients with type 2 diabetes mellitus (T2DM) 
and coronary artery disease (CAD) came to light. This examination, encompassing 97 participants, revealed that following a 6-month 
observation period, the ECV measurement decreased in the empagliflozin cohort compared to the placebo cohort, signifying the 
beneficial impact of EMPA in diminishing cardiac fibrosis and enhancing ventricular remodeling [96]. MF, serving as a prevalent 
endpoint across various cardiac ailments like heart failure, myocardial infarction, and cardiomyopathy, has been consistently 
demonstrated in multiple clinical inquiries to be pivotal in the effectiveness of SGLT-2i against heart failure, myocardial infarction, and 
cardiomyopathy. Nonetheless, the accurate assessment of cardiac fibrosis necessitates meticulous techniques and methodologies, 
encompassing histopathology, imaging modalities, and biomarkers. These techniques might pose implementation challenges or entail 
significant costs, thus impeding the progress of associated research. 

3.4. Pulmonary fibrosis 

Pulmonary fibrosis (PF) represents a persistent and progressive respiratory ailment characterized by widespread fibrosis of 
bronchial connective tissue and alveolar walls, resulting in impairment of ion transfer and oxygen/carbon dioxide exchange within 
normal lung tissue [97]. Furthermore, PF may induce complications such as heart and pulmonary arterial hypertension [98,99]. The 
predominant variant is idiopathic pulmonary fibrosis (IPF) [100]. Presently, only pirfenidone and Nintedanib have exhibited evidence 
of slowing the progression of IPF, albeit accompanied by associated toxicities and limited capacity to reverse fibrosis [101]. Conse-
quently, lung transplantation stands as the sole viable treatment avenue at present. 

In mice subjected to bleomycin-induced PF, markers of PF in Bronchoalveolar Lavage Fluid (BALF), including TGF, were observed 
in the group treated with SGLT-2 inhibitors. Notably, the hydroxyproline content displayed a significant reduction, accompanied by 
substantial enhancements in histopathological, immunohistochemical, and electron microscope findings [98]. This phenomenon may 
be linked to the mechanism by which SGLT-2 inhibitors ameliorate oxidative stress, elicit anti-inflammatory responses, and regulate 
cellular apoptosis [102]. This may be related to the mechanism of SGLT-2i improving the body’s oxidative stress, anti-inflammatory 
response, and regulating cell apoptosis [102]. Nonetheless, research regarding the effects of SGLT-2 inhibitors on PF remains limited, 
necessitating further exploration into the specific mechanisms involved. 

3.5. Other Forms of fibrosis 

Peritoneal dialysis (PD), serving as a renal replacement therapy, ensures efficacy, safety, and a heightened quality of life [103,104]. 
Nonetheless, owing to the extended utilization of the patient’s peritoneum as a filtration dialyzer over time, peritoneal fibrosis emerges 
as the primary contributor to technology failure and disease progression, potentially necessitating a transition to alternative dialysis 
modalities and even resulting in patient mortality [105]. Despite these challenges, effective clinical interventions for addressing 
peritoneal fibrosis remain scarce [106]. 

In mice subjected to chronic infusion of peritoneal dialysis solution, SGLT-2 inhibitors have demonstrated the ability to inhibit TGF 
via β/Smad signaling, thereby significantly shielding against high glucose peritoneal dialysis-induced peritoneal fibrosis, effectively 
impeding its progression [2]. This phenomenon may be attributed to the mechanism wherein SGLT-2 inhibitors enhance the peritoneal 
microenvironment by mitigating damage to the kidney and peritoneum induced by hyperglycemia, hyperinsulinemia, cellular stress, 
and other factors, alongside inhibiting inflammation, reducing oxidative stress, and augmenting free fatty acid utilization [107]. 
Despite limited reports on the anti-fibrotic effects of SGLT-2 inhibitors on peritoneal fibrosis, further elucidation of their anti-fibrotic 
properties in peritoneal tissue is warranted. 
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4. Conclusion and future Prospects 

This review provides an overview of the research advancements concerning SGLT2 inhibitors (SGLT2i) in fibrosis studies and 
therapies, encompassing insights from both basic experiments and clinical trials. Accumulating evidence from in vitro and in vivo 
investigations suggests that SGLT2 inhibitors possess anti-fibrotic properties across diverse tissues and organs, including the liver, 
kidneys, heart, peritoneum, and lungs. These effects potentially involve pathways associated with glycemic control as well as non- 
glycemic pathways, such as anti-inflammatory responses, antioxidant stress mitigation, downregulation of autophagy, metabolic 
regulation, and anti-apoptosis mechanisms (Fig. 3) (Table 2). Ongoing research on the anti-fibrotic effects of SGLT2 inhibitors in 
various organs is continuously evolving towards more comprehensive and updated directions. Recent studies indicate that SGLT2 
inhibitors may offer preventive and therapeutic benefits against pulmonary fibrosis (PF) through multiple mechanisms, including 
inhibition of various inflammatory signaling molecules and reduction of pathways leading to oxidative lung damage. Furthermore, 
several other investigations suggest that SGLT2 inhibitors may exhibit specific preventive and therapeutic effects on fibrosis in organs 
like the pancreas [108,109]. 

However, the evaluation of fibrosis clinically is constrained by limited and less widely available methods, hence current evidence 
regarding the anti-fibrotic effects of SGLT2 inhibitors primarily stems from animal studies and fibrosis cell models, with clinical trial 
data being relatively scarce. Moreover, despite having undergone numerous clinical trials, the long-term safety profile of SGLT2 in-
hibitors necessitates further research and monitoring, particularly regarding their potential to increase the risks of hypoglycemia, 
ketoacidosis, infections, and osteoporosis, among others [110–112]. Additionally, while SGLT2 inhibitors can ameliorate the patho-
logical status of diabetes and multi-organ fibrosis, there may be instances where their use in combination with other therapeutic agents 
is warranted to achieve optimal clinical outcomes. The complete elucidation of the anti-fibrotic mechanisms of SGLT2 inhibitors 
remains elusive, emphasizing the need for further investigation into their safety and efficacy in human subjects. In summary, although 
more rigorous research is warranted to validate the potential of SGLT2 inhibitors in treating multi-organ fibrosis, the preliminary 
evidence has garnered significant attention from the scientific community, heralding a promising new avenue in fibrosis management. 

Fig. 3. The effects of SGLT-2 inhibitors on Organ fibrosis 
（Created with bioRender.com）. 
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Table 2 
Summary of preclinical anti-fibrotic effects and underlying mechanisms of SGLT2 inhibitors.  

Fibrotic 
disease 

Models In vitro/in 
vivo 

Effects and related mechanisms Reference 

Liver fibrosis NASH liver tissue using medaka In vitro To suppress the accumulation and fibrosis of fat tissue by regulating 
hepatic metabolism 

[37]  

OLETF rats and their littermate non- 
diabetic LETO rats 

In vitro Alleviate the development of liver fibrosis by improving IR [38]  

Rat model of diet-induced NAFLD In vitro Via anti-inflammatory, anti-fibrotic, antioxidant, and anti- 
apoptotic mechanisms 

[40]  

human normal hepatocytes and hepatoma 
cells 

In vivo Alleviating fibrosis through autophagy activation associated with 
SGLT2 expression and O-GlcNAcylation in the liver 

[41]  

NASH rat model of nondiabetes In vitro Mitigating liver fibrosis through the attenuation of hepatic lipid 
peroxidation and inflammatory responses 

[42]  

NAFLD in rats fed a CDAA diet In vitro Prevented hepatic TG accumulation and fibrosis in CDAA-diet rats [39]  
Mouse model of NASH In vitro Anti-steatotic, anti-inflammatory, and anti-fibrotic effects. [43]      

Renal fibrosis T1DM was induced by streptozotocin in 
adult male Wistar rats 

In vitro Diminished high glucose-induced protein O-GlcNAcylation and 
moderated the tubular response to hypoxia through the hypoxia- 
inducible factor pathway 

[61]  

Dall salt-sensitive rats with hypertensive 
kidney damage caused by a high salt diet. 

Both in 
vitro and 
vivo 

Acts as a renoprotective agent by suppressing EMT in the pathology 
of renal fibrosis via interaction with the SIRT3-FOXO3a pathway 

[63]  

Mouse model of renal fibrosis caused by 
unilateral ureteral obstruction 

Both in 
vitro and 
vivo 

Antagonizes renal fibrosis by regulating signals related to 
inflammation and oxidative stress and is associated with Glutamate 
ionotropic receptor, NMDA type subunit 1 

[64]  

The I/R fibrosis mice model Both in 
vitro and 
vivo 

Prevented activation of NLRP3 inflammasome and protected the 
kidney against fibrosis development 

[66]  

Ang II-induced renal fibrosis in rats In vitro Caused by reduced inflammatory infiltration and unrelated to the 
regulation of elevated blood pressure 

[67]  

5/6 nephrectomy-induced CKD in rats Both in 
vitro and 
vivo 

This outcome is attributable to the targeted modulation of the 
mTOR and mitophagy pathways, leading to the inhibition of 
CD206CD68 M2 macrophage polarization and the attenuation of 
inflammatory signals from CD8 effector T cells. 

[68]  

Intraperitoneal injection of CsA induces 
renal fibrosis in rats 

In vitro Empagliflozin administration caused a reduction in blood pressure 
in CsA-treated rats. It showed a protective effect on CsA 
nephropathy by decreasing renal fibrosis, type I and type IV 
collagen expression, macrophage infiltration, and tyrosine 
hydroxylase expression. 

[69]  

Unilateral ureteral occlusion and ischemia- 
reperfusion renal fibrosis mouse models 

Both in 
vitro and 
vivo 

Acts to counter abnormal renal fatty acid metabolism and 
interstitial fibrosis through the m6A-modified SQSTM1/ 
autophagy/STAT6 axis 

[70]  

Non-diabetic mice In vitro Through a VEGF-dependent pathway induced by the dysfunction of 
proximal tubular glucose uptake in tubules with injury-induced 
GLUT2 downregulation 

[72]  

Streptozotocin-induced renal fibrosis in 
mice 

Both in 
vitro and 
vivo 

Via inhibition of EMT and aberrant glycolysis in proximal tubules [59] 

Cardiac 
fibrosis 

Cardiomyocyte-specific Dsg 2 exon-11 
knockout mice 

Both in 
vitro and 
vivo 

Suppressing cardiac fibrosis and inflammation via reverting the 
HIF-2α signaling pathway 

[81]  

Coronary artery ligation induced 
myocardial infarction in mice 

Both in 
vitro and 
vivo 

Attenuated cardiac fibrosis by regulating the macrophage 
polarization via STAT3 signaling in infarcted rat hearts 

[82]  

Myocardial fibrosis induced by intravenous 
Alloxan in rabbits with diabetes. 

Both in 
vitro and 
vivo 

Attenuated left ventricular diastolic dysfunction and cardiac 
fibrosis via regulation of SGK1 signaling 

[84]  

Doxorubicin-induced myocardial cell 
fibrosis in mice 

Both in 
vitro and 
vivo 

Reduced ferroptosis, fibrosis, apoptosis, and inflammation in 
doxorubicin-treated mice through the involvement of NLRP3 and 
MyD88-related pathways, resulting in significant improvements in 
cardiac functions 

[85]  

KK-Ay mice (genetic type 2 diabetes model) In vitro Suppressed oxidative stress and fibrosis through inhibition of the 
transforming growth factor β/Smad pathway and activation of 
Nrf2/ARE signaling 

[86]  

Contraction of the left circumflex artery 
induces chronic myocardial ischemia in 
Yorkshire swine. 

Both in 
vitro and 
vivo 

Attenuation of fibrosis via reduced Jak/STAT signaling, activation 
of adenosine monophosphate-activated protein kinase, and 
antioxidant signaling 

[87]  

Doxorubicin-induced cardiac fibrosis in rats Both in 
vitro and 
vivo 

The administration of DAPA could mitigate the Dox-elicited 
cardiotoxicity by reducing oxidative stress, mitochondrial 

[88] 

(continued on next page) 
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Table 2 (continued ) 

Fibrotic 
disease 

Models In vitro/in 
vivo 

Effects and related mechanisms Reference 

dysfunction, fibrosis, hypertrophy, and inflammation via PI3K/ 
AKT/Nrf2 signaling.  

Rabbit model of congestive heart failure 
induced by contraction of the aorta 

In vitro By inhibiting the TGF-β1/Smad signaling pathway [89]  

Angiotensin II induces myocardial fibrosis 
in rats 

Both in 
vitro and 
vivo 

By regulating the TGF-β1/Smad signaling in a non-glucose-lowering 
dependent manner 

[90]  

High-fat-fed induced myocardial 
hypertrophy and fibrosis in mice 

Both in 
vitro and 
vivo 

By reducing TGF-β2 expression in cardiomyocytes via the 
suppression of NHE-1 activity 

[91]  

Human atrial fibroblasts Both in 
vitro and 
vivo 

Inhibiting NHE decreases the expression of phosphorylated PLC and 
IP3 production, thereby reducing ER Ca2+ release, extracellular 
Ca2+ entry, and the profibrotic activities of atrial fibroblasts. 

[92]  

Coronary artery ligation induced 
myocardial infarction in rats 

Both in 
vitro and 
vivo 

Regulating excessive autophagy by inhibiting the activity of NHE1 
in myocardial cells 

[93]  

Aortic constriction surgery to induce 
cardiac hypertrophy in rats 

In vivo The downstream mechanistic target of the mTOR pathway, relevant 
for protein synthesis, cardiac hypertrophy, and adverse cardiac 
remodeling, was reduced by SGLT2 inhibition, alleviating ER stress 
and UPR providing a mechanism for abundant reduced left 
ventricular fibrosis. 

[95]  

Human cardiac fibroblasts In vivo By weakening myofibroblast activity and cell-mediated collagen 
remodeling 

[94] 

Pulmonary 
fibrosis 

Bleomycin-induced pulmonary fibrosis in 
mice 

In vitro Targeting oxidative stress, proinflammatory cytokines, apoptosis, 
and toll-like receptor 4 to ameliorate bleomycin-induced lung 
fibrosis 

[102] 

Peritoneal 
fibrosis 

High-glucose dialysate treatment causes 
peritoneal fibrosis in mice 

Both in 
vitro and 
vivo 

Beneficial effects on the health of peritoneal and mesothelial cells in 
vivo and in vitro by inhibiting the expression of SGLT2 in the 
peritoneum 

[107] 

Abbreviation: NASH, Non-alcoholic steatohepatitis; OLETF, Obese diabetic Otsuka Long-Evans Tokushima fatty; LETO, Long-Evans Tokushima 
Otsuka; NAFLD, Non-alcoholic fatty liver disease; SGLT2, Sodium glucose cotransporter 2; CDAA, Choline-deficient L-amino acid; TG, Total tri-
glyceride; T1DM, Type 1 diabetes; EMT, Epithelial-mesenchymal transition; SIRT3-FOXO3a, Sirtuin 3 - Forkhead box class O 3a; NMDA, N-methyl-D- 
aspartatic acid; I/R, Ischemia-reperfusion-induced; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; Ang II, Angiotensin II; CKD, Chronic 
kidney disease; mTOR, Mammalian target of rapamycin; CsA, Cyclosporine A; VEGF, vascular endothelial-derived growth factor; GLUT2, Glucose 
transporters 2; HIF-2α, Hypoxia-inducible factor 2α; STAT3, signal transducer and activator of transcription 3; SGK1, Serum and glucocorticoid 
regulated kinase 1; MyD88, Myeloid differentiation primary response 88; Nrf2/ARE, Nuclear factor E2-related factor 2/Antioxidant response ele-
ments; Jak/STAT, Janus kinase-Activator of transcription; PI3K/AKT/Nrf2, Phosphoinositide 3-kinase/Protein kinase B/Nuclear factor erythroid 2- 
related factor 2; TGF-β, transforming growth factor β; NHE, Sodium-hydrogen exchangers; PLC, Phospholipase C; IP3, Inositol 1,4,5-trisphosphate; 
IP3, Inositol 1,4,5-trisphosphate; ER, Endoplasmic reticulum; UPR, unfolded protein response. 
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Table 3 
Summary of clinical anti-fibrotic effects of SGLT2 inhibitors.  

Study Disease Country Sample 
size (E/C) 

Male, 
% 

Age, year Treatment Duration Primary 
outcomes 

Shimizu et al. 
[113] 

T2DM +
NAFLD 

Japan 33/24 60 E: 56.2 ±
11.5 
C: 57.1 ±
13.8 

E: dapagliflozin 5 mg qd 
C: standard treatment 

24w LSM, FIB-4 index, 
NAFLD fibrosis 
score 

Taheri et al. 
[114]. 

NAFLD in 
the absence 
of T2DM 

Iran 43/47 56 E: 43.8 ± 9.7 
C: 44.1 ± 9.3 

E: empagliflozin 10 mg qd 
C: placebo 

24w LSM, 

Lee et al. [115] T2DM China 30/30 60 E: 56.9 ±
10.7 
C: 60.6 ±
7.03 

E: dapagliflozin 10 mg qd +
insulin 
C: sitagliptin 100 mg qd + insulin 

24w LSM, 

Chehrehgosha a 
2021 [116] 

T2DM +
NAFLD 

Iran 17/34 49 E: 50.5 ± 8.4 
C: 52.5 ± 7.9 

E: empagliflozin 10 mg qd 
C: pioglitazone 30 mg qd 

24w LSM, 

Chehrehgosha b 
2021 [116] 

T2DM +
NAFLD 

Iran 18/37 43 E: 50.5 ± 8.4 
C: 51.8 ± 7.8 

E: empagliflozin 10 mg qd 
C: placebo 

24w LSM, 

Takeshita. et al. 
[117] 

T2DM +
NAFLD 

Japan 20/20 53 E: 59.0 
(43.0–64.8) 
C: 50.5 
(38.3–65.0) 

E: tofogliflozin 20 mg qd 
C: glimepiride(1w 0.5 mg qd; 2- 
48w 6.0 mg qd) 

48w Hepatic 
histological 
scores、FIB-4 
index 

Takahashi. et al. 
[118] 

T2DM +
NAFLD 

Japan 24/26 58 E: 59.0 
(46.8–64.3) 
C: 50.0 
(48.0–68.8) 

E: Ipragliflozin 50 mg qd 
C: Enhanced lifestyle 
modification, including 
Antidiabetic agents except for 
SGLT2i, pioglitazone, and GLP-1 
analog 

72w Hepatic 
histological 
scores 

Hu et al. [119] T2DM +
NAFLD 

China 30/30 78 E: 48.9 ±
10.6 
C: 52.1 ±
10.2 

E: dapagliflozin 50 mg qd 
C: metformin 0.5 g tid 

12w LSM, 

Bellanti et al. 
[120] 

T2DM Italy 26/26 58 E: 60.6 ±
6.78 
C: 63.4 ±
10.4 

NA 6 m FIB-4 index, 
NAFLD fibrosis 
score 

Arai et al. [121] T2DM +
NAFLD 

Japan 202/202 59 E: 56.0 
(48.0–66.0) 
C: 56.0 
(48.0–66.0) 

NA 48w FIB-4 index 

Mason et al. 
[122] 

T2DM Canada 39/35 92 E: 62.0 ± 8.0 
C: 64.0 ±
10.0 

E:empagliflozin 10 mg qd 
C: placebo 10 mg qd 

6 m ECV 

Tian et al. [123] T2DM China 68/68 60 NA na 12w UTGFβ1 

Abbreviation: E, experimental group; C, control group; w, week; m, month; qd, once daily; tid, three times a day; qw, once a week; T2DM, type 2 
diabetes mellitus; NAFLD, non-alcoholic fatty liver disease; LSM, liver stiffness measurement; CAP, controlled attenuation parameter; FIB-4, Fibrosis- 
4; ECV, Myocardial extracellular volume; UTGFβ1,urine transforming-growth-factor-beta 1. 
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Abbreviation 

SGLT-1: Sodium-glucose cotransporter 1 
SGLT-2: Sodium-glucose cotransporter 2 
SGLT2i: Sodium-glucose cotransporter 2 inhibitors 
EMPA: Empagliflozin 
CANA: Canagliflozin 
DAPA: Dapagliflozin 
FDA: Food and Drug Administration 
ECM: Extracellular matrix 
IR: Insulin resistance 
CDAA: Choline-deficient L-amino acid 
TNF-α:: Tumor necrosis factor alpha 
IL-6: Interleukin 6 
CCL2: C–C motif ligand 2 
FIB-4: Fibrosis-4 
NAFLD: Non-alcoholic fatty liver disease 
T2DM: Type 2 diabetes 
CKD: Chronic kidney disease 
HK-2: Human proximal tubular 
HIF-1α: Hypoxia-inducible factor-1α 
IRI: Ischemia-reperfusion injury 
NLRP3: NOD-, LRR- and pyrin domain-containing protein 3 
STAT6: Transcription 6 
GLUT2: Glucose transporters 2 
TGF-β1: Transforming growth factor β-1 
HIF-2α: Hypoxia-inducible factor 2α 
STAT3: Signal transducer and activator of transcription 3 
ASC: Apoptosis-associated speck-Like protein 
SGK1: Serum and glucocorticoid regulated kinase 1 
MyD88: Myeloid differentiation primary response 88 
Nrf2: Nuclear factor erythroid 2-related factor 2 
ARE: Antioxidant response elements 
Jak: Janus kinase-Activator of transcription 
PI3K: Phosphoinositide 3-kinase 
AKT: Protein kinase B 
TGF-β:: Transforming growth factor β 
NHE: Sodium-hydrogen exchangers 
ECV: Extracellular volume fraction 
MF: Myocardial fibrosis 
CAD: Coronary artery disease 
PF: Pulmonary fibrosis 
IPF: Idiopathic pulmonary fibrosis 
BALF: Bronchoalveolar Lavage Fluid 
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